Content-Length: 77822 | pFad | https://dlmf.nist.gov/./.././bib/.././././.././././13.11#E1

DLMF: §13.11 Series ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions
About the Project
13 Confluent Hypergeometric FunctionsKummer Functions

§13.11 Series

For z,

13.11.1 M(a,b,z)=Γ(a12)e12z(14z)12as=0(2a1)s(2ab)s(b)ss!(a12+s)Ia12+s(12z),
a+12,b0,1,2,,
13.11.2 M(a,b,z)=Γ(ba12)e12z(14z)ab+12×s=0(1)s(2b2a1)s(b2a)s(ba12+s)(b)ss!Iba12+s(12z),
ba+12,b0,1,2,.

(13.6.9), (13.6.11_1) and (13.6.11_2) are special cases.

13.11.3 𝐌(a,b,z)=e12zs=0As(b2a)12(1bs)(12z)12(1b+s)Jb1+s(2z(b2a)),

where

13.11.4 A0 =1,
A1 =0,
A2 =12b,
(n+1)An+1 =(n+b1)An1+(2ab)An2,
n=2,3,4,.

For additional expansions combine (13.14.4), (13.14.5), and §13.24. For other series expansions see Tricomi (1954, §1.8), Hansen (1975, §§66 and 87), Prudnikov et al. (1990, §6.6), López and Temme (2010a) and López and Pérez Sinusía (2014). See also §13.13.









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/.././././.././././13.11#E1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy