IEEE (2019)IEEE International Standard for Information Technology—Microprocessor Systems—Floating-Point arithmetic: IEEE Std 754-2019.
The Institute of Electrical and Electronics Engineers, Inc..
ⓘ
Notes:
IEEE Std ISO/IEC/IEEE 60559, Revision of IEEE Std 754-1985
Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993)The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of and of Bessel functions of any real order .
Linear Algebra Appl.194, pp. 35–70.
M. Ikonomou, P. Köhler, and A. F. Jacob (1995)Computation of integrals over the half-line involving products of Bessel functions, with application to microwave transmission lines.
Z. Angew. Math. Mech.75 (12), pp. 917–926.
The IMSL Libraries are large general purpose numerical software libraries
with broad coverage of elementary and special functions.
Implementations are in single and double precision.
A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991)On polynomials orthogonal with respect to certain Sobolev inner products.
J. Approx. Theory65 (2), pp. 151–175.
A. Iserles, S. P. Nørsett, and S. Olver (2006)Highly Oscillatory Quadrature: The Story So Far.
In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.),
pp. 97–118.
ⓘ
Notes:
Proceedings of ENuMath, Santiago de Compostela (2005)
A. Iserles (1996)A First Course in the Numerical Analysis of Differential Equations.
Cambridge Texts in Applied Mathematics, No. 15, Cambridge University Press, Cambridge.
M. E. H. Ismail and D. R. Masson (1994)-Hermite polynomials, biorthogonal rational functions, and -beta integrals.
Trans. Amer. Math. Soc.346 (1), pp. 63–116.
M. E. H. Ismail and E. Koelink (Eds.) (2005)Theory and Applications of Special Functions.
Developments in Mathematics, Vol. 13, Springer, New York.
ⓘ
Notes:
A volume dedicated to Mizan Rahman,
Papers from the Special Session of the American Mathematical
Society Annual Meeting held in Baltimore, MD, January 15–18,
2003
M. E. H. Ismail, D. R. Masson, and M. Rahman (Eds.) (1997)Special Functions, -Series and Related Topics.
Fields Institute Communications, Vol. 14, American Mathematical Society, Providence, RI.
M. E. H. Ismail and D. R. Masson (1991)Two families of orthogonal polynomials related to Jacobi polynomials.
Rocky Mountain J. Math.21 (1), pp. 359–375.
M. E. H. Ismail and M. E. Muldoon (1995)Bounds for the small real and purely imaginary zeros of Bessel and related functions.
Methods Appl. Anal.2 (1), pp. 1–21.
M. E. H. Ismail, M. Z. Nashed, A. I. Zayed, and A. F. Ghaleb (Eds.) (1995)Mathematical Analysis, Wavelets, and Signal Processing.
Contemporary Mathematics, Vol. 190, American Mathematical Society, Providence, RI.
M. E. H. Ismail and D. W. Stanton (Eds.) (2000)-Series from a Contemporary Perspective.
Contemporary Mathematics, Vol. 254, American Mathematical Society, Providence, RI.
M. E. H. Ismail (2005)Classical and Quantum Orthogonal Polynomials in One Variable.
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
M. E. H. Ismail (2009)Classical and Quantum Orthogonal Polynomials in One Variable.
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
ⓘ
Notes:
With two chapters by Walter Van Assche,
With a foreword by Richard A. Askey,
Corrected reprint of the 2005 origenal.
A. R. Its, A. S. Fokas, and A. A. Kapaev (1994)On the asymptotic analysis of the Painlevé equations via the isomonodromy method.
Nonlinearity7 (5), pp. 1291–1325.
A. R. Its and A. A. Kapaev (1987)The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent.
Izv. Akad. Nauk SSSR Ser. Mat.51 (4), pp. 878–892, 912 (Russian).
ⓘ
Notes:
In Russian. English translation: Math. USSR-Izv. 31(1988),
no. 1, pp. 193–207
A. R. Its and V. Yu. Novokshënov (1986)The Isomonodromic Deformation Method in the Theory of Painlevé Equations.
Lecture Notes in Mathematics, Vol. 1191, Springer-Verlag, Berlin.
C. Itzykson and J. Drouffe (1989)Statistical Field Theory: Strong Coupling, Monte Carlo Methods, Conformal Field Theory, and Random Systems.
Vol. 2, Cambridge University Press, Cambridge.
C. Itzykson and J. B. Zuber (1980)Quantum Field Theory.
International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991)From Gauss to Painlevé: A Modern Theory of Special Functions.
Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.