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In four cases it is already known that the product of two distinct Jacobian theta functions having the same variable z and the same
nome ¢ is a multiple of a single Jacobian theta function, with the multiple independent of z. The main purpose of the present note is to
show that this property also applies in the remaining two cases.
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1. Introduction

The formulae

Y j) =6,(0.0°), )

6(20°)0,(2.0°) _6,(2.9°)6(2.9°) _1
i) ama) 2200 @)

occur in the theory of Jacobian theta functions and their applications to Jacobian elliptic functions. For
example, Eq. (1) leads to the Landen transformations (Ref. [1], Subsection 20.7(vi) and Section 22.7).
The main purpose of the present paper is to prove that

6(2.0)0,(2.0°) Hz(z,qz)%(z’qz):i1,4J92(0'q2)94(0’q2)

6,(z,iq) - 6,(z,iq) 2

, ®)

thereby covering the remaining two cases.

However, we shall also prove Egs. (1) and (2) by the same method, thereby providing new proofs for
these equations. Incidentally, since the right-hand sides of Egs. (1), (2), and (3) are independent of z , we
shall refer to them as normalizing factors.
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2. Infinite Products

We begin with the well-known expansions of the theta functions as infinite products (Ref. [1], Egs.

(20.5.1)-(20.5.4)):

In particular,

6,(2,q) = 2¢"sin Zﬁ(l_an)(l_qun cos(22)+ "),

n=1
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The prime in Hl'(O,q) indicates differentiation with respect to the variable z. In these formulae, z,q are

complex and |q| <1 to ensure convergence. Here q

Y4 denotes the principal value of the root. With q = e,

7 is a complex parameter with positive imaginary part.
With this notation we have

and hence

1-2q*"cos(2z)+q*" =1-2e*"" cos(2z)+e*"™
= 2¢”" (cos(2nzz) - cos(2z))

= 4e’"" sin(z—nzr)sin(z+nzr),

__=sin(nzr —z)sin(nzr + 2)
. =sinz .
6,(0,9) n<1 sin’(nzr)

Note that as n — o, the n th factor in this infinite product is 1+O(e2”i’”) , Which ensures rapid

convergence since 37 >0.

Repetition of this calculation (details omitted) for 6,,6,, and 6, yields

= cos(nzz —z)cos(nzr +2)
=0S2
92 (qu) n=1

cosz(nﬂ'r)
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6,(z,9) ﬁ 2 2
= . (10)
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2
The required results now follow on combining these equations in pairs.
For the product 6,6, we have from Egs. (7) and (8)
6,(2,9) 6,(z.9) :SinZcoszﬁsm(nm—zz)sm(nm+z)
6,(0,9) 6,(0,q) he1 sin®(nzr)
cos(nzz —z)cos(nzz +2)
cos’(nr)
_ 1sin(22)ﬁ sin(2nz7 —2z)sin(2nzr +22) (1)
2 n-t sin’(2nzr)
_16,(22.9°)
2 6,(0,q°)

where we have used the identity g° =e®*. Hence

= . 12)

The translation z — z +%z’ changes 6, — 6, and 6, — 6,. Hence we have

0,(2,9)6,(z,9) _ 6:(2.9)0(z.9)
6,(22,9°) 0,(22,9°)

6,(0.9)6,(0.q)
) (O,qz)
which is the first required result, Eq. (1), except for the normalizing factor. We will return to this below and

for now concentrate on the quotients of functions of z.
Turning to the product 6,6, , we have from Egs. (7) and (10)

1
> (13)
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6,(2.9°) 6,(2.9°) p— (2nzr —2z)sin(2nzr +2)
6,(0,9°) 6,(0,9°) B H sin’(2nzz)
sin((2n-1) zz —z)sin((2n-1) 77 + 2)
sinz((Zn—l)ﬂr)
= sin(nzz—z)sin(nzz+2) _ 6,(z.9)

=sinz =— ,
1;! sin®(nzr) Hl(O,q)

where in the last line we have combined the even (2n) and the odd (2n-1) terms to obtain the complete
sequence. Hence on rearranging we have

followed by translation in z by %ﬂ:
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which is Eq. (2), except for the normalizing factor.

For the third identity we note that g — iq corresponds to 7 — r+%. From Egs. (7) and (9) we have

6,(2.9°)6,(2.9°) _ = sin(2nzr — z)sin(2nzr +2)
6,(0.9%)6,(0.9°) H s|n2(2n7r )
cos(( )7z —1z)cos((2n—1) 77 +2)

cos ((2n l) 71'1')

o(ziq) = sin[nn(r+;j—zjsin(nn(r+;j+z)

Now in Eq. (18), we separate the terms according to the parity of n.
If n=2k (k=>1) iseven, then

and

sin(nz (r+4)+2) = (-1)" sin(2kzr £ 2),
and

s (e (++3) = s (2kre)
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corresponding to the first quotient on the right-hand side of Eq. (17).
Similarly if n=2k -1 (k>1) is odd, then

sin(nz(r+1)£z) =sin((2k-1)z(r+1)+2)
= (-1)" cos((2k -1)zr £ 2),

and
sin?((2k —1) 7 (7 +2)) = cos?((2k -1) z7),
corresponding to the second quotient in Eq. (17). Hence

0,(2.9°)0,(2.9*) _ 6,(ziq)
6,(0,9°)6,(0.9°) €.(0.iq)

or

6,(z.9*)0,(2,9°) 6,(0,9°)6,(0.9%)

6,(z,iq) é,(0,iq)

and translation in z by %71' gives

0,(2.9°)0,(2.9°) _0,(z0°)0.(za") _6,(0.0°)6;(0.9°)

6,(z,iq) 6,(z,iq) é,(0,iq)

which is Eq. (3) apart from the normalizing factor.

3. Normalizing Factors

If we compare our results (13), (16), and (25), with the desired Egs. (1), (2), and (3), then we see that

we have to verify the following identities:

16,(0,0)6,(0,q) _ 2
2 g (0q7) o)
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The following identity, which goes back at least to Euler, is needed. When |q|<1:

0

P(a) =[](+a")(2-a"")

n=1 (29)

- (e a)t-a e ma ) (L) )21,

To verify this, we note that on expanding the product in powers of g, only a finite number of factors are
needed to determine the coefficient of each power, so that no limiting process is involved and the terms
may be re-ordered without affecting the value of the product. (Alternatively, for an analytic argument, the
rearrangement is justified by absolute convergence.) Therefore

P(q) = {(1+ q)(1+ qz)(l—q)}{(1+ q3)(1+ q4)<1—q3)}

x{(l+ q5)(1+ qe)(l—qs)}---

fle o) el o (1o et o) - <0
=[dL-a")(1-a"*p=P(a").

If P(q) is not identically 1, then there will be a least power of g, say q*, whose coefficient is not zero. But
then g* will be the least power of q in P(qz) whose coefficient is not zero, so P(q) and P(qz) cannot be
equal, resulting in a contradiction.

To prove Eq. (26) we substitute from Egs. (5), and see that we require

( n )2 ﬁ( )4 (1+ el )2 _ 2(2q1/z )ﬁ(l— g )4 (1_ q4n—2)2 _ (31)

n=1 n=1

After division by 4q1’2H::l(1—q2” )2 (1+ qz”) , We see that the last equation is equivalent to

0

H(l_an )2 (l+q2n):H(l_q4n)2 (1_q4n—2). (32)
n=1 n=1
Replacement of the term (1-q*") by (1-g”")(1+9"), and use of Eq. (29) with g’ in place of g,
completes the proof.
For Eq. (27) we require similarly

e T-a) 0 = 2L Fases e, @)

2

or, on division by 2q”2H°n°:1(1_ g )2 (1_q4n—2):

[T(-a") (t-a"7)= T (t-a") (t+a") (34)
This completes the proof of Eq. (27).
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Finally, for Eq. (28) we begin by calculating the asymptotic values of each side as g — 0 through
positive real values. On the left-hand side we have

{2(°)" (2000 ) (1+0(¢")) = (@) (1+0()).

On the right-hand side we have i’l’“«/Z(q2 )1/4 12 (1+O(q2 )) which is the same. Hence we can simply
square both sides and compare the results. For the left-hand side we have

((ow i ‘”J _<2>“2ﬁ By

é,(0,iq) -

For the right-hand side we have

a ) quz o O,qz 2j12ql2 = ) ) .
o LOTVAOF) 2 e (1o (g

n=1

On comparison of the two sides we see that the result to be proved is given by

or equivalently,

which is Eq. (29) with g* in place of g.
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