Content-Length: 83388 | pFad | https://dlmf.nist.gov/./.././not/.././././4.14#E5

DLMF: §4.14 Definitions and Periodicity ‣ Trigonometric Functions ‣ Chapter 4 Elementary Functions
About the Project
4 Elementary FunctionsTrigonometric Functions

§4.14 Definitions and Periodicity

4.14.1 sinz =eizeiz2i,
4.14.2 cosz =eiz+eiz2,
4.14.3 cosz±isinz =e±iz,
4.14.4 tanz =sinzcosz,
4.14.5 cscz =1sinz,
4.14.6 secz =1cosz,
4.14.7 cotz =coszsinz=1tanz.

The functions sinz and cosz are entire. In the zeros of sinz are z=kπ, k; the zeros of cosz are z=(k+12)π, k. The functions tanz, cscz, secz, and cotz are meromorphic, and the locations of their zeros and poles follow from (4.14.4) to (4.14.7).

For k

4.14.8 sin(z+2kπ) =sinz,
4.14.9 cos(z+2kπ) =cosz,
4.14.10 tan(z+kπ) =tanz.








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dlmf.nist.gov/./.././not/.././././4.14#E5

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy