References
[B] Beerends, R.: On the Abel transformation and its inversion. Proefschrift Leiden, 1987
[BGA] Bernstein, I.N., Gel'fand, I.M., Gel'fand, S.I.: Schubert cells and the cohomology ofG/P. Russ. Math. Surveys28, 1–26 (1973)
[D] Debiard, A.: Polynômes de Tchébychev et de Jacobi dans un espace Euclidien de dimensionp. C.R. Acad. Sci. Paris296, 529–532 (1983)
[De1] Demazure, M.: Désingularisation des variétés de Schubert généralisés. Ann. Sci. Ec. Norm. Supér7, 53–88 (1974)
[De2] Demazure, M.: Une nouvelle formule des caractères. Bull. Soc. Math.98, 163–172 (1974)
[Du] Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. AMS311, 167–183 (1989)
[Ha] Harish-Chandra: Spherical functions on a semisimple Lie group I, Am. J. Math.80, 553–613 (1958), or the Collected Works, Vol. 2, pp. 409–478
[HO] Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Comp. Math.64, 329–352 (1987)
[He1] Heckman, G.J.: Root systems and hypergeometric functions II. Comp. Math.64, 353–373 (1987)
[He2] Heckman, G.J.: Hecke algebras and hypergeometric functions. Invent. Math.100, 403–417 (1990)
[He3] Heckman, G.J.: A remark on the Dunkl differential-difference operators, Proceedings of the Bowdoin conference on Harmonic analysis on reductive groups 1989
[Hel1] Helgason, S.: Differential Geometry, Lie groups and Symmetric Spaces. Academic Press: New York 1978
[Hel2] Helgason, S.: Groups and Geometric Analysis. Academic Press: New York 1984
[K] Koornwinder, T.H.: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent differential operators, I–IV, Indag. Math.36, 48–66 and 358–381 (1974)
[Ma1] Macdonald, I.G.: Some conjectures for root systems. Siam J. Math. Anal.13, 988–1007 (1982)
[Ma2] Macdonald, I.G.: Orthogonal polynomials associated to root systems. Oxford 1988 (Preprint)
[Ma3] Macdonald, I.G.: Commuting differential operators and zonal spherical functions, Algebraic Groups Utrecht 1986, LNM vol. 1271, pp. 189–200
[Mo] Moser, J.: Three integrable systems connected with isospectral deformation. Adv. Math.16, 197–220 (1975)
[O1] Opdam, E.M.: Root systems and hypergeometric functions III. Comp. Math.67, 21–49 (1988)
[O2] Opdam, E.M.: Root systems and hypergeometric functions IV. Comp. Math.67, 191–209 (1988)
[O3] Opdam, E.M.: Some applications of hypergeometric shift operators. Invent. Math.98, 1–18 (1989)
[O4] Opdam, E.M.: Generalized hypergeometric functions associated with root systems, Proefschrift Leiden 1988
[OP1] Olshanetsky, M.A., Perelomov, A.M.: Completely integrable systems connected with semisimple Lie algebras. Invent Math.37, 93–108 (1976)
[OP2] Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite dimensional systems related to Lie algebras. Phys. Reps. 71 (1981), 313–400.
[OP3] Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras, Phys. Reps.94, 313–400 (1983)
[R] Ruijsenaars, S.N.M.: Finite-dimensional soliton systems. In: Kupershmidt, B. (ed.). Integrable and superintegrable systems. World Scientific Singapore 1990
[Se] Sekiguchi, J.: Zonal spherical functions on some symmetric spaces. Publ. RIMS Kyoto Univ.12, 455–459 (1977)
[Sp] Sprinkhuizen-Kuyper, I.G.: Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola. Siam J. Math. An. 7 (4), 501–518 (1976)
[V] Vretare, L.: Formulas for elementary spherical functions and generalized Jacobi polynomials. Siam J. Math. An.15 (4), 805–833 (1984)
Author information
Authors and Affiliations
Additional information
Oblatum 2-IV-1990
Rights and permissions
About this article
Cite this article
Heckman, G.J. An elementary approach to the hypergeometric shift operators of Opdam. Invent Math 103, 341–350 (1991). https://doi.org/10.1007/BF01239517
Issue Date:
DOI: https://doi.org/10.1007/BF01239517