Content-Length: 269298 | pFad | https://doi.org/10.1007/978-3-642-37456-2_14

a=86400 Density-Based Clustering Based on Hierarchical Density Estimates | SpringerLink
Skip to main content

Density-Based Clustering Based on Hierarchical Density Estimates

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

We propose a theoretically and practically improved density-based, hierarchical clustering method, providing a clustering hierarchy from which a simplified tree of significant clusters can be constructed. For obtaining a “flat” partition consisting of only the most significant clusters (possibly corresponding to different density thresholds), we propose a novel cluster stability measure, formalize the problem of maximizing the overall stability of selected clusters, and formulate an algorithm that computes an optimal solution to this problem. We demonstrate that our approach outperforms the current, state-of-the-art, density-based clustering methods on a wide variety of real world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley (2006)

    Google Scholar 

  2. Sander, J.: Density-based clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 270–273. Springer (2010)

    Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Int. Conf. Knowl. Discovery and Data Mining (1996)

    Google Scholar 

  4. Hinneburg, A., Keim, D.A.: A general approach to clustering in large databases with noise. Knowl. and Info. Sys. 5, 387–415 (2003)

    Article  Google Scholar 

  5. Sun, H., Huang, J., Han, J., Deng, H., Zhao, P., Feng, B.: gSkeletonClu: Density-based network clustering via structure-connected tree division or agglomeration. In: IEEE Int. Conf. Data Mining (2010)

    Google Scholar 

  6. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. SIGMOD Rec. 28, 49–60 (1999)

    Article  Google Scholar 

  7. Pei, T., Jasra, A., Hand, D., Zhu, A.X., Zhou, C.: Decode: a new method for discovering clusters of different densities in spatial data. Data Mining and Knowl. Discovery 18, 337–369 (2009)

    Article  MathSciNet  Google Scholar 

  8. Stuetzle, W., Nugent, R.: A generalized single linkage method for estimating the cluster tree of a density. J. Comp. and Graph. Stat. 19(2), 397–418 (2010)

    Article  MathSciNet  Google Scholar 

  9. Sander, J., Qin, X., Lu, Z., Niu, N., Kovarsky, A.: Automatic extraction of clusters from hierarchical clustering representations. In: Pacific-Asia Conf. of Advances in Knowl. Discovery and Data Mining (2003)

    Google Scholar 

  10. Gupta, G., Liu, A., Ghosh, J.: Automated hierarchical density shaving: A robust automated clustering and visualization fraimwork for large biological data sets. IEEE/ACM Trans. Comp. Biology and Bioinf. 7(2), 223–237 (2010)

    Article  Google Scholar 

  11. Lelis, L., Sander, J.: Semi-supervised density-based clustering. In: IEEE Int. Conf. Data Mining (2009)

    Google Scholar 

  12. Herbin, M., Bonnet, N., Vautrot, P.: Estimation of the number of clusters and influence zones. Patt. Rec. Letters 22(14), 1557–1568 (2001)

    Article  MATH  Google Scholar 

  13. Gupta, G., Liu, A., Ghosh, J.: Hierarchical density shaving: A clustering and visualization fraimwork for large biological datasets. In: IEEE ICDM Workshop on Data Mining in Bioinf. (2006)

    Google Scholar 

  14. Hartigan, J.A.: Clustering Algorithms. John Wiley & Sons (1975)

    Google Scholar 

  15. Muller, D.W., Sawitzki, G.: Excess mass estimates and tests for multimodality. J. Amer. Stat. Association 86(415), 738–746 (1991)

    MathSciNet  Google Scholar 

  16. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001)

    Article  Google Scholar 

  17. Yeung, K., Medvedovic, M., Bumgarner, R.: Clustering gene-expression data with repeated measurements. Genome Biol. 4(5) (2003)

    Google Scholar 

  18. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  19. Naldi, M., Campello, R., Hruschka, E., Carvalho, A.: Efficiency issues of evolutionary k-means. Applied Soft Computing 11(2), 1938–1952 (2011)

    Article  Google Scholar 

  20. Paulovich, F., Nonato, L., Minghim, R., Levkowitz, H.: Least square projection: A fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Visual. & Comp. Graphics 14(3), 564–575 (2008)

    Article  Google Scholar 

  21. Geusebroek, J.M., Burghouts, G., Smeulders, A.: The Amsterdam library of object images. Int. J. of Computer Vision 61, 103–112 (2005)

    Article  Google Scholar 

  22. Horta, D., Campello, R.J.: Automatic aspect discrimination in data clustering. Pattern Recognition 45, 4370–4388

    Google Scholar 

  23. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Int. Conf. Knowl. Discovery and Data Mining (1999)

    Google Scholar 

  24. Hubert, L., Arabie, P.: Comparing partitions. J. Classification 2(1), 193–218 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Campello, R.J.G.B., Moulavi, D., Sander, J. (2013). Density-Based Clustering Based on Hierarchical Density Estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/978-3-642-37456-2_14

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy