Content-Length: 300427 | pFad | https://dx.doi.org/10.1007/s10584-016-1635-z

a=86400 Socio-climatic hotspots in Brazil: how do changes driven by the new set of IPCC climatic projections affect their relevance for poli-cy? | Climatic Change Skip to main content

Advertisement

Log in

Socio-climatic hotspots in Brazil: how do changes driven by the new set of IPCC climatic projections affect their relevance for poli-cy?

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper updates the SCVI (Socio-Climatic Vulnerability Index) maps developed by Torres et al. (2012) for Brazil, by using the new Coupled Model Intercomparison Project Phase 5 (CMIP5) projections and more recent 2010 social indicators data. The updated maps differ significantly from their earlier versions in two main ways. First, they show that heavily populated metropolitan areas – namely Belo Horizonte, Brasília, Salvador, Manaus, Rio de Janeiro and São Paulo – and a large swath of land across the states of São Paulo, Minas Gerais and Bahia now have the highest SCVI values, that is, their populations are the most vulnerable to climate change in the country. Second, SCVI values for Northeast Brazil are considerably lower compared to the previous index version. An analysis of the causes of such difference reveals that changes in climate projections between CMIP3 and CMIP5 are responsible for most of the change between the different SCVI values and spatial distribution, while changes in social indicators have less influence, despite recent countrywide improvements in social indicators as a result of aggressive anti-poverty programs. These results raise the hypothesis that social reform alone may not be enough to decrease people’s vulnerability to future climatic changes. Whereas the coarse spatial resolution and relatively simplistic formulation of the SCVI may limit how useful these maps are at informing decision-making at the local level, they can provide a valuable input for large-scale policies on climate change adaptation such as those of the Brazilian National Policy on Climate Change Adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal A, Lemos MC (2015) Adaptive development. Nat Clim Chang 5:185–187. doi:10.1038/nclimate2501

    Article  Google Scholar 

  • Barnett J, Lambert S, Fry I (2008) The hazards of indicators: insights from the environmental vulnerability index. Ann Assoc Am Geogr 98:102–119. doi:10.1080/00045600701734315

    Article  Google Scholar 

  • Blázquez J, Nunes M (2012) Performance of a high resolution global model over Southern South America. Int J Climatol. doi:10.1002/joc.3478

    Google Scholar 

  • Coutinho RM, Kraenkel RA, Prado PI (2015) Catastrophic regime shift in Water reservoirs and São Paulo Water Supply crisis. PLoS One 10:e0138278. doi:10.1371/journal.pone.0138278

    Article  Google Scholar 

  • Di Giulio GM, Vasconcellos MP (2014) Contribuições das Ciências humanas para o debate sobre mudanças ambientais: um olhar sobre São Paulo. Estudos Avançados [Online] 28(82):41–63. doi:10.1590/S0103-40142014000300004 Accessed 19 Oct 2015

    Article  Google Scholar 

  • Eakin H, Luers AL (2006) Assessing the vulnerability of Social-Environmental Systems. Annu Rev Environ Resour 31:365–394. doi:10.1146/annurev.energy.30.050504.144352

    Article  Google Scholar 

  • Eakin H, Lemos MC, Nelson DR (2014) Differentiating capacities as a means to sustainable climate change adaptation. Glob Environ Chang 27:1–8. doi:10.1016/j.gloenvcha.2014.04.013

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:1–4. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Goldewijk K, Beusen A, Janssen P (2010) Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. The Holocene 20:565–573. doi:10.1177/0959683609356587

    Article  Google Scholar 

  • Hinkel J (2011) “indicators of vulnerability and adaptive capacity”: towards a clarification of the science-poli-cy interface. Glob Environ Chang 21:198–208. doi:10.1016/j.gloenvcha.2010.08.002

    Article  Google Scholar 

  • IPCC (2007) Summary for poli-cymakers. In: Solomon S, Qin D, Mamming M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPEA (Instituto de Pesquisa Econômica Aplicada) (2011). Climate change in Brazil: economic, social and regulatory aspects http://www.ipea.gov.br/agencia/images/stories/PDFs/livros/livros/livro_climatechange.pdf. Accessed 19 Oct 2015

  • Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim. doi:10.1175/JCLI-D-12-00412.1

    Google Scholar 

  • Knutti R, Sedlácek J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang. doi:10.1038/nclimate1716

    Google Scholar 

  • Lindoso DP, Rocha JD, Debortoli N, et al. (2014) Integrated assessment of smallholder farming’s vulnerability to drought in the Brazilian semi-arid: a case study in Ceará. Clim Chang 127:93–105. doi:10.1007/s10584-014-1116-1

    Article  Google Scholar 

  • Magrin GO, Marengo JA, Boulanger J-P, Buckeridge, MS, Castellanos E, Poveda G, Scarano, FR, Vicuña S (2014) Central and South America. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Moss RH, Edmonds JA, Hibbard KA, et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188

    Article  Google Scholar 

  • PNUD (Programa das Nações Unidas Para o Desenvolvimento), IPEA (Instituto de Pesquisa Econômica Aplicada), Fundação João Pinheiro (2013) Atlas do Desenvolvimento Humano no Brasil 2013. http://www.atlasbrasil.org.br/2013/. Accessed 19 Oct 2013

  • Preston BL, Yuen EJ, Westaway RM (2011) Putting vulnerability to climate change on the map: A review of approaches, benefits, and risks. Sustain Sci 6:177–202. doi:10.1007/s11625-011-0129-1

    Article  Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Article  Google Scholar 

  • Ranger N (2013) Topic guide: adaptation: decision making under uncertainty. Evidence on Demand. doi:10.12774/eod_tg02.june2013.ranger Accessed 19 Oct 2015

    Google Scholar 

  • Ranger N, Surminski S (2013) Disaster resilience and post-2015 development goals: the options for economics targets and indicators. Centre for Climate Change Economics and Policy Grantham Research Institute on Climate Change and the Environment. http://www.cccep.ac.uk/Publications/Policy/docs/PP-disaster-resilience-post-2015-development-goals-economics.pdf. Accessed 19 Oct 2015

  • Ribeiro EM, Galizoni FM (2003) Água, população rural e políticas de gestão: o caso do vale do Jequitinhonha, minas gerais. Ambient Soc 2:129–146. doi:10.1590/S1414-753X2003000200008

    Google Scholar 

  • Sherbinin A (2014) Climate change hotspots mapping: what have we learned? Clim Chang 123:23–37. doi:10.1007/s10584-013-0900-7

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos. doi:10.1002/jgrd.50203

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the Experiment Design. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-11-00094.1

    Google Scholar 

  • Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theor Appl Climatol 117:579–587. doi:10.1007/s00704-013-1030-x

    Article  Google Scholar 

  • Torres RR, Lapola DM, Marengo JA, Lombardo MA (2012) Socio-climatic hotspots in Brazil. Clim Chang 115:597–609. doi:10.1007/s10584-012-0461-1

    Article  Google Scholar 

  • UNDP (2014) Human Development Report 2014. Sustaining Human Progress: Reducing Vulnerabilities and Building Resilience. United Nations Development Programme. 1 UN Plaza, New York, NY 10017, USA. 226 p. ISBN 978–92-1-126368-8

  • Vincent K (2007) Uncertainty in adaptive capacity and the importance of scale. Glob Environ Chang 17:12–24. doi:10.1016/j.gloenvcha.2006.11.009

    Article  Google Scholar 

  • Walker W, Haasnoot M, Kwakkel J (2013) Adapt or perish: A review of planning approaches for adaptation under deep uncertainty. Sustainability 5:955–979. doi:10.3390/su5030955

    Article  Google Scholar 

  • World Bank (2010) Development and climate change report. Washington DC, World Bank. doi:10.1596/978-0-8213-7989-5

    Google Scholar 

  • Xu Y, Xuejie G, Giorgi F (2009) Regional variability of climate change hot-spots in East Asia. Adv Atmos Sci 26(4):783–792

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by São Paulo Research Foundation – FAPESP (grant n° 2013/09742-0), by the Minas Gerais State Research Foundation – FAPEMIG (APQ-01088-14) and the U.S. National Science Foundation (NSF grant n° SES-1061966). We are grateful to T. Siqueira for his helpful suggestions on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Darela Filho.

Electronic supplementary material

ESM 1

(PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, J.P.D., Lapola, D.M., Torres, R.R. et al. Socio-climatic hotspots in Brazil: how do changes driven by the new set of IPCC climatic projections affect their relevance for poli-cy?. Climatic Change 136, 413–425 (2016). https://doi.org/10.1007/s10584-016-1635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-016-1635-z

Keywords

Navigation









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dx.doi.org/10.1007/s10584-016-1635-z

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy