G. Labahn and M. Mutrie (1997)Reduction of Elliptic Integrals to Legendre Normal Form.
Technical report
Technical Report 97-21, Department of Computer Science, University of Waterloo, Waterloo, Ontario.
A. Laforgia and M. E. Muldoon (1983)Inequalities and approximations for zeros of Bessel functions of small order.
SIAM J. Math. Anal.14 (2), pp. 383–388.
A. Laforgia (1979)On the Zeros of the Derivative of Bessel Functions of Second Kind.
Pubblicazioni Serie III [Publication Series III], Vol. 179, Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Rome.
R. E. Langer (1934)The solutions of the Mathieu equation with a complex variable and at least one parameter large.
Trans. Amer. Math. Soc.36 (3), pp. 637–695.
P. W. Langhoff, C. T. Corcoran, J. S. Sims, F. Weinhold, and R. M. Glover (1976)Moment-theory investigations of photoabsorption and dispersion profiles in atoms and ions.
Phys. Rev. A14, pp. 1042–1056.
T. M. Larsen, D. Erricolo, and P. L. E. Uslenghi (2009)New method to obtain small parameter power series expansions of Mathieu radial and angular functions.
Math. Comp.78 (265), pp. 255–274.
H. T. Lau (1995)A Numerical Library in C for Scientists and Engineers.
CRC Press, Boca Raton, FL.
ⓘ
Notes:
With 1 IBM-PC floppy disk (3.5 inch; HD)
containing a large general purpose mathematical software collection written in C
including a collection of special function classes.
The functions are computed for real variables only.
(See Lau (2004) for Java version).
H. T. Lau (2004)A Numerical Library in Java for Scientists & Engineers.
Chapman & Hall/CRC, Boca Raton, FL.
ⓘ
Notes:
With 1 CD-ROM (Windows, Macintosh and Unix)
containing a large general purpose mathematical software collection written in Java
including a collection of special function classes.
The functions are computed for real variables only.
(See Lau (1995) for C version).
P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012)Algorithm 917: complex double-precision evaluation of the Wright function.
ACM Trans. Math. Software38 (3), pp. Art. 20, 17.
W. Lay, K. Bay, and S. Yu. Slavyanov (1998)Asymptotic and numeric study of eigenvalues of the double confluent Heun equation.
J. Phys. A31 (42), pp. 8521–8531.
E. W. Leaver (1986)Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics.
J. Math. Phys.27 (5), pp. 1238–1265.
N. N. Lebedev, I. P. Skalskaya, and Y. S. Uflyand (1965)Problems of Mathematical Physics.
Revised, enlarged and corrected English edition; translated
and edited by Richard A. Silverman. With a supplement by
Edward L. Reiss, Prentice-Hall Inc., Englewood Cliffs, N.J..
ⓘ
Notes:
Republished as Worked Problems in Applied Mathematics by
Dover Publications, New York, 1979
D. K. Lee (1990)Application of theta functions for numerical evaluation of complete elliptic integrals of the first and second kinds.
Comput. Phys. Comm.60 (3), pp. 319–327.
D. R. Lehman and J. S. O’Connell (1973)Graphical Recoupling of Angular Momenta.
Technical report
U.S. Government Printing Office, National Bureau of Standards, Washington, D.C..
D. R. Lehman, W. C. Parke, and L. C. Maximon (1981)Numerical evaluation of integrals containing a spherical Bessel function by product integration.
J. Math. Phys.22 (7), pp. 1399–1413.
D. H. Lehmer (1941)Guide to Tables in the Theory of Numbers.
Bulletin of the National Research Council, No. 105, National Research Council, Washington, D.C..
D. Lemoine (1997)Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions.
Comput. Phys. Comm.99 (2-3), pp. 297–306.
J. Letessier, G. Valent, and J. Wimp (1994)Some Differential Equations Satisfied by Hypergeometric Functions.
In Approximation and Computation (West Lafayette, IN, 1993),
Internat. Ser. Numer. Math., Vol. 119, pp. 371–381.
C. Leubner and H. Ritsch (1986)A note on the uniform asymptotic expansion of integrals with coalescing endpoint and saddle points.
J. Phys. A19 (3), pp. 329–335.
K. V. Leung and S. S. Ghaderpanah (1979)An application of the finite element approximation method to find the complex zeros of the modified Bessel function .
Math. Comp.33 (148), pp. 1299–1306.
E. Levin and D. S. Lubinsky (2001)Orthogonal Polynomials for Exponential Weights.
CMS Books in Mathematics/Ouvrages de Mathématiques de la
SMC, 4, Springer-Verlag, New York.
B. M. Levitan and I. S. Sargsjan (1975)Introduction to spectral theory: selfadjoint ordinary differential operators.
Translations of Mathematical Monographs, Vol. 39, American Mathematical Society, Providence, R.I..
S. Lewanowicz (1987)Corrigenda: “Recurrence relations for hypergeometric functions of unit argument” [Math. Comp. 45 (1985), no. 172, 521–535; MR 86m:33004].
Math. Comp.48 (178), pp. 853.
L.-W. Li, M. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan (1998a)Computations of spheroidal harmonics with complex arguments: A review with an algorithm.
Phys. Rev. E58 (5), pp. 6792–6806.
ⓘ
Notes:
Mathematica package for eigenvalues and solutions of the
spheroidal wave equations
L.-W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong (1998b)Microwave specific attenuation by oblate spheroidal raindrops: An exact analysis of TCS’s in terms of spheroidal wave functions.
J. Electromagn. Waves Appl.12 (6), pp. 709–711.
X. Li, X. Shi, and J. Zhang (1991)Generalized Riemann -function regularization and Casimir energy for a piecewise uniform string.
Phys. Rev. D44 (2), pp. 560–562.
Y. A. Li and P. J. Olver (2000)Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation.
J. Differential Equations162 (1), pp. 27–63.
C. Liaw, L. L. Littlejohn, R. Milson, and J. Stewart (2016)The spectral analysis of three families of exceptional Laguerre polynomials.
J. Approx. Theory202, pp. 5–41.
M. J. Lighthill (1958)An Introduction to Fourier Analysis and Generalised Functions.
Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York.
P. Linz and T. E. Kropp (1973)A note on the computation of integrals involving products of trigonometric and Bessel functions.
Math. Comp.27 (124), pp. 871–872.
J. L. López and P. J. Pagola (2011)A systematic “saddle point near a pole” asymptotic method with application to the Gauss hypergeometric function.
Stud. Appl. Math.127 (1), pp. 24–37.
J. L. López, P. Pagola, and E. Pérez Sinusía (2013a)Asymptotics of the first Appell function with large parameters II.
Integral Transforms Spec. Funct.24 (12), pp. 982–999.
J. L. López, P. Pagola, and E. Pérez Sinusía (2013b)Asymptotics of the first Appell function with large parameters.
Integral Transforms Spec. Funct.24 (9), pp. 715–733.
J. L. López and N. M. Temme (1999b)Hermite polynomials in asymptotic representations of generalized Bernoulli, Euler, Bessel, and Buchholz polynomials.
J. Math. Anal. Appl.239 (2), pp. 457–477.
J. L. López and N. M. Temme (1999c)Uniform approximations of Bernoulli and Euler polynomials in terms of hyperbolic functions.
Stud. Appl. Math.103 (3), pp. 241–258.
J. L. López and N. M. Temme (2010a)Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions.
Numer. Math.116 (2), pp. 269–289.
L. Lorch, M. E. Muldoon, and P. Szegő (1970)Higher monotonicity properties of certain Sturm-Liouville functions. III.
Canad. J. Math.22, pp. 1238–1265.
L. Lorch and P. Szegő (1964)Monotonicity of the differences of zeros of Bessel functions as a function of order.
Proc. Amer. Math. Soc.15 (1), pp. 91–96.
H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl (1923)The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity.
Methuen and Co., Ltd., London.
ⓘ
Notes:
Translated from Das Relativitätsprinzip by W. Perrett and
G. B. Jeffery. Reprinted by Dover Publications Inc.,
New York, 1952.
L. Lorentzen and H. Waadeland (1992)Continued Fractions with Applications.
Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
L. Lovász, L. Pyber, D. J. A. Welsh, and G. M. Ziegler (1995)Combinatorics in Pure Mathematics.
In Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grötschel, and L. Lovász (Eds.),
pp. 2039–2082.
T. A. Lowdon (1970)Integral representation of the Hankel function in terms of parabolic cylinder functions.
Quart. J. Mech. Appl. Math.23 (3), pp. 315–327.
D. W. Lozier and F. W. J. Olver (1993)Airy and Bessel Functions by Parallel Integration of ODEs.
In Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed (Eds.),
Philadelphia, PA, pp. 530–538.
D. W. Lozier and F. W. J. Olver (1994)Numerical Evaluation of Special Functions.
In Mathematics of Computation 1943–1993: A Half-Century of
Computational Mathematics (Vancouver, BC, 1993),
Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
D. W. Lozier and J. M. Smith (1981)Algorithm 567: Extended-range arithmetic and normalized Legendre polynomials [A1], [C1].
ACM Trans. Math. Software7 (1), pp. 141–146.
D. W. Lozier (1980)Numerical Solution of Linear Difference Equations.
NBSIR
Technical Report 80-1976, National Bureau of Standards, Gaithersburg, MD 20899.
ⓘ
Notes:
(Available from National Technical Information Service, Springfield, VA 22161.)
D. W. Lozier (1993)An underflow-induced graphics failure solved by SLI arithmetic.
In IEEE Symposium on Computer Arithmetic, E. E. Swartzlander, M. J. Irwin, and G. A. Jullien (Eds.),
Washington, D.C., pp. 10–17.
É. Lucas (1891)Théorie des nombres. Tome I: Le calcul des nombres entiers, le calcul des nombres rationnels, la divisibilité arithmétique.
Gauthier-Villars, Paris (French).
S. K. Lucas and H. A. Stone (1995)Evaluating infinite integrals involving Bessel functions of arbitrary order.
J. Comput. Appl. Math.64 (3), pp. 217–231.
Y. L. Luke and J. Wimp (1963)Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray.
Math. Comp.17 (84), pp. 395–404.
R. J. Lyman and W. W. Edmonson (2001)Linear prediction of bandlimited processes with flat spectral densities.
IEEE Trans. Signal Process.49 (7), pp. 1564–1569.
J. N. Lyness (1971)Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature.
Math. Comp.25 (113), pp. 87–104.