Content-Length: 162664 | pFad | https://dlmf.nist.gov/./.././bib/../././bib/../././.././bib/V#bib2964

DLMF: Bibliography V ‣ Bibliography
About the Project
Bibliography

Bibliography V

  • P. Verbeeck (1970) Rational approximations for exponential integrals En(x). Acad. Roy. Belg. Bull. Cl. Sci. (5) 56, pp. 1064–1072.
  • A. Verma and V. K. Jain (1983) Certain summation formulae for q-series. J. Indian Math. Soc. (N.S.) 47 (1-4), pp. 71–85 (1986).
  • R. Vidūnas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • R. Vidūnas (2005) Transformations of some Gauss hypergeometric functions. J. Comput. Appl. Math. 178 (1-2), pp. 473–487.
  • L. Vietoris (1983) Dritter Beweis der die unvollständige Gammafunktion betreffenden Lochsschen Ungleichungen. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 192 (1-3), pp. 83–91 (German).
  • N. Ja. Vilenkin and A. U. Klimyk (1991) Representation of Lie Groups and Special Functions. Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 72, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin and A. U. Klimyk (1993) Representation of Lie Groups and Special Functions. Volume 2: Class I Representations, Special Functions, and Integral Transforms. Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht.
  • N. Ja. Vilenkin (1968) Special Functions and the Theory of Group Representations. American Mathematical Society, Providence, RI.
  • I. M. Vinogradov (1937) Representation of an odd number as a sum of three primes (Russian). Dokl. Akad. Nauk SSSR 15, pp. 169–172 (Russian).
  • I. M. Vinogradov (1958) A new estimate of the function ζ(1+it). Izv. Akad. Nauk SSSR. Ser. Mat. 22, pp. 161–164 (Russian).
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (1983) Integralgleichungen für periodische Lösungen Hill’scher Differentialgleichungen. Analysis 3 (1-4), pp. 189–203 (German).
  • H. Volkmer (1984) Integral representations for products of Lamé functions by use of fundamental solutions. SIAM J. Math. Anal. 15 (3), pp. 559–569.
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • H. Volkmer (2004b) Four remarks on eigenvalues of Lamé’s equation. Anal. Appl. (Singap.) 2 (2), pp. 161–175.
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯.
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function Fqp(z) as z for p<q. Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • H. von Koch (1901) Über die Riemann’sche Primzahlfunction. Math. Ann. 55, pp. 441–464 (German).
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • M. N. Vrahatis, T. N. Grapsa, O. Ragos, and F. A. Zafiropoulos (1997a) On the localization and computation of zeros of Bessel functions. Z. Angew. Math. Mech. 77 (6), pp. 467–475.
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1995) RFSFNS: A portable package for the numerical determination of the number and the calculation of roots of Bessel functions. Comput. Phys. Comm. 92 (2-3), pp. 252–266.
  • M. N. Vrahatis, O. Ragos, T. Skiniotis, F. A. Zafiropoulos, and T. N. Grapsa (1997b) The topological degree theory for the localization and computation of complex zeros of Bessel functions. Numer. Funct. Anal. Optim. 18 (1-2), pp. 227–234.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././bib/../././bib/../././.././bib/V#bib2964

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy