Content-Length: 310681 | pFad | https://doi.org/10.1007/s11222-007-9033-z

a=86400 A tutorial on spectral clustering | Statistics and Computing Skip to main content
Log in

A tutorial on spectral clustering

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aldous, D., Fill, J.: Reversible Markov chains and random walks on graphs (in preparation). Online version available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  • Bach, F., Jordan, M.: Learning spectral clustering. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16 (NIPS), pp. 305–312. MIT Press, Cambridge (2004)

    Google Scholar 

  • Bapat, R., Gutman, I., Xiao, W.: A simple method for computing resistance distance. Z. Naturforsch. 58, 494–498 (2003)

    Google Scholar 

  • Barnard, S., Pothen, A., Simon, H.: A spectral algorithm for envelope reduction of sparse matrices. Numer. Linear Algebra Appl. 2(4), 317–334 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Belkin, M.: Problems of learning on manifolds. Ph.D. Thesis, University of Chicago (2003)

  • Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  • Belkin, M., Niyogi, P.: Towards a theoretical foundation for Laplacian-based manifold methods. In: Auer, P., Meir, R. (eds.) Proceedings of the 18th Annual Conference on Learning Theory (COLT), pp. 486–500. Springer, New York (2005)

    Google Scholar 

  • Ben-David, S., von Luxburg, U., Pal, D.: A sober look on clustering stability. In: Lugosi, G., Simon, H. (eds.) Proceedings of the 19th Annual Conference on Learning Theory (COLT), pp. 5–19. Springer, Berlin (2006)

    Google Scholar 

  • Bengio, Y., Delalleau, O., Roux, N., Paiement, J., Vincent, P., Ouimet, M.: Learning eigenfunctions links spectral embedding and kernel PCA. Neural Comput. 16, 2197–2219 (2004)

    Article  MATH  Google Scholar 

  • Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific Symposium on Biocomputing, pp. 6–17 (2002)

  • Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  • Bie, T.D., Cristianini, N.: Fast SDP relaxations of graph cut clustering, transduction, and other combinatorial problems. J. Mach. Learn. Res. 7, 1409–1436 (2006)

    MathSciNet  Google Scholar 

  • Bolla, M.: Relations between spectral and classification properties of multigraphs. Technical Report No. DIMACS-91-27, Center for Discrete Mathematics and Theoretical Computer Science (1991)

  • Brémaud, P.: Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (1999)

    MATH  Google Scholar 

  • Brito, M., Chavez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection. Stat. Probab. Lett. 35, 33–42 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42(3), 153–159 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  • Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  • Chung, F.: Spectral Graph Theory. CBMS Regional Conference Series, vol. 92. Conference Board of the Mathematical Sciences, Washington (1997)

    MATH  Google Scholar 

  • Dhillon, I.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 269–274. ACM Press, New York (2001)

    Chapter  Google Scholar 

  • Dhillon, I., Guan, Y., Kulis, B.: A unified view of kernel k-means, spectral clustering, and graph partitioning. Technical Report No. UTCS TR-04-25, University of Texas at Austin (2005)

  • Ding, C.: A tutorial on spectral clustering. Talk presented at ICML (2004). Slides available at http://crd.lbl.gov/~cding/Spectral/

  • Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A min-max cut algorithm for graph partitioning and data clustering. In: Proceedings of the first IEEE International Conference on Data Mining (ICDM), pp. 107–114. IEEE Computer Society, Washington (2001)

    Chapter  Google Scholar 

  • Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Develop. 17, 420–425 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  • Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

    MathSciNet  Google Scholar 

  • Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19, 355–369 (2007)

    Google Scholar 

  • Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Giné, E., Koltchinskii, V.: Empirical graph Laplacian approximation of Laplace-Beltrami operators: large sample results. In: Proceedings of the 4th International Conference on High Dimensional Probability, pp. 238–259 (2005)

  • Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  • Guattery, S., Miller, G.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19(3), 701–719 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Gutman, I., Xiao, W.: Generalized inverse of the Laplacian matrix and some applications. Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.) 129, 15–23 (2004)

    MATH  MathSciNet  Google Scholar 

  • Hagen, L., Kahng, A.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  • Hein, M.: Uniform convergence of adaptive graph-based regularization. In: Proceedings of the 19th Annual Conference on Learning Theory (COLT), pp. 50–64. Springer, New York (2006)

    Google Scholar 

  • Hein, M., Audibert, J.-Y., von Luxburg, U.: From graphs to manifolds—weak and strong pointwise consistency of graph Laplacians. In: Auer, P., Meir, R. (eds.) Proceedings of the 18th Annual Conference on Learning Theory (COLT), pp. 470–485. Springer, New York (2005)

    Google Scholar 

  • Hein, M., Audibert, J.-Y., von Luxburg, U.: Graph Laplacians and their convergence on random neighborhood graphs. J. Mach. Learn. Res. 8, 1325–1370 (2007)

    MathSciNet  Google Scholar 

  • Hendrickson, B., Leland, R.: An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 16, 452–469 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Joachims, T.: Transductive learning via spectral graph partitioning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning (ICML), pp. 290–297. AAAI Press (2003)

  • Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J. ACM 51(3), 497–515 (2004)

    Article  MathSciNet  Google Scholar 

  • Kempe, D., McSherry, F.: A decentralized algorithm for spectral analysis. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 561–568. ACM Press, New York (2004)

    Google Scholar 

  • Klein, D., Randic, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  MathSciNet  Google Scholar 

  • Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Comput. Math. Appl. 49, 1867–1888 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Lafon, S.: Diffusion maps and geometric harmonics. Ph.D. Thesis, Yale University (2004)

  • Lang, K.: Fixing two weaknesses of the spectral method. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 715–722. MIT Press, Cambridge (2006)

    Google Scholar 

  • Lange, T., Roth, V., Braun, M., Buhmann, J.: Stability-based validation of clustering solutions. Neural Comput. 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

  • Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdös is Eighty, pp. 353–397. János Bolyai Math. Soc., Budapest (1993)

    Google Scholar 

  • Lütkepohl, H.: Handbook of Matrices. Wiley, Chichester (1997)

    Google Scholar 

  • Meila, M., Shi, J.: A random walks view of spectral segmentation. In: 8th International Workshop on Artificial Intelligence and Statistics (AISTATS) (2001)

  • Mohar, B.: The Laplacian spectrum of graphs. In: Graph Theory, Combinatorics, and Applications. Kalamazoo, MI, 1988, vol. 2, pp. 871–898. Wiley, New York (1991)

    Google Scholar 

  • Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications. NATO ASI Ser. C, vol. 497, pp. 225–275. Kluwer, Dordrecht (1997)

    Google Scholar 

  • Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 955–962. MIT Press, Cambridge (2006)

    Google Scholar 

  • Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press, Cambridge (2002)

    Google Scholar 

  • Norris, J.: Markov Chains. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  • Penrose, M.: A strong law for the longest edge of the minimal spanning tree. Ann. Probab. 27(1), 246–260 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Proceedings of the 15th European Conference on Machine Learning (ECML), pp. 371–383. Springer, Berlin (2004)

    Google Scholar 

  • Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  • Simon, H.: Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 2, 135–148 (1991)

    Article  Google Scholar 

  • Spielman, D., Teng, S.: Spectral partitioning works: planar graphs and finite element meshes. In: 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 96–105. CA: IEEE Comput. Soc. Press, Los Alamitos (1996)

    Google Scholar 

  • Stewart, G., Sun, J.: Matrix Perturbation Theory. Academic, New York (1990)

    MATH  Google Scholar 

  • Still, S., Bialek, W.: How many clusters? An information-theoretic perspective. Neural Comput. 16(12), 2483–2506 (2004)

    Article  MATH  Google Scholar 

  • Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistic. J. Roy. Stat. Soc. B 63(2), 411–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Van Driessche, R., Roose, D.: An improved spectral bisection algorithm and its application to dynamic load balancing. Parallel Comput. 21(1), 29–48 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • von Luxburg, U., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Ann. Stat. (to appear). See also Technical Report No. 134, Max Planck Institute for Biological Cybernetics (2004)

  • von Luxburg, U., Bousquet, O., Belkin, M.: On the convergence of spectral clustering on random samples: the normalized case. In: Shawe-Taylor, J., Singer, Y. (eds.) Proceedings of the 17th Annual Conference on Learning Theory (COLT), pp. 457–471. Springer, New York (2004)

    Google Scholar 

  • von Luxburg, U., Bousquet, O., Belkin, M.: Limits of spectral clustering. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems (NIPS) 17, pp. 857–864. MIT Press, Cambridge (2005)

    Google Scholar 

  • Wagner, D., Wagner, F.: Between min cut and graph bisection. In: Proceedings of the 18th International Symposium on Mathematical Foundations of Computer Science (MFCS), pp. 744–750. Springer, London (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike von Luxburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Luxburg, U. A tutorial on spectral clustering. Stat Comput 17, 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-007-9033-z

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1007/s11222-007-9033-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy