A. L. Van Buren, R. V. Baier, and S. Hanish (1970)A Fortran computer program for calculating the oblate spheroidal radial functions of the first and second kind and their first derivatives.
NRL Report No. 6959
Naval Res. Lab. Washingtion, D.C..
A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish (1975)Tables of Angular Spheroidal Wave Functions, Vol. 1, Prolate, ; Vol. 2, Oblate, m=0.
Naval Res. Lab. Reports, Washington, D.C..
A. L. Van Buren and J. E. Boisvert (2002)Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives.
Quart. Appl. Math.60 (3), pp. 589–599.
A. L. Van Buren and J. E. Boisvert (2004)Improved calculation of prolate spheroidal radial functions of the second kind and their first derivatives.
Quart. Appl. Math.62 (3), pp. 493–507.
J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986)On the zeros of the Riemann zeta function in the critical strip. IV.
Math. Comp.46 (174), pp. 667–681.
H. Van de Vel (1969)On the series expansion method for computing incomplete elliptic integrals of the first and second kinds.
Math. Comp.23 (105), pp. 61–69.
C. G. van der Laan and N. M. Temme (1984)Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-Like Functions.
CWI Tract, Vol. 10, Stichting Mathematisch Centrum, Centrum voor Wiskunde en
Informatica, Amsterdam.
A. J. van der Poorten (1980)Some Wonderful Formulas an Introduction to Polylogarithms.
In Proceedings of the Queen’s Number Theory Conference, 1979
(Kingston, Ont., 1979), R. Ribenboim (Ed.),
Queen’s Papers in Pure and Appl. Math., Vol. 54, Kingston, Ont., pp. 269–286.
J. Van Deun and R. Cools (2008)Integrating products of Bessel functions with an additional exponential or rational factor.
Comput. Phys. Comm.178 (8), pp. 578–590.
C. Van Loan (1992)Computational Frameworks for the Fast Fourier Transform.
Frontiers in Applied Mathematics, Vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
A. van Wijngaarden (1953)On the coefficients of the modular invariant .
Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes
Math. 1556, pp. 389–400.
R. Vein and P. Dale (1999)Determinants and Their Applications in Mathematical Physics.
Applied Mathematical Sciences, Vol. 134, Springer-Verlag, New York.
G. Veneziano (1968)Construction of a crossing-symmetric, Regge-behaved amplitude for linearly rising trajectories.
Il Nuovo Cimento A57 (1), pp. 190–197.
N. Ja. Vilenkin and A. U. Klimyk (1991)Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms.
Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
ⓘ
Notes:
Translated from the Russian by V. A. Groza and A. A. Groza
N. Ja. Vilenkin and A. U. Klimyk (1992)Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions.
Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
ⓘ
Notes:
Translated from the Russian by V. A. Groza and A. A. Groza
N. Ja. Vilenkin and A. U. Klimyk (1993)Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms.
Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
ⓘ
Notes:
Translated from the Russian by V. A. Groza and A. A. Groza
H. Volkmer (2004a)Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation.
Constr. Approx.20 (1), pp. 39–54.
H. Volkmer (2008)Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials.
J. Comput. Appl. Math.213 (2), pp. 488–500.
M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a)On the localization and computation of zeros of Bessel functions.
Z. Angew. Math. Mech.77 (6), pp. 467–475.
M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1995)RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions.
Comput. Phys. Comm.92 (2-3), pp. 252–266.
ⓘ
Notes:
Double-precision Fortran, maximum accuracy 16S. For
corrections see same journal 117 (1999), p. 290
M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1997b)The topological degree theory for the localization and computation of complex zeros of Bessel functions.
Numer. Funct. Anal. Optim.18 (1-2), pp. 227–234.