Content-Length: 264810 | pFad | https://dlmf.nist.gov/./.././not/.././bib/.././././bib/.././22.8#iii.info
For , and with the common modulus suppressed:
22.8.1 | ||||
22.8.2 | ||||
22.8.3 | ||||
22.8.4 | |||
22.8.5 | ||||
22.8.6 | ||||
22.8.7 | ||||
22.8.8 | ||||
22.8.9 | ||||
22.8.10 | ||||
22.8.11 | ||||
22.8.12 | ||||
See also Carlson (2004).
For , and with the common modulus suppressed:
22.8.13 | ||||
22.8.14 | ||||
22.8.15 | ||||
22.8.16 | ||||
22.8.17 | ||||
22.8.18 | ||||
See also Carlson (2004).
In the following equations the common modulus is again suppressed.
Let
22.8.19 | |||
Then
22.8.20 | |||
and
22.8.21 | |||
A geometric interpretation of (22.8.20) analogous to that of (23.10.5) is given in Whittaker and Watson (1927, p. 530).
If sums/differences of the ’s are rational multiples of , then further relations follow. For instance, if
22.8.24 | |||
then
22.8.25 | |||
is independent of , , . Similarly, if
22.8.26 | |||
then
22.8.27 | |||
Greenhill (1959, pp. 121–130) reviews these results in terms of the geometric poristic polygon constructions of Poncelet. Generalizations are given in §22.9.
Fetched URL: https://dlmf.nist.gov/./.././not/.././bib/.././././bib/.././22.8#iii.info
Alternative Proxies: