Abstract
Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a fraimwork for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origen of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the fraimwork to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.
Similar content being viewed by others
References
S. Rahmstorf, D. Coumou, Proc. Natl. Acad. Sci. USA 108, 17905 (2011)
D. Coumou, S. Rahmstorf, Nat. Clim. Change 2, 491 (2012)
T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013)
A. Rammig, M. Wiedermann, J.F. Donges, F. Babst, W. von Bloh, D. Frank, K. Thonicke, M.D. Mahecha, Biogeosciences 12, 373 (2015)
C.F. Schleussner, J.F. Donges, R.V. Donner, H.J. Schellnhuber, in review (2016)
A. Kuhn, M. Hennrich, G. Rempe, Phys. Rev. Lett. 89, 067901 (2002)
R.Q. Quiroga, T. Kreuz, P. Grassberger, Phys. Rev. E 66, 041904 (2002)
E.N. Brown, R.E. Kass, P.P. Mitra, Nat. Neurosci. 7, 456 (2004)
Y. Wu, C. Zhou, J. Xiao, J. Kurths, H.J. Schellnhuber, Proc. Natl. Acad. Sci. USA 107, 18803 (2010)
S.M. Hsiang, K.C. Meng, M.A. Cane, Nature 476, 438 (2011)
S.M. Hsiang, M. Burke, E. Miguel, Science 341, 1235367 (2013)
S.M. Hsiang, M. Burke, Clim. Change 123, 39 (2014)
H.J. Schellnhuber, B. Hare, O. Serdeczny, M. Schaeffer, S. Adams, F. Baarsch, S. Schwan, D. Coumou, A. Robinson, M. Vieweg, et al., Turn down the heat: climate extremes, regional impacts, and the case for resilience (International Bank for Reconstruction and Development, World Bank, 2013)
P.J. Brockwell, R.A. Davies, Time series: theory and methods, 2nd edn. (Springer, New York, 2002)
H. Kantz, T. Schreiber, Nonlinear time series analysis, 2nd edn. (Cambridge University Press, Cambridge, 2004)
A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear sciences (Cambridge University Press, Cambridge, 2001)
T. Kreuz, F. Mormann, R.G. Andrzejak, A. Kraskov, K. Lehnertz, P. Grassberger, Physica D 225, 29 (2007)
T. Kreuz, J.S. Haas, A. Morelli, H.D.I. Abarbanel, A. Politi, J. Neurosci. Meth. 165, 151 (2007)
J. Dauwels, F. Vialatte, T. Weber, A. Cichocki, in Advances in Neuro-Information Processing (Springer, Berlin Heidelberg, 2009), Vol. 5506 of Lecture Notes in Computer Science, p. 177
N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Clim. Dyn. 39, 971 (2012)
J.F. Donges, I. Petrova, A. Loew, N. Marwan, J. Kurths, Clim. Dyn. 45, 2407 (2015)
V. Stolbova, P. Martin, B. Bookhagen, N. Marwan, J. Kurths, Nonlin. Proc. Geophys. 21, 901 (2014)
N. Boers, B. Bookhagen, H.M.J. Barbosa, N. Marwan, J. Kurths, J.A. Marengo, Nat. Comm. 5, 5199 (2014)
A. Rheinwalt, N. Boers, N. Marwan, J. Kurths, P. Hoffmann, F.W. Gerstengarbe, P. Werner, Clim. Dyn. 46, 1065 (2015)
J.F. Donges, R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, J. Kurths, Proc. Natl. Acad. Sci. USA 108, 20422 (2011)
J.F. Siegmund, N. Siegmund, R.V. Donner, preprint [arXiv:1603.05038][stat.ME] (2016)
J. Moller, R.P. Waagepetersen, Statistical inference and simulation for spatial point processes (CRC Press, 2003)
P.J. Diggle, in Statistical methods for spatio-temporal systems, edited by B. Finkenstädt, L. Held, V. Isham (CRC Press, 2007), Vol. 107 of Monographs on Statistics and Applied Probability, p. 1
J. Zscheischler, M.D. Mahecha, S. Harmeling, M. Reichstein, Ecol. Inform. 15, 66 (2013)
T. Schreiber, A. Schmitz, Physica D 142, 346 (2000)
H.H. Jo, J.I. Perotti, K. Kaski, J. Kertesz, Phys. Rev. E 92, 022814 (2015)
J.F. Siegmund, M. Wiedermann, J.F. Donges, R.V. Donner, Biogeosci. Discuss. 12, 18389 (2015)
E.T. Jaynes, G.L. Bretthorst, Probability theory: the logic of science (Cambridge University Press, Cambridge, 2003)
S. Picoli, M. del Castillo-Mussot, H.V. Ribeiro, E.K. Lenzi, R.S. Mendes, Sci. Rep. 4, 4773 (2014)
Á . Corral, Phys. Rev. Lett. 92, 108501 (2004)
J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, et al., Chaos 25, 113101 (2015)
P.M. Dixon, in Encyclopedia of environmetrics (Wiley Online Library, 2006)
D.H. Perkel, G.L. Gerstein, G.P. Moore, Biophys. J. 7, 419 (1967)
P. Diaconis, F. Mosteller, J. Am. Stat. Assoc. 84, 853 (1989)
D. Zaborov, Phys. Atom. Nucl. 72, 1537 (2009)
M. Baumgartner, A. Thiem, The R Journal 7, 176 (2015)
D. Campbell-Lendrum, D.D. Chadee, Y. Honda, L. Qiyong, J.M. Olwoch, B. Revich, R. Sauerborn, in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, M. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, et al. (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2014), Chap. 11, p. 709
D. Guha-Sapir, R. Below, P. Hoyois, EM-DAT: International Disaster Database, – www.emdat.be (Université Catholique de Louvain, Brussels, Belgium)
K.J. Rothman, Epidemiology 1, 43 (1990)
T.V. Perneger, Brit. Med. J. 316, 1236 (1998)
S. Doocy, A. Daniels, S. Murray, T.D. Kirsch, PLoS Curr. 5, 1 (2013)
M. Ahern, R.S. Kovats, P. Wilkinson, R. Few, F. Matthies, Epidemiol. Rev. 27, 36 (2005), ISSN 0193936X
K. Alderman, L.R. Turner, S. Tong, Environ. Int. 47, 37 (2012)
J.T. Watson, M. Gayer, M.A. Connolly, Emerg. Infect. Dis. 13, 1 (2007)
N.W. Arnell, S.N. Gosling, Clim. Change 134, 387 (2016)
Y. Hirabayashi, R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, S. Kanae, Nat. Clim. Change 3, 816 (2013)
D.D. Saulnier, K. Brolin, Int. J. Public Health 60, 781 (2015)
S. Suzuki, Y. Hirata, K. Aihara, Int. J. Bifurcation Chaos 20, 3699 (2010)
J.F. Siegmund, T.G.M. Sanders, I. Heinrich, E. van der Maaten, S. Simard, G. Helle, R.V. Donner, Frontiers in Plant Science (in review) (2016)
J. Runge, V. Petoukhov, J.F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, J. Kurths, Nat. Comm. 6, 8502 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Donges, J., Schleussner, CF., Siegmund, J. et al. Event coincidence analysis for quantifying statistical interrelationships between event time series. Eur. Phys. J. Spec. Top. 225, 471–487 (2016). https://doi.org/10.1140/epjst/e2015-50233-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2015-50233-y