How clouds respond to warming remains the greatest source of uncertainty in climate projections. Improved computational and observational tools can reduce this uncertainty. Here we discuss the need for research focusing on high-resolution atmosphere models and the representation of clouds and turbulence within them.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Comparing storm resolving models and climates via unsupervised machine learning
Scientific Reports Open Access 15 December 2023
-
Machine learning and the quest for objectivity in climate model parameterization
Climatic Change Open Access 18 July 2023
-
How do value-judgements enter model-based assessments of climate sensitivity?
Climatic Change Open Access 03 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).
Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. J. Geophys. Res. 117, D08101 (2012).
Riahi, K. et al. Climatic Change 109, 33–57 (2011).
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Nature 529, 477–483 (2016).
Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979).
Bony, S. & Dufresne, J. L. Geophys. Res. Lett. 32, L20806 (2005).
Bretherton, C. et al. A National Strategy for Advancing Climate Modeling (National Academies Press, 2012).
Brient, F. & Schneider, T. J. Climate 29, 5821–5835 (2016).
Stevens, B. et al. Mon. Weather Rev. 133, 1443–1462 (2005).
Myhre, G., Boucher, O., Bréon, F.-M., Forster, P. & Shindell, D. Nat. Geosci. 8, 181–185 (2015).
Palmer, T. Nature 515, 338–339 (2014).
Ban, N., Schmidli, J. & Schär, C. Geophys. Res. Lett. 42, 1165–1172 (2015).
Ohno, T., Satoh, M. & Yamada, Y. J. Atmos. Sci. 73, 4289–4309 (2016).
Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z. & Mishra, S. J. Adv. Model Earth Syst. 7, 1425–1456 (2015).
Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A. & Randall, D. A. J. Adv. Model Earth Syst. 1, 15 (2009).
van der Dussen, J. J. et al. J. Adv. Model. Earth Syst. 5, 483–499 (2013).
Bretherton, C. S. Phil. Trans. R. Soc. A 373, 20140415 (2015).
Grabowski, W. W. J. Meteor. Soc. Japan 94, 327–344 (2016).
Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. & Van Meijgaard, E. Bull. Amer. Meteor. Soc. 96, 715–723 (2015).
Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. & Bosveld, F. C. Mon. Weather Rev. 143, 828–844 (2015).
Heinze, R. et al. Quart. J. Roy. Meteor. Soc. http://doi.org/bvhx (2016).
L'Ecuyer, T. S. et al. J. Climate 28, 8319–8346 (2015).
Randall, D. A. Geophys. Res. Lett. 40, 5970–5976 (2013).
Hope, C. Phil. Trans. R. Soc. A 373, 20140429 (2015).
Acknowledgements
We thank Momme Hell (Univ. California) for contributing to preparing Fig. 3. C.B. acknowledges grant DE-SC0012451 from the US Department of Energy.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schneider, T., Teixeira, J., Bretherton, C. et al. Climate goals and computing the future of clouds. Nature Clim Change 7, 3–5 (2017). https://doi.org/10.1038/nclimate3190
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate3190
This article is cited by
-
Neural operators for accelerating scientific simulations and design
Nature Reviews Physics (2024)
-
Unveiling Cloud Vertical Structures over the Interior Tibetan Plateau through Anomaly Detection in Synergetic Lidar and Radar Observations
Advances in Atmospheric Sciences (2024)
-
Big Data in Earth system science and progress towards a digital twin
Nature Reviews Earth & Environment (2023)
-
Comparing storm resolving models and climates via unsupervised machine learning
Scientific Reports (2023)
-
Machine learning and the quest for objectivity in climate model parameterization
Climatic Change (2023)