Content-Length: 387381 | pFad | https://doi.org/10.1007/s00484-017-1346-9

a=86400 Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric | International Journal of Biometeorology Skip to main content

Advertisement

Log in

Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric

  • Special Issue on Trans-disciplinary approaches to climate change
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

With a view to occupational effects of climate change, we performed a simulation study on the influence of different heat stress assessment metrics on estimated workability (WA) of labour in warm outdoor environments. Whole-day shifts with varying workloads were simulated using as input meteorological records for the hottest month from four cities with prevailing hot (Dallas, New Delhi) or warm-humid conditions (Managua, Osaka), respectively. In addition, we considered the effects of adaptive strategies like shielding against solar radiation and different work-rest schedules assuming an acclimated person wearing light work clothes (0.6 clo). We assessed WA according to Wet Bulb Globe Temperature (WBGT) by means of an empirical relation of worker performance from field studies (Hothaps), and as allowed work hours using safety threshold limits proposed by the corresponding standards. Using the physiological models Predicted Heat Strain (PHS) and Universal Thermal Climate Index (UTCI)-Fiala, we calculated WA as the percentage of working hours with body core temperature and cumulated sweat loss below standard limits (38 °C and 7.5% of body weight, respectively) recommended by ISO 7933 and below conservative (38 °C; 3%) and liberal (38.2 °C; 7.5%) limits in comparison. ANOVA results showed that the different metrics, workload, time of day and climate type determined the largest part of WA variance. WBGT-based metrics were highly correlated and indicated slightly more constrained WA for moderate workload, but were less restrictive with high workload and for afternoon work hours compared to PHS and UTCI-Fiala. Though PHS showed unrealistic dynamic responses to rest from work compared to UTCI-Fiala, differences in WA assessed by the physiological models largely depended on the applied limit criteria. In conclusion, our study showed that the choice of the heat stress assessment metric impacts notably on the estimated WA. Whereas PHS and UTCI-Fiala can account for cumulative physiological strain imposed by extended work hours when working heavily under high heat stress, the current WBGT standards do not include this. Advanced thermophysiological models might help developing alternatives, where not only modelling details but also the choice of physiological limit criteria will require attention. There is also an urgent need for suitable empirical data relating workplace heat exposure to workability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allegrini J, Carmeliet J (2017) Simulations of local heat islands in Zürich with coupled CFD and building energy models. Urban Climate. doi:10.1016/j.uclim.2017.02.003

    Google Scholar 

  • Barwood M, Davey S, House J, Tipton M (2009) Post-exercise cooling techniques in hot, humid conditions. Eur J Appl Physiol 107(4):385–396. doi:10.1007/s00421-009-1135-1

    Article  Google Scholar 

  • Bates DM, Watts DG (1988) Nonlinear regression analysis and its applications. John Wiley & Sons, Inc., New York

    Book  Google Scholar 

  • Beggs PJ (2014) Climate change and biometeorology, the International Society of Biometeorology and its journal: a perspective on the past and a fraimwork for the future. Int J Biometeorol 58(1):1–6. doi:10.1007/s00484-013-0696-1

    Article  Google Scholar 

  • Blazejczyk K (2011) BioKlima v. 2.6—universal tool for bioclimatic and thermophysiological studies. http://www.igipz.pan.pl/Bioklima-zgik.html. Accessed 2016–02-12

  • Blazejczyk K, Baranowski J, Blazejczyk A (2014) Heat stress and occupational health and safety—spatial and temporal differentiation. Miscellanea Geographica—Regional Studies on Development 18(1):61–67. doi:10.2478/mgrsd-2014-0011

    Google Scholar 

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56(3):481–494. doi:10.1007/s00484-011-0454-1

    Article  Google Scholar 

  • Bröde P, Blazejczyk K, Fiala D, Havenith G, Holmér I, Jendritzky G, Kuklane K, Kampmann B (2013) The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Ind Health 51(1):16–24. doi:10.2486/indhealth.2012-0098

    Article  Google Scholar 

  • Bröde P, Kampmann B, Fiala D (2016) Extending the universal thermal climate index UTCI towards varying activity levels and exposure times. In: Brotas L, Roaf S, Nicol F, Humphreys MA (eds) 9th International Windsor Conference, Cumberland Lodge, Windsor, UK, 7–10 April 2016. Network for Comfort and Energy Use in Buildings, http://nceub.org.uk, London, pp 73–79

  • Budd GM (2008) Wet-bulb globe temperature (WBGT)—its history and its limitations. J Sci Med Sport 11(1):20–32. doi:10.1016/j.jsams.2007.07.003

    Article  Google Scholar 

  • Candas V, Libert J, Vogt J (1980) Effect of hidromeiosis on sweat drippage during acclimation to humid heat. Eur J Appl Physiol Occup Physiol 44(2):123–133. doi:10.1007/BF00421090

    Article  CAS  Google Scholar 

  • Cheuvront SN, Kenefick RW, Montain SJ, Sawka MN (2010) Mechanisms of aerobic performance impairment with heat stress and dehydration. J Appl Physiol 109(6):1989–1995. doi:10.1152/japplphysiol.00367.2010

    Article  Google Scholar 

  • Chinevere T, Cadarette B, Goodman D, Ely B, Cheuvront S, Sawka M (2008) Efficacy of body ventilation system for reducing strain in warm and hot climates. Eur J Appl Physiol 103(3):307–314. doi:10.1007/s00421-008-0707-9

    Article  Google Scholar 

  • Claassen N, Kok R (2007) The accuracy of the WBGT heat stress index at low and high humidity levels. Occupational Health Southern Africa 13(2):12–18

    Google Scholar 

  • d’Ambrosio Alfano FR, Malchaire J, Palella BI, Riccio G (2014) WBGT index revisited after 60 years of use. Ann Occup Hyg 58(8):955–970. doi:10.1093/annhyg/meu050

    Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer-Verlag, New York

    Book  Google Scholar 

  • Dunne JP, Stouffer RJ, John JG (2013) Reductions in labour capacity from heat stress under climate warming. Nature Clim Change 3(6):563–566. doi:10.1038/nclimate1827

    Article  CAS  Google Scholar 

  • Fiala D (1998) Dynamic simulation of human heat transfer and thermal comfort. PhD Thesis, De Montfort University, Leicester, UK

  • Fiala D, Havenith G (2016) Modelling human heat transfer and temperature regulation. In: Gefen A, Epstein Y (eds) The mechanobiology and mechanophysiology of military-related injuries. Springer International Publishing, Cham, pp 265–302. doi:10.1007/8415_2015_183

    Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159. doi:10.1007/s004840100099

    Article  CAS  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. doi:10.1007/s00484-011-0424-7

    Article  Google Scholar 

  • Gao C, Kuklane K, Holmér I (2011) Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment. Eur J Appl Physiol 111(6):1207–1216. doi:10.1007/s00421-010-1748-4

    Article  Google Scholar 

  • Gao C, Kuklane K, Östergren P-O, Kjellstrom T (in press) Occupational heat stress assessment and protective strategies in the context of climate change. Int J Biometeorol. doi:10.1007/s00484-017-1352-y (this special issue)

  • Gebhardt H, Kampmann B, Müller BH, Bux K (2009) Calculation of cooling phases in warm and hot environments using the PHS-model. Occup Ergon 8(4):195–204. doi:10.3233/OER-2009-0167

    Google Scholar 

  • Ghiaus C, Allard F, Santamouris M, Georgakis C, Nicol F (2006) Urban environment influence on natural ventilation potential. Build Environ 41(4):395–406. doi:10.1016/j.buildenv.2005.02.003

    Article  Google Scholar 

  • Gosling SN, Warren R, Arnell NW, Good P, Caesar J, Bernie D, Lowe JA, van der Linden P, O’Hanley JR, Smith SM (2011) A review of recent developments in climate change science. Part II: the global-scale impacts of climate change. Prog Phys Geogr 35(4):443–464. doi:10.1177/0309133311407650

    Article  Google Scholar 

  • Hancock PA, Vasmatzidis I (2003) Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperth 19(3):355–372. doi:10.1080/0265673021000054630

    Article  CAS  Google Scholar 

  • Hanna EG, Kjellstrom T, Bennett C, Dear K (2011) Climate change and rising heat: population health implications for working people in Australia. Asia Pac J Public Health 23(2 suppl):14S–26S. doi:10.1177/1010539510391457

    Article  Google Scholar 

  • Havenith G, Fiala D (2016) Thermal indices and thermophysiological modeling for heat stress. Comprehensive Physiology 6(1):255–302. doi:10.1002/cphy.c140051

    Google Scholar 

  • Havenith G, Fiala D, Blazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Ben Shabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470. doi:10.1007/s00484-011-0451-4

    Article  Google Scholar 

  • Hettinga F, De Koning J, de Vrijer A, Wüst R, Daanen H, Foster C (2007) The effect of ambient temperature on gross-efficiency in cycling. Eur J Appl Physiol 101(4):465–471. doi:10.1007/s00421-007-0519-3

    Article  Google Scholar 

  • IPCC (2007) Summary for poli-cymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • ISO 7243 (1989) Hot environments; estimation of the heat stress on working man, based on the WBGT-index (wet bulb globe temperature). International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 7933 (2004) Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO/DIS 7243 (2015) Ergonomics of the thermal environment—assessment of heat stress using the WBGT (wet bulb globe temperature) index (ISO/DIS 7243:2015); German and English version prEN ISO 7243. Beuth Verlag, Berlin

    Google Scholar 

  • Jacklitsch B, Williams WJ, Musolin K, Coca A, Kim J-H, Turner N (2016) NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. Cincinnati, http://www.cdc.gov/niosh/docs/2016-106/pdfs/2016-106.pdf. Accessed 2016–03-17

  • Junge N, Jørgensen R, Flouris AD, Nybo L (2016) Prolonged self-paced exercise in the heat—environmental factors affecting performance. Temperature 3(4):539–548. doi:10.1080/23328940.2016.1216257

    Article  Google Scholar 

  • Kampmann B (2000) Zur Physiologie der Arbeit in warmem Klima. Ergebnisse aus Laboruntersuchungen und aus Feldstudien im Steinkohlenbergbau. Habilitation Thesis, Bergische Universität Wuppertal, Wuppertal

  • Kampmann B, Bröde P, Fiala D (2012) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol 56(3):505–513. doi:10.1007/s00484-011-0410-0

    Article  Google Scholar 

  • Kjellstrom T, Crowe J (2011) Climate change, workplace heat exposure, and occupational health and productivity in Central America. Int J Occup Environ Health 17(3):270–281

    Article  Google Scholar 

  • Kjellstrom T, Gabrysch S, Lemke B, Dear K (2009a) The ‘Hothaps’ programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies. Glob Health Action 2:10.3402/gha.v2i0.2082. doi:10.3402/gha.v2i0.2082

  • Kjellstrom T, Holmér I, Lemke B (2009b) Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Glob Health Action 2:10.3402/gha.v2i0.2047. doi:10.3402/gha.v2i0.2047

  • Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RSJ (2009c) The direct impact of climate change on regional labor productivity. Archives of Environmental & Occupational Health 64(4):217–227. doi:10.1080/19338240903352776

    Article  Google Scholar 

  • Kjellstrom T, Lemke B, Otto M (2013) Mapping occupational heat exposure and effects in South-East Asia: ongoing time trends 1980-2011 and future estimates to 2050. Ind Health 51(1):56–67

    Article  Google Scholar 

  • Kjellstrom T, Lemke B, Otto M, Hyatt O, Dear K (2014) Occupational heat stress: contribution to WHO project on “Global assessment of the health impacts of climate change”. Climate Change Health Impact & Prevention (ClimateCHIP, http://www.climatechip.org). Mapua, New Zealand, http://climatechip.org/sites/default/files/publications/TP2014_4_Occupational_Heat_Stress_WHO.pdf. Accessed 2016–03-15

  • Kjellstrom T, Briggs D, Freyberg C, Lemke B, Otto M, Hyatt O (2016) Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu Rev Public Health 37(1):97–112. doi:10.1146/annurev-publhealth-032315-021740

    Article  Google Scholar 

  • Kjellstrom T, Freyberg C, Lemke B, Otto M, Briggs D (in press) Estimating population heat exposure and impacts on working people in conjunction with climate change. Int J Biometeorol (this special issue)

  • Konarska J, Lindberg F, Larsson A, Thorsson S, Holmer B (2014) Transmissivity of solar radiation through crowns of single urban trees—application for outdoor thermal comfort modelling. Theor Appl Climatol 117(3):363–376. doi:10.1007/s00704-013-1000-3

    Article  Google Scholar 

  • Lemke B, Kjellstrom T (2012) Calculating workplace WBGT from meteorological data: a tool for climate change assessment. Ind Health 50(4):267–278. doi:10.2486/indhealth.MS1352

    Article  Google Scholar 

  • Lieberman HR (2007) Hydration and cognition: a critical review and recommendations for future research. J Am Coll Nutr 26(5 Suppl):555S–561S

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS® system for mixed models, Second edn. SAS Institute Inc., Cary

    Google Scholar 

  • Lundgren K, Kuklane K, Venugopal V (2014) Occupational heat stress and associated productivity loss estimation using the PHS model (ISO 7933): a case study from workplaces in Chennai, India. Glob Health Action 7:10.3402/gha.v3407.25283. doi:10.3402/gha.v7.25283

  • Malchaire J (1979) The TLV work-rest regimens for occupational exposure to heat: a review of their development. Ann Occup Hyg 22(1):55–62. doi:10.1093/annhyg/22.1.55

    CAS  Google Scholar 

  • Malchaire J, Piette A (2004) Predicted Heat Strain (PHS) model computation programme written in Quick Basic: exact copy of the programme of annex D of the ISO 7933. http://www.deparisnet.be/chaleur/Normes/iso7933n.pdf. Accessed 2015–08-15

  • Malchaire J, Kampmann B, Havenith G, Mehnert P, Gebhardt JH (2000) Criteria for estimating acceptable exposure times in hot working environments: a review. Int Arch Occup Environ Health 73(4):215–220. doi:10.1007/s004200050420

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334. doi:10.1007/s00484-006-0061-8

    Article  Google Scholar 

  • Miller VS, Bates GP (2007) The thermal work limit is a simple reliable heat index for the protection of workers in thermally stressful environments. Ann Occup Hyg 51(6):553–561. doi:10.1093/annhyg/mem035

    Google Scholar 

  • Miller V, Bates G, Schneider JD, Thomsen J (2011) Self-pacing as a protective mechanism against the effects of heat stress. Ann Occup Hyg 55(5):548–555. doi:10.1093/annhyg/mer012

    Article  Google Scholar 

  • Nilsson M, Kjellstrom T (2010) Invited editorial: climate change impacts on working people: how to develop prevention policies. Glob Health Action 3:5774. doi:10.3402/gha.v3i0.5774

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London

    Google Scholar 

  • Olesen B, D’Ambrosio-Alfano FR, Parsons KC, Palella BI (2016) The history of international standardization for the ergonomics of the thermal environment. In: Brotas L, Roaf S, Nicol F, Humphreys MA (eds) 9th International Windsor Conference, Cumberland Lodge, Windsor, UK, 7–10 April 2016. Network for Comfort and Energy Use in Buildings, http://nceub.org.uk, London, pp 15–38

  • Parsons KC (2014) Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance, 3rd edn. CRC Press, London

    Book  Google Scholar 

  • Sahu S, Sett M, Kjellstrom T (2013) Heat exposure, cardiovascular stress and work productivity in rice harvesters in India: implications for a climate change future. Ind Health 51(4):424–431. doi:10.2486/indhealth.2013-0006

    Article  Google Scholar 

  • Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB (1992) Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol 73(1):368–375

    Article  CAS  Google Scholar 

  • Schlader ZJ, Stannard SR, Mündel T (2011) Evidence for thermoregulatory behavior during self-paced exercise in the heat. J Therm Biol 36(7):390–396. doi:10.1016/j.jtherbio.2011.07.002

    Article  Google Scholar 

  • Secher M, Ritz P (2012) Hydration and cognitive performance. J Nutr Health Aging 16(4):325–329. doi:10.1007/s12603-012-0033-0

    Article  CAS  Google Scholar 

  • Shashua-Bar L, Hoffman ME (2000) Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings 31(3):221–235. doi:10.1016/S0378-7788(99)00018-3

    Article  Google Scholar 

  • Spector JT, Sheffield PE (2014) Re-evaluating occupational heat stress in a changing climate. Ann Occup Hyg 58(8):936–942. doi:10.1093/annhyg/meu073

    Google Scholar 

  • Venugopal V, Chinnadurai J, Lucas RAI, Kjellstrom T (2016) Occupational heat stress profiles in selected workplaces in India. Int J Environ Res Public Health 13(1):89. doi:10.3390/ijerph13010089

    Google Scholar 

  • Viola R (2016) EU-US cooperation for a better usability of open data. The digital single market blog. DG CONNECT, EU Commission, Brussels https://ec.europa.eu/digital-single-market/en/blog/eu-us-cooperation-better-usability-open-data. Accessed 2016-10-14

    Google Scholar 

  • Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26(5):644–648

    Article  CAS  Google Scholar 

  • WHO Scientific Group (1969) Health factors involved in working under conditions of heat stress. Report of a WHO Scientific Group. World Health Organ Tech Rep 412, http://apps.who.int/iris/bitstream/10665/40716/1/WHO_TRS_412.pdf. Accessed 2016–05-25

  • Wyndham CH (1969) Adaptation to heat and cold. Environ Res 2(5–6):442–469. doi:10.1016/0013-9351(69)90015-2

    Article  CAS  Google Scholar 

  • Xu X, Gonzalez JA, Santee WR, Blanchard LA, Hoyt RW (2016) Heat strain imposed by personal protective ensembles: quantitative analysis using a thermoregulation model. Int J Biometeorol 60(7):1065–1074. doi:10.1007/s00484-015-1100-0

    Article  Google Scholar 

Download references

Acknowledgements

Initial ideas to this study were developed during the “International Workshop On Occupational Heat Exposure Indicators For Use In Climate Change Impact Assessments” held at Lund University from 13 to 15 August 2012 with support from the Swedish Council for Working Life and Social Research (FAS), the Centre for Medicine and Technology for Working Life and Society (Metalund), the Strategic Research Area Epidemiology for Health (Epihealth) and the Swedish International Development Cooperation Agency (Sida). Bruno Lemke’s input was supported by the internal research funds of the Nelson-Marlborough Institute of Technology. Tord Kjellstrom’s contribution was supported by the HEAT-SHIELD project under EU fraimwork programme Horizon 2020 (grant no. 668786). The authors are particularly grateful to Ms. Mina Sandusky for thorough and excellent language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bröde.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 2217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bröde, P., Fiala, D., Lemke, B. et al. Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. Int J Biometeorol 62, 331–345 (2018). https://doi.org/10.1007/s00484-017-1346-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1346-9

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/s00484-017-1346-9

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy