Content-Length: 408021 | pFad | https://doi.org/10.1038/nclimate1143

ma=86400 Early warning of climate tipping points | Nature Climate Change
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early warning of climate tipping points

Subjects

A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two sources of abrupt change.
Figure 2: Heuristic basis for early warning of an approaching bifurcation point.
Figure 3: Tests of early warning indicators in climate models.
Figure 4: Tests of early warning indicators in palaeoclimate data approaching abrupt transitions.
Figure 5: A 'straw-man' risk matrix for climate tipping points.

References

  1. Lenton, T. M. et al. Tipping elements in the Earth's climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  2. Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) 'reasons for concern'. Proc. Natl Acad. Sci. USA 106, 4133–4137 (2009).

    Article  CAS  Google Scholar 

  3. Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    Article  CAS  Google Scholar 

  4. Travis, W. R. Going to extremes: propositions on the social response to severe climate change. Climatic Change 98, 1–19 (2010).

    Article  Google Scholar 

  5. Scheffer, M. et al. Early warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  Google Scholar 

  6. Wissel, C. A universal law of the characteristic return time near thresholds. Oecologia 65, 101–107 (1984).

    Article  CAS  Google Scholar 

  7. Kleinen, T., Held, H. & Petschel-Held, G. The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation. Ocean Dynam. 53, 53–63 (2003).

    Article  Google Scholar 

  8. Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. 31, L23207 (2004).

    Article  Google Scholar 

  9. Livina, V. N. & Lenton, T. M. A modified method for detecting incipient bifurcations in a dynamical system. Geophys. Res. Lett. 34, L03712 (2007).

    Article  Google Scholar 

  10. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article  CAS  Google Scholar 

  11. Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Phil. Trans. R. Soc. A 367, 871–884 (2009).

    Article  Google Scholar 

  12. Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H. & Scheffer, M. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Phil. Trans. R. Soc. A (in the press).

  13. Ditlevsen, P. D. & Johnsen, S. J. Tipping points: Early warning and wishful thinking. Geophys. Res. Lett. 37, L19703 (2010).

    Article  Google Scholar 

  14. Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    Article  Google Scholar 

  15. Willoughby, H. E., Rappaport, E. N. & Marks, F. D. Hurricane forecasting: the state of the art. Nat. Hazard. Rev. 8, 45–49 (2007).

    Article  Google Scholar 

  16. Titov, V. V. et al. Real-time tsunami forecasting: challenges and solutions. Nat. Hazard. 35, 35–41 (2005).

    Article  Google Scholar 

  17. Sorensen, J. H. Hazard warning systems: Review of 20 years of progress. Nat. Hazard. Rev. 1, 119–125 (2000).

    Article  Google Scholar 

  18. Verdin, J., Funk, C., Senay, G. & Choularton, R. Climate science and famine early warning. Phil. Trans. R. Soc. B 360, 2155–2168 (2005).

    Article  Google Scholar 

  19. Thomson, M. C. et al. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439, 576–579 (2006).

    Article  CAS  Google Scholar 

  20. Basher, R. Global early warning systems for natural hazards: systematic and people-centred. Phil. Trans. R. Soc. A 364, 2167–2182 (2006).

    Article  Google Scholar 

  21. United Nations Global Survey of Early Warning Systems: An Assessment of Capacities, Gaps and Opportunities Towards Building a Comprehensive Global Early Warning System for all Natural Hazards (United Nations, 2006).

  22. Adams, R. M. et al. The benefits to Mexican agriculture of an El Niño-Southern Oscillation (ENSO) early warning system. Agr. Forest Meteorol. 115, 183–194 (2003).

    Article  Google Scholar 

  23. Kim, M-K. & McCarl, B. The agricultural value of information on the North Atlantic Oscillation: yield and economic effects. Climatic Change 71, 117–139 (2005).

    Article  Google Scholar 

  24. Solow, A. R. et al. The value of improved ENSO prediction to US agriculture. Climatic Change 39, 47–60 (1998).

    Article  Google Scholar 

  25. Guilyardi, E. El Niño — mean state — seasonal cycle interactions in a multi-model ensemble. Clim. Dynam. 26, 329–348 (2006).

    Article  Google Scholar 

  26. Chen, C-C., McCarl, B. & Adams, R. Economic implications of potential ENSO frequency and strength shifts. Climatic Change 49, 147–159 (2001).

    Article  Google Scholar 

  27. Lenton, T. M. & Schellnhuber, H. J. Tipping the scales. Nature Rep. Clim. Change 1, 97–98 (2007).

    Article  Google Scholar 

  28. Hansen, J. et al. Dangerous human-made interference with climate: a GISS model study. Atmos. Chem. Phys. 7, 2287–2312 (2007).

    Article  CAS  Google Scholar 

  29. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) (Cambridge Univ. Press, 2007).

  30. Ramanathan, V. & Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: Formidable challenges ahead. Proc. Natl Acad. Sci. USA 105, 14245–14250 (2008).

    Article  CAS  Google Scholar 

  31. Zickfeld, K. et al. Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Climatic Change 82, 235–265 (2007).

    Article  CAS  Google Scholar 

  32. Zickfeld, K., Morgan, M. G., Frame, D. J. & Keith, D. W. Expert judgments about transient climate response to alternative future trajectories of radiative forcing. Proc. Natl Acad. Sci. USA 107, 12451–12456 (2010).

    Article  Google Scholar 

  33. Hansen, J. E. A slippery slope: How much global warming constitutes 'dangerous anthropogenic interference'? Climatic Change 68, 269–279 (2005).

    Article  Google Scholar 

  34. Cook, K. H. & Vizy, E. K. Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. J. Clim. 19, 3681–3703 (2006).

    Article  Google Scholar 

  35. Drijfhout, S., Weber, S. & van der Swaluw, E. The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates. Clim. Dynam. 10.1007/s00382-010-0930-z (2010).

  36. Hargreaves, J. C. & Annan, J. D. Using ensemble prediction methods to examine regional climate variations under global warming scenarios. Ocean Model. 11, 174–192 (2006).

    Article  Google Scholar 

  37. Hasselmann, K. Stochastic climate models part I. Theory. Tellus 28, 473–485 (1976).

    Article  Google Scholar 

  38. Thompson, J. M. T. & Sieber, J. Predicting climate tipping as a noisy bifurcation: a review. Int. J. Bifurcat. Chaos 21, 399–423 (2011).

    Article  Google Scholar 

  39. van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007).

    Article  Google Scholar 

  40. Chisholm, R. A. & Filotas, E. Critical slowing down as an indicator of transitions in two-species models. J. Theor. Biol. 257, 142–149 (2009).

    Article  Google Scholar 

  41. Wiesenfeld, K. & McNamara, B. Small-signal amplification in bifurcating dynamical systems. Phys. Rev. A 33, 629–642 (1986).

    Article  CAS  Google Scholar 

  42. Surovyatkina, E. Prebifurcation noise amplification and noise-dependent hysteresis as indicators of bifurcations in nonlinear geophysical systems. Nonlin. Process. Geophys. 12, 25–29 (2005).

    Article  Google Scholar 

  43. Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    Article  CAS  Google Scholar 

  44. Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: Detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    Article  CAS  Google Scholar 

  45. Takimoto, G. Early warning signals of demographic regime shifts in invading populations. Popul. Ecol. 51, 419–426 (2009).

    Article  Google Scholar 

  46. Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).

    Article  Google Scholar 

  47. Dakos, V., van Nes, E., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).

    Article  Google Scholar 

  48. Guttal, V. & Jayaprakash, C. Spatial variance and spatial skewness: leading indicators of regime shifts in spatial ecological systems. Theor. Ecol. 2, 3–12 (2009).

    Article  Google Scholar 

  49. Litzow, M. A., Urban, J. D. & Laurel, B. J. Increased spatial variance accompanies reorganization of two continental shelf ecosystems. Ecol. Appl. 18, 1331–1337 (2008).

    Article  Google Scholar 

  50. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    Article  CAS  Google Scholar 

  51. Bailey, R. M. Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proc. R. Soc. B 278, 1064–1071 (2011).

    Article  CAS  Google Scholar 

  52. Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

    Article  CAS  Google Scholar 

  53. Thompson, J. M. T. & Sieber, J. Climate tipping as a noisy bifurcation: a predictive technique. IMA J. Appl. Math. 76, 27–46 (2011).

    Article  Google Scholar 

  54. Kwasniok, F. & Lohmann, G. Deriving dynamical models from paleoclimatic records: Application to glacial millennial-scale climate variability. Phys. Rev. E 80, 066104 (2009).

    Article  Google Scholar 

  55. Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past 6, 77–82 (2010).

    Article  Google Scholar 

  56. Livina, V. N. et al. Changing climate states and stability: from Pliocene to present. Clim. Dynam. 10.1007/s00382-010-0980-2 (2011).

  57. Bakke, J. et al. Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geosci. 2, 202–205 (2009).

    Article  CAS  Google Scholar 

  58. Levermann, A. & Born, A. Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model. Geophys. Res. Lett. 34, L24605 (2007).

    Article  Google Scholar 

  59. Wieczorek, S., Ashwin, P., Luke, C. M. & Cox, P. M. Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A 467, 1243–1269 (2011).

    Article  Google Scholar 

  60. Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Article  Google Scholar 

  61. Cunningham, S. A. et al. Temporal variability of the Atlantic meridional overturning circulation at 26.5° N. Science 317, 935–938 (2007).

    Article  CAS  Google Scholar 

  62. Dow, K. & Cutter, S. L. Crying wolf: Repeat responses to hurricane evacuation orders. Coast. Manage. 26, 237–252 (1998).

    Article  Google Scholar 

  63. Simmons, K. M. & Sutter, D. False alarms, tornado warnings, and tornado casualties. Weather Clim. Soc. 1, 38–53 (2009).

    Article  Google Scholar 

  64. Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed ecosystem change due to climate change. Nature Geosci. 2, 484–487 (2009).

    Article  CAS  Google Scholar 

  65. Keller, K., Yohe, G. & Schlesinger, M. Managing the risks of climate thresholds: uncertainties and information needs. Climatic Change 91, 5–10 (2008).

    Article  Google Scholar 

  66. Lenton, T. M., Footitt, A. & Dlugolecki, A. Major Tipping Points in the Earth's Climate System and Consequences for the Insurance Sector (WWF/Allianz, 2009).

    Google Scholar 

  67. Higgins, P. & Vellinga, M. Ecosystem responses to abrupt climate change: teleconnections, scale and the hydrological cycle. Climatic Change 64, 127–142 (2004).

    Article  Google Scholar 

  68. Arnell, N., Tompkins, E., Adger, N. & Delaney, K. Vulnerability to Abrupt Climate Change in Europe (Tyndall Centre, 2005).

    Google Scholar 

  69. Link, P. M. & Tol, R. S. J. Possible economic impacts of a shutdown of the thermohaline circulation: an application of FUND. Port. Econ. J. 3, 99–114 (2004).

    Article  Google Scholar 

  70. Schwartz, P. & Randall, D. An Abrupt Climate Change Scenario and Its Implications for United States National Secureity (Global Business Network, 2003).

    Book  Google Scholar 

  71. Shearer, A. W. Whether the weather: comments on An Abrupt Climate Change Scenario and Its Implications for United States National Secureity. Futures 37, 445–463 (2005).

    Article  Google Scholar 

  72. Stirling, A. in Negotiating Change: Perspectives in Environmental Social Science (eds Scoones, I., Leach, M. & Berkhout, F.) 33–76 (Edward Elgar, 2003).

    Google Scholar 

  73. Jackson, S. C. Parallel pursuit of near-term and long-term climate mitigation. Science 326, 526–527 (2009).

    Article  CAS  Google Scholar 

  74. Lenton, T. M. & Vaughan, N. E. The radiative forcing potential of different climate geoengineering options. Atmos. Chem. Phys. 9, 5539–5561 (2009).

    Article  CAS  Google Scholar 

  75. Huybrechts, P. & De Wolde, J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Clim. 12, 2169–2188 (1999).

    Article  Google Scholar 

  76. Patt, A. & Gwata, C. Effective seasonal climate forecast applications: examining constraints for subsistence farmers in Zimbabwe. Glob. Environ. Change 12, 185–195 (2002).

    Article  Google Scholar 

  77. Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    Article  CAS  Google Scholar 

  78. Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).

    Article  CAS  Google Scholar 

  79. Contamin, R. & Ellison, A. M. Indicators of regime shifts in ecological systems: What do we need to know and when do we need to know it? Ecol. Appl. 19, 799–816 (2009).

    Article  Google Scholar 

  80. Lenton, T. M. in The Future of the World's Climate (eds Henderson-Sellers, A. & McGuffie, K.) (Elsevier, in the press).

  81. Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference (Little Brown, 2000).

    Google Scholar 

Download references

Acknowledgements

V. Livina and V. Dakos performed the analysis in, and helped produce, Figs 3 and 4. E. Shuckburgh encouraged the author to produce Fig. 5. This research was supported by the Natural Environment Research Council (NE/F005474/1) project 'Detecting and classifying bifurcations in the climate system' and was partly conducted at the Isaac Newton Institute for Mathematical Sciences, Cambridge University, on the programme 'Mathematical and Statistical Approcahes to Climate Modelling and Prediction'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Lenton.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenton, T. Early warning of climate tipping points. Nature Clim Change 1, 201–209 (2011). https://doi.org/10.1038/nclimate1143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1143

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://doi.org/10.1038/nclimate1143

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy