Content-Length: 156567 | pFad | https://dlmf.nist.gov/./.././bib/.././././bib/.././28.10#ii.info

DLMF: §28.10 Integral Equations ‣ Mathieu Functions of Integer Order ‣ Chapter 28 Mathieu Functions and Hill’s Equation
About the Project
28 Mathieu Functions and Hill’s EquationMathieu Functions of Integer Order

§28.10 Integral Equations

Contents
  1. §28.10(i) Equations with Elementary Kernels
  2. §28.10(ii) Equations with Bessel-Function Kernels
  3. §28.10(iii) Further Equations

§28.10(i) Equations with Elementary Kernels

With the notation of §28.4 for Fourier coefficients,

28.10.1 2π0π/2cos(2hcoszcost)ce2n(t,h2)dt =A02n(h2)ce2n(12π,h2)ce2n(z,h2),
28.10.2 2π0π/2cosh(2hsinzsint)ce2n(t,h2)dt =A02n(h2)ce2n(0,h2)ce2n(z,h2),
28.10.3 2π0π/2sin(2hcoszcost)ce2n+1(t,h2)dt =hA12n+1(h2)ce2n+1(12π,h2)ce2n+1(z,h2),
28.10.4 2π0π/2coszcostcosh(2hsinzsint)ce2n+1(t,h2)dt=A12n+1(h2)2ce2n+1(0,h2)ce2n+1(z,h2),
28.10.5 2π0π/2sinh(2hsinzsint)se2n+1(t,h2)dt=hB12n+1(h2)se2n+1(0,h2)se2n+1(z,h2),
28.10.6 2π0π/2sinzsintcos(2hcoszcost)se2n+1(t,h2)dt=B12n+1(h2)2se2n+1(12π,h2)se2n+1(z,h2),
28.10.7 2π0π/2sinzsintsin(2hcoszcost)se2n+2(t,h2)dt=hB22n+2(h2)2se2n+2(12π,h2)se2n+2(z,h2),
28.10.8 2π0π/2coszcostsinh(2hsinzsint)se2n+2(t,h2)dt=hB22n+2(h2)2se2n+2(0,h2)se2n+2(z,h2).

§28.10(ii) Equations with Bessel-Function Kernels

§28.10(iii) Further Equations

See §28.28. See also Prudnikov et al. (1990, pp. 359–368), Erdélyi et al. (1955, p. 115), and Gradshteyn and Ryzhik (2015, §§6.91–6.93). For relations with variable boundaries see Volkmer (1983).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/.././././bib/.././28.10#ii.info

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy