Content-Length: 219494 | pFad | https://dx.doi.org/10.1007/BF01239517

a=86400 An elementary approach to the hypergeometric shift operators of Opdam | Inventiones mathematicae Skip to main content
Log in

An elementary approach to the hypergeometric shift operators of Opdam

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [B] Beerends, R.: On the Abel transformation and its inversion. Proefschrift Leiden, 1987

  • [BGA] Bernstein, I.N., Gel'fand, I.M., Gel'fand, S.I.: Schubert cells and the cohomology ofG/P. Russ. Math. Surveys28, 1–26 (1973)

    Google Scholar 

  • [D] Debiard, A.: Polynômes de Tchébychev et de Jacobi dans un espace Euclidien de dimensionp. C.R. Acad. Sci. Paris296, 529–532 (1983)

    Google Scholar 

  • [De1] Demazure, M.: Désingularisation des variétés de Schubert généralisés. Ann. Sci. Ec. Norm. Supér7, 53–88 (1974)

    Google Scholar 

  • [De2] Demazure, M.: Une nouvelle formule des caractères. Bull. Soc. Math.98, 163–172 (1974)

    Google Scholar 

  • [Du] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. AMS311, 167–183 (1989)

    Google Scholar 

  • [Ha] Harish-Chandra: Spherical functions on a semisimple Lie group I, Am. J. Math.80, 553–613 (1958), or the Collected Works, Vol. 2, pp. 409–478

    Google Scholar 

  • [HO] Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Comp. Math.64, 329–352 (1987)

    Google Scholar 

  • [He1] Heckman, G.J.: Root systems and hypergeometric functions II. Comp. Math.64, 353–373 (1987)

    Google Scholar 

  • [He2] Heckman, G.J.: Hecke algebras and hypergeometric functions. Invent. Math.100, 403–417 (1990)

    Google Scholar 

  • [He3] Heckman, G.J.: A remark on the Dunkl differential-difference operators, Proceedings of the Bowdoin conference on Harmonic analysis on reductive groups 1989

  • [Hel1] Helgason, S.: Differential Geometry, Lie groups and Symmetric Spaces. Academic Press: New York 1978

    Google Scholar 

  • [Hel2] Helgason, S.: Groups and Geometric Analysis. Academic Press: New York 1984

    Google Scholar 

  • [K] Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent differential operators, I–IV, Indag. Math.36, 48–66 and 358–381 (1974)

    Google Scholar 

  • [Ma1] Macdonald, I.G.: Some conjectures for root systems. Siam J. Math. Anal.13, 988–1007 (1982)

    Google Scholar 

  • [Ma2] Macdonald, I.G.: Orthogonal polynomials associated to root systems. Oxford 1988 (Preprint)

  • [Ma3] Macdonald, I.G.: Commuting differential operators and zonal spherical functions, Algebraic Groups Utrecht 1986, LNM vol. 1271, pp. 189–200

  • [Mo] Moser, J.: Three integrable systems connected with isospectral deformation. Adv. Math.16, 197–220 (1975)

    Google Scholar 

  • [O1] Opdam, E.M.: Root systems and hypergeometric functions III. Comp. Math.67, 21–49 (1988)

    Google Scholar 

  • [O2] Opdam, E.M.: Root systems and hypergeometric functions IV. Comp. Math.67, 191–209 (1988)

    Google Scholar 

  • [O3] Opdam, E.M.: Some applications of hypergeometric shift operators. Invent. Math.98, 1–18 (1989)

    Google Scholar 

  • [O4] Opdam, E.M.: Generalized hypergeometric functions associated with root systems, Proefschrift Leiden 1988

  • [OP1] Olshanetsky, M.A., Perelomov, A.M.: Completely integrable systems connected with semisimple Lie algebras. Invent Math.37, 93–108 (1976)

    Google Scholar 

  • [OP2] Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite dimensional systems related to Lie algebras. Phys. Reps. 71 (1981), 313–400.

    Google Scholar 

  • [OP3] Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras, Phys. Reps.94, 313–400 (1983)

    Google Scholar 

  • [R] Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B. (ed.). Integrable and superintegrable systems. World Scientific Singapore 1990

  • [Se] Sekiguchi, J.: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ.12, 455–459 (1977)

    Google Scholar 

  • [Sp] Sprinkhuizen-Kuyper, I.G.: Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola. Siam J. Math. An. 7 (4), 501–518 (1976)

    Google Scholar 

  • [V] Vretare, L.: Formulas for elementary spherical functions and generalized Jacobi polynomials. Siam J. Math. An.15 (4), 805–833 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Oblatum 2-IV-1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heckman, G.J. An elementary approach to the hypergeometric shift operators of Opdam. Invent Math 103, 341–350 (1991). https://doi.org/10.1007/BF01239517

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01239517

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dx.doi.org/10.1007/BF01239517

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy