Content-Length: 48047 | pFad | https://dlmf.nist.gov/./.././bib/.././././bib/../././25.9#p1

DLMF: §25.9 Asymptotic Approximations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions
About the Project
25 Zeta and Related FunctionsRiemann Zeta Function

§25.9 Asymptotic Approximations

If x1, y1, 2πxy=t, and 0σ1, then as t with σ fixed,

25.9.1 ζ(σ+it)=1nx1ns+χ(s)1ny1n1s+O(xσ)+O(yσ1t12σ),

where s=σ+it and

25.9.2 χ(s)πs12Γ(1212s)/Γ(12s).

If σ=12, x=y=t/(2π), and m=x, then (25.9.1) becomes

25.9.3 ζ(12+it)=n=1m1n12+it+χ(12+it)n=1m1n12it+O(t1/4).

For other asymptotic approximations see Berry and Keating (1992), Paris and Cang (1997); see also Paris and Kaminski (2001, pp. 380–389).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/.././././bib/../././25.9#p1

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy