Content-Length: 130660 | pFad | https://dx.doi.org/10.1145/293686.293687

Algorithm 786: multiple-precision complex arithmetic and functions | ACM Transactions on Mathematical Software skip to main content
article
Free access

Algorithm 786: multiple-precision complex arithmetic and functions

Published: 01 December 1998 Publication History

Abstract

This article describes a collection of Fortran routines for multiple-precision complex arithmetic and elementary functions. The package provides good exception handling, flexible input and output, trace features, and results that are almost always correctly rounded. For best efficiency on different machines, the user can change the arithmetic type used to represent the multiple-precision numbers.

Supplementary Material

GZ File (786.gz)
Software for "Multiple Precision Complex Arithmetic and Functions"

References

[1]
ABRAMOWITZ, M. AND STEGUN, I. 1965. Handbook of Mathematical Functions. Dover, New York.
[2]
BAILEY, D. 1993. Multiprecision translation and execution of Fortran programs. ACM Trans. Math. Softw. 19, 288-319.
[3]
BAILEY, D. 1995. A Fortran 90-based multiprecision system. ACM Trans. Math. Softw. 21, 379-387.
[4]
BRENT, R. 1978. A Fortran multiple-precision arithmetic package. ACM Trans. Math. Softw. 4, 57-70.
[5]
FRIEDLAND, P. 1967. Absolute value and square root of a complex number. Commun. ACM 10, 665.
[6]
HULL, T., FAIRGRIEVE, T., AND TANG, P. 1994. Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw. 20, 215-244.
[7]
SMITH, D. 1991. A Fortran package for floating-point multiple-precision arithmetic. ACM Trans. Math. Softw. 17, 273-283.
[8]
SMITH, D. 1996. A multiple-precision division algorithm. Math. Comput. 66, 157-163.
[9]
SMITH, R. 1962. Complex division. Commun. ACM 5, 435.
[10]
WOLFRAM, S. 1991. Mathematica: A System for doing Mathematics by Computer. Addison- Wesley, Redwood City, Calif.
[11]
WYNN, P. 1962. An arsenal of Algol procedures for complex arithmetic. Bit 2, 232-255.

Cited By

View all
  • (2019)The linear birth‒death process: an inferential retrospectiveAdvances in Applied Probability10.1017/apr.2018.8450:A(253-269)Online publication date: 1-Feb-2019
  • (2016)Quantitative estimation of intrinsic induced polarization and superparamagnetic parameters from airborne electromagnetic dataGEOPHYSICS10.1190/geo2016-0110.181:6(E433-E446)Online publication date: Nov-2016
  • (2014)Validated evaluation of special mathematical functionsScience of Computer Programming10.1016/j.scico.2013.05.00690:PA(2-20)Online publication date: 15-Sep-2014
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 24, Issue 4
Dec. 1998
141 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/293686
  • Editor:
  • Ronald F. Boisvert
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 1998
Published in TOMS Volume 24, Issue 4

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. accuracy
  2. complex arithmetic
  3. floating point
  4. function evaluation
  5. mathematical library
  6. multiple precision
  7. portable software

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)88
  • Downloads (Last 6 weeks)21
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)The linear birth‒death process: an inferential retrospectiveAdvances in Applied Probability10.1017/apr.2018.8450:A(253-269)Online publication date: 1-Feb-2019
  • (2016)Quantitative estimation of intrinsic induced polarization and superparamagnetic parameters from airborne electromagnetic dataGEOPHYSICS10.1190/geo2016-0110.181:6(E433-E446)Online publication date: Nov-2016
  • (2014)Validated evaluation of special mathematical functionsScience of Computer Programming10.1016/j.scico.2013.05.00690:PA(2-20)Online publication date: 15-Sep-2014
  • (2013)ZKCM: A C++ library for multiprecision matrix computation with applications in quantum informationComputer Physics Communications10.1016/j.cpc.2013.03.022184:8(2005-2020)Online publication date: Aug-2013
  • (2012)A User-Friendly Computation System on the Web with Octuple-precisionProceedings of the 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing10.1109/SNPD.2012.15(704-709)Online publication date: 8-Aug-2012
  • (2011)Algorithm 911ACM Transactions on Mathematical Software10.1145/1916461.191647037:4(1-16)Online publication date: 1-Feb-2011
  • (2011)Algorithm 910ACM Transactions on Mathematical Software10.1145/1916461.191646937:4(1-27)Online publication date: 1-Feb-2011
  • (2011)Automatic Generation of Code for the Evaluation of Constant Expressions at Any Precision with a Guaranteed Error BoundProceedings of the 2011 IEEE 20th Symposium on Computer Arithmetic10.1109/ARITH.2011.38(225-232)Online publication date: 25-Jul-2011
  • (2010)Division in a binary representation for complex numbersInternational Journal of Mathematical Education in Science and Technology10.1080/002073903100010859234:4(561-574)Online publication date: 11-Nov-2010
  • (2010)On the improved Newton-like methods for the inclusion of polynomial zerosInternational Journal of Computer Mathematics10.1080/0020716080245017487:8(1726-1735)Online publication date: 1-Jul-2010
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://dx.doi.org/10.1145/293686.293687

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy