Abstract
Multiple imputation (MI) and full information maximum likelihood (FIML) are the two most common approaches to missing data analysis. In theory, MI and FIML are equivalent when identical models are tested using the same variables, and when m, the number of imputations performed with MI, approaches infinity. However, it is important to know how many imputations are necessary before MI and FIML are sufficiently equivalent in ways that are important to prevention scientists. MI theory suggests that small values of m, even on the order of three to five imputations, yield excellent results. Previous guidelines for sufficient m are based on relative efficiency, which involves the fraction of missing information (γ) for the parameter being estimated, and m. In the present study, we used a Monte Carlo simulation to test MI models across several scenarios in which γ and m were varied. Standard errors and p-values for the regression coefficient of interest varied as a function of m, but not at the same rate as relative efficiency. Most importantly, statistical power for small effect sizes diminished as m became smaller, and the rate of this power falloff was much greater than predicted by changes in relative efficiency. Based our findings, we recommend that researchers using MI should perform many more imputations than previously considered sufficient. These recommendations are based on γ, and take into consideration one’s tolerance for a preventable power falloff (compared to FIML) due to using too few imputations.
Similar content being viewed by others
References
Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Academic.
Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330–351.
Graham, J. W. (2003). Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80–100.
Graham, J. W., Cumsille, P. E., & Elek-Fisk, E. (2003). Methods for handling missing data. In: J. A. Schinka & W. F. Velicer (Eds.), Research methods in psychology (pp. 87–114). Volume 2 of Handbook of Psychology (I. B. Weiner, Editor-in-Chief). New York: Wiley.
King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: an alternative algorithm for multiple imputation. American Political Science Review, 95, 49–69.
Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.
Schafer, J. L. (1997). Analysis of incomplete multivariate data. New York: Chapman and Hall.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing data problems: A data analyst’s perspective. Multivariate Behavioral Research, 33, 545–571.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Graham, J.W., Olchowski, A.E. & Gilreath, T.D. How Many Imputations are Really Needed? Some Practical Clarifications of Multiple Imputation Theory. Prev Sci 8, 206–213 (2007). https://doi.org/10.1007/s11121-007-0070-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11121-007-0070-9