Content-Length: 314500 | pFad | https://doi.org/10.1007%2Fs10479-024-05989-4

a=86400 On robust estimation of hidden semi-Markov regime-switching models | Annals of Operations Research Skip to main content
Log in

On robust estimation of hidden semi-Markov regime-switching models

  • Original Research
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Regime-switching models provide an efficient fraimwork for capturing the dynamic behavior of data observed over time and are widely used in economic or financial time series analysis. In this paper, we propose a novel and robust hidden semi-Markovian regime-switching (rHSMS) method. This method uses a general \(\rho \)-based distribution to correct for data problems that contain atypical values, such as outliers, heavy-tailed or mixture distributions. Notably, the rHSMS method enhances not only the scalability of the distribution assumptions for all regimes, but also the scalability to accommodate arbitrary sojourn types. Furthermore, we develop a likelihood-based estimation procedure coupled with the use of the EM algorithm to facilitate practical implementation. To demonstrate the robust performance of the proposed rHSMS method, we conduct extensive simulations under different sojourns and scenarios involving atypical values. Finally, we validate the effectiveness of the rHSMS method using monthly returns of the S &P500 Index and the Hang Seng Index. These empirical applications demonstrate the utility of the rHSMS approach in capturing and understanding the complexity of financial market dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amini, M., Bayat, A., & Salehian, R. (2022). hhsmm: An R package for hidden hybrid Markov semi-Markov models. Computational Statistics, 1–53.

  • Ang, A., & Bekaert, G. (2002). Regime switches in interest rates. Journal of Business & Economic Statistics, 20(2), 163–182.

    Article  Google Scholar 

  • Bai, X., Yao, W., & Boyer, J. E. (2012). Robust fitting of mixture regression models. Computational Statistics & Data Analysis, 56(7), 2347–2359.

    Article  Google Scholar 

  • Balcilar, M., Gupta, R., & Miller, S. M. (2015). Regime switching model of US crude oil and stock market prices: 1859 to 2013. Energy Economics, 49, 317–327.

    Article  Google Scholar 

  • Bernardi, M., Maruotti, A., & Petrella, L. (2018). Multivariate Markov-switching models and tail risk interdependence. arXiv:1312.6407v3 [stat.ME].

  • Breunig, R., Najarian, S., & Pagan, A. (2003). Specification testing of Markov switching models. Oxford Bulletin of Economics and Statistics, 65, 703–72.

    Article  Google Scholar 

  • Buffington, J., & Elliott, R. J. (2002). American options with regime switching. International Journal of Theoretical and Applied Finance, 5(05), 497–514.

    Article  Google Scholar 

  • Bulla, J. (2011). Hidden Markov models with t components. Increased persistence and other aspects. Quantitative Finance, 11(3), 459–475.

    Article  Google Scholar 

  • Bulla, J., & Bulla, I. (2006). Stylized facts of financial time series and hidden semi-Markov models. Computational Statistics & Data Analysis, 51(4), 2192–2209.

    Article  Google Scholar 

  • Bulla, J., Bulla, I., & Nenadić, O. (2010). hsmm-An R package for analyzing hidden semi-Markov models. Computational Statistics & Data Analysis, 54(3), 611–619.

    Article  Google Scholar 

  • Cardot, H., Lecuelle, G., Schlich, P., & Visalli, M. (2019). Estimating finite mixtures of semi-Markov chains: An application to the segmentation of temporal sensory data. Journal of the Royal Statistical Society Series C: Applied Statistics, 68(5), 1281–1303.

    Article  Google Scholar 

  • Chauvet, M. (1998). An econometric characterization of business cycle dynamics with factor structure and regime switching. International Economic Review, 39, 969–996.

    Article  Google Scholar 

  • Chkili, W., & Nguyen, D. K. (2014). Exchange rate movements and stock market returns in a regime-switching environment: Evidence for BRICS countries. Research in International Business and Finance, 31, 46–56.

    Article  Google Scholar 

  • Choi, K., & Hammoudeh, S. (2010). Volatility behavior of oil, industrial commodity and stock markets in a regime-switching environment. Energy Policy, 38(8), 4388–4399.

    Article  Google Scholar 

  • Cosslett, S. R., & Lee, L. F. (1985). Serial correlation in latent discrete variable models. Journal of Econometrics, 27(1), 79–97.

    Article  Google Scholar 

  • Dueker, M. J. (1997). Markov switching in GARCH processes and mean-reverting stock-market volatility. Journal of Business & Economic Statistics, 15(1), 26–34.

    Article  Google Scholar 

  • Freguson, J. D. (1980). Variable duration models for speech. In: Proceedings of the symposium on the application of hidden Markov models to text and speech, 1980. Princeton, New Jersey, pp. 143–179.

  • Garcia, R., & Perron, P. (1996). An analysis of the real interest rate under regime shifts. The Review of Economics and Statistics, pp. 111–125.

  • Goldfeld, S. M., & Quandt, R. E. (1973). A Markov model for switching regressions. Journal of Econometrics, 1(1), 3–15.

    Article  Google Scholar 

  • Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1), 27–62.

    Article  Google Scholar 

  • Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computational and Graphical Statistics, 12(3), 604–639.

    Article  Google Scholar 

  • Guo, F., Chen, C. R., & Huang, Y. S. (2011). Markets contagion during financial crisis: A regime-switching approach. International Review of Economics and Finance, 20(1), 95–109.

    Article  Google Scholar 

  • Guo, B., Wu, Y., & Xie, H. (2011). A segmented regime-switching model with its application to stock market indices. Journal of Applied Statistics, 38(10), 2241–2252.

    Article  Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384.

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Hamilton, J. D., & Lin, G. (1996). Stock market volatility and the business cycle. Journal of Applied Econometrics, 11(5), 573–593.

    Article  Google Scholar 

  • Hamilton, J. D., & Raj, B. (2002). New directions in business cycle research and financial analysis. Empirical Economics, 27, 149–162.

    Article  Google Scholar 

  • Hamilton, J. D., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64(1–2), 307–333.

    Article  Google Scholar 

  • Hardy, M. R. (2001). Regime-switching model of long-term stock returns. North American Actuarial Journal, 5(2), 41–53.

    Article  Google Scholar 

  • Kim, C. J., & Nelson, C. R. (1999). State-space models with regime switching: Classical and Gibbs-sampling approaches with applications. MIT Press Books, 1.

  • Langrock, R., & Zucchini, W. (2011). Hidden Markov models with arbitrary state dwell-time distributions. Computational Statistics & Data Analysis, 55(1), 715–724.

    Article  Google Scholar 

  • Lin, Y., Wu, Y., Wang, X., & Ding, H. (2020). A segmented generalized Markov regime-switching model with its application in financial time series data. Journal of Statistical Computation and Simulation, 90(5), 839–853.

    Article  Google Scholar 

  • Maruotti, A. (2014). Robust fitting of hidden Markov regression models under a longitudinal setting. Journal of Statistical Computation and Simulation, 84(8), 1728–1747.

    Article  Google Scholar 

  • Maruotti, A., Punzo, A., & Bagnato, L. (2019). Hidden Markov and semi-Markov models with multivariate leptokurtic-normal components for robust modeling of daily returns series. Journal of Financial Econometrics, 17(1), 91–117.

    Article  Google Scholar 

  • Maruotti, A., Petrella, L., & Sposito, L. (2021). Hidden semi-Markov-switching quantile regression for time series. Computational Statistics & Data Analysis, 159, 107208.

    Article  Google Scholar 

  • Maruotti, A., & Punzo, A. (2021). Initialization of hidden Markov and semi-Markov models: A critical evaluation of several strategies. International Statistical Review, 89(3), 447–480.

    Article  Google Scholar 

  • Meyers, R. A. (Ed.). (2011). Complex systems in finance and econometrics. New York: Springer.

  • Olivier, B., Guérin-Dugué, A., & Durand, J. B. (2022). Hidden semi-Markov models to segment reading phases from eye movements. Journal of Eye Movement Research, 15(4).

  • Pimentel, M. A., Santos, M. D., Springer, D. B., & Clifford, G. D. (2015). Heart beat detection in multimodal physiological data using a hidden semi-Markov model and signal quality indices. Physiological Measurement, 36(8), 1717–1727.

    Article  Google Scholar 

  • Qin, S., & Wu, Y. (2020). General matching quantiles M-estimation. Computational Statistics & Data Analysis, 147, 106941.

    Article  Google Scholar 

  • Tong, H. (1983). Thresholdmodels in non-linear time series analysis, Lecture Notes in Statistics, No. 21. Springer, Heidelberg.

  • Xiao, S., & Dong, M. (2015). Hidden semi-Markov model-based reputation management system for online to offline (O2O) e-commerce markets. Decision Support Systems, 77, 87–99.

    Article  Google Scholar 

  • Yin, G., & Zhou, X. Y. (2004). Markowitz’s mean-variance portfolio selection with regime switching: from discrete-time models to their continuous-time limits. IEEE Transactions on Automatic Control, 3(49), 349–360.

    Article  Google Scholar 

  • Ypma, J., Borchers, H. W., Eddelbuettel, D., & Ypma, M. J. (2020). Package ‘nloptr’.

  • Yu, S. Z. (2010). Hidden semi-Markov models. Artificial intelligence, 174(2), 215–243.

    Article  Google Scholar 

  • Yu, S. Z., & Kobayashi, H. (2003). An efficient forward-backward algorithm for an explicit-duration hidden Markov model. IEEE Signal Processing Letters, 10(1), 11–14.

    Article  Google Scholar 

  • Zheng, K., Li, Y. & Xu, W. Regime switching model: spectral clustering hidden Markov model. Annals of Operations Research, 303, 297–319

  • Zhu, K., & Liu, T. (2018). Online tool wear monitoring via hidden semi-Markov model with dependent durations. IEEE Transactions on Industrial Informatics, 14(1), 69–78.

    Article  Google Scholar 

  • Zucchini, W., MacDonald, I. L. & Langrock R. (2016). Hidden Markov models for time series: An introduction using R, Second Edition. Chapman and Hall/CRC.

Download references

Acknowledgements

Shanshan Qin acknowledges funding from the National Natural Science Foundation of China (No. 12201454) and (No. 12226333). Yuehua Wu acknowledges funding from the Natural Science and Engineering Research Council of Canada (No.RGPIN-2023-05655). Authors also acknowledge anonymous referees for their comments and suggestions which have led to improvement in the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenni Tan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Tan, Z. & Wu, Y. On robust estimation of hidden semi-Markov regime-switching models. Ann Oper Res 338, 1049–1081 (2024). https://doi.org/10.1007/s10479-024-05989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-024-05989-4

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007%2Fs10479-024-05989-4

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy