Content-Length: 226112 | pFad | https://dlmf.nist.gov/./.././bib/../././bib/.././././13.10.iv
6000When ,
13.10.1 | |||
13.10.2 | |||
Other formulas of this kind can be constructed by inversion of the differentiation formulas given in §13.3(ii).
For the notation see §§15.1, 15.2(i), and 10.25(ii).
13.10.3 | |||
, , | |||
13.10.4 | |||
, , | |||
13.10.5 | |||
, | |||
13.10.6 | |||
, , | |||
13.10.7 | |||
, . | |||
13.10.8 | |||
. | |||
13.10.9 | |||
. | |||
For the particular loop contour, see Figure 5.9.1.
13.10.10 | |||
, | |||
13.10.11 | |||
. | |||
13.10.12 | |||
. | |||
For integral transforms in terms of Whittaker functions see §13.23(iv). Additional integrals can be found in Apelblat (1983, pp. 388–392), Erdélyi et al. (1954b), Gradshteyn and Ryzhik (2015, §7.6), Magnus et al. (1966, §6.1.2), Prudnikov et al. (1990, §§1.13, 1.14, 2.19, 4.2.2), Prudnikov et al. (1992a, §§3.35, 3.36), and Prudnikov et al. (1992b, §§3.33, 3.34). See also (13.4.2), (13.4.5), (13.4.6).
Fetched URL: https://dlmf.nist.gov/./.././bib/../././bib/.././././13.10.iv
Alternative Proxies: