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ABSTRACT

Errors in regional forecasts often take the form of phase errors, where a forecasted weather system is
displaced in space or time. For such errors, a direct measure of the displacement is likely to be more
valuable than traditional measures. A novel forecast quality measure is proposed that is based on a
comparison of observed and forecast satellite imagery from the Meteosat-7 geostationary satellite. The
measure combines the magnitude of a displacement vector calculated with a pyramid matching algorithm
and the local squared difference of observed and morphed forecast brightness temperature fields. Following
the description of the method and its application for a simplified case, the measure is applied to regional
ensemble forecasts for an episode of prefrontal summertime convection in Bavaria. It is shown that this new
method provides a plausible measure of forecast error, which is consistent with a subjective ranking of
ensemble members for a sample forecast. The measure is then applied to hourly images over a 36-h forecast
period and compared with the bias and equitable threat score. The two conventional measures fail to
provide any systematic distinction between different ensemble members, while the new measure identifies
ensemble members of differing skill levels with a strong degree of temporal consistency. Using the dis-
placement-based error measure, individual ensemble members are found to compare better with observa-
tions than either a short-term deterministic forecast or the ensemble mean throughout the convective
period.

1. Introduction

In recent years numerical weather prediction models
have become more complex and have been applied on
finer scales. These high-resolution models have the po-
tential to forecast phenomena that are highly localized
and episodic, as for instance warm season precipitation
events. Unfortunately, traditional approaches for the
validation of spatial forecasts, including convection
forecasts and quantitative precipitation forecasts, are
inadequate to meet current needs. Generally, these tra-
ditional measures are computed on the basis of contin-
gency tables constructed by comparing point values.
Based on the counts, a variety of skill scores such as
bias score or equitable threat score can be computed
(Wilks 1995). However, a common problem of high-
resolution forecast fields occurs in conditions where a

weather system is properly developed in the model but
improperly positioned. A forecaster or analyst would
ascribe some skill to such a forecast, whereas conven-
tional scores might not (“double penalty” problem).
For such misplacement errors, a direct measure of the
displacement is likely to be more valuable than tradi-
tional measures.

There may be only limited information in observa-
tions of quantities such as pressure to identify which
forecasts accurately capture a convective storm. Rather
than using conventional data and error measures to
evaluate forecast quality, it may be better to use remote
sensing information. For instance, composites of
ground-based radar instruments deliver radar reflectiv-
ity maps indicating precipitation at high spatial and
temporal resolutions. Geostationary satellite imagery
display brightness temperature (BT) fields indicating,
for example, atmospheric cloud or water vapor struc-
tures at high precision. A correct forecast of precipita-
tion and clouds can be seen as a measure of the overall
forecast quality (Mesinger 1996).

Attempts to exploit the information contained in re-
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motely sensed imagery in order to evaluate forecasts
have been made by several researchers using tech-
niques originally developed for image processing. Fea-
ture-based verification techniques have been applied
on satellite-observed precipitable water fields (Hoff-
man and Grassotti 1996), and on radar observations
(Brewster 2003a,b; Zepeda-Arce and Foufoula-
Georgiou 2000; Casati et al. 2004; Venugopal et al.
2005). In such object-oriented approaches the forecast
quality depends on the models’ ability to reproduce the
multiscale spatial structure and space–time dynamics of
the observed weather systems. Usually, an evaluation
on different spatial scales is performed to assess the
phase error, while an intensity-scale evaluation gives
the amplitude error of the forecast. Ebert and McBride
(2000) applied such an approach on entities labeled
contiguous precipitation areas based on daily rain
gauge observations. Their method determines displace-
ment errors and other parameters for contiguous re-
gions that can be decomposed according to the sources
of error (e.g., displacement, pattern, etc.). A similar
method has recently been developed by Davis et al.
(2006a) matching forecast and observed rain-area pairs
based mainly on the separation of their centroids rela-
tive to the sum of their sizes. Davis et al. (2006b) extend
this method to measure spatiotemporal errors by iden-
tifying features that are continuous in both space and
time in the forecast or in the observations.

Given the uncertainties of precipitation forecasting,
point- and time-specific prediction of precipitation in-
tensity is in practice nondeterministic, especially during
the warm season. Numerous studies (e.g., Bright and
Mullen 2002; Yuan et al. 2005, and references therein)
suggest that the ensemble approach could improve
short-range weather forecasts, especially precipitation
forecasting. In ensemble prediction systems the inher-
ent observational uncertainty, model error, and the
chaotic, nonlinear behavior of atmospheric dynamics
can be incorporated, providing a range of scenarios
with information about the forecast uncertainty
[see the Network of European Meteorological Services
(EUMETNET) Web site at http://srnwp.cscs.ch/]. How-
ever, ensemble forecasting at high spatial resolutions
generates a multitude of highly localized and episodic
phenomena, and renders a comprehensive comparison
of individual ensemble members with observations even
more challenging, underpinning the need for validation
methods based on the patterns of weather objects.

In the present paper a forecast quality measure is
presented that crucially builds on the pattern informa-
tion contained in the imagery of the Meteosat-7 geosta-
tionary satellite. The aim of this study is to demonstrate
a technique for estimating the displacement error, and

to examine whether the displacement-based algorithm
provides a reasonable error measure, by applying it in
the framework of a regional ensemble system to select
and rank individual ensemble members based on this
technique, and compare the ranking with a subjective
evaluation of forecast quality.

In the next section the forecast quality measure and
its application on an idealized feature are presented.
This is followed by a description of the regional fore-
casting system, the generation of synthetic satellite im-
ages within the mesoscale model, and the observational
data in section 3. The application of the pyramid match-
ing technique on a case study is presented in section 4.
Finally, conclusions are drawn and an outlook is given
in section 5.

2. A forecast quality measure

The objective evaluation of forecast quality is per-
formed using the pyramidal matching algorithm, which
was originally developed to detect and track cloud fea-
tures (e.g., convective clouds, contrails) in satellite im-
agery (Mannstein et al. 2002; Muller et al. 2007; Zinner
et al. 2007, manuscript submitted to Meteor. Atmos.
Phys., hereafter ZMT). The pyramid matching algo-
rithm computes a vector field (optical flow) that de-
forms, or morphs, an image into a replica of another
image by seeking to minimize an amplitude-based
quantity (e.g., correlation coefficient, mean squared er-
ror) at different scales within a fixed search environ-
ment. The vector field is computed using the following
steps.

1) The two images are coarse grained by averaging 2F

pixels onto one pixel element (F is called the sub-
sampling factor); this is the topmost pyramid level
(lowest resolution).

2) A displacement vector at each pixel element loca-
tion is computed by translating one image within the
range of �2 pixel elements in all directions, and
choosing the displacement that gives the minimum
squared difference in a local region centered on the
pixel element. The extent of the local region is de-
fined by a Gaussian kernel (ZMT) with compact
support on a five pixel by five pixel region centered
on the location of the original pixel element.

3) This vector field is then applied to the original image
to generate an intermediate image that accounts for
the large-scale (topmost pyramid level) motions.

4) The intermediate image is then coarse grained by
averaging 2F�1 pixels to generate pixel elements at
the next pyramid level, and a motion vector field is
determined as in step 2 above, which can be re-
garded as a correction to the vector field computed
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at the topmost pyramid level. This process is re-
peated on successively finer scales, until the full
resolution of the image is reached.

5) The final displacement vector field is determined as
the sum of the vector fields determined at each of
the individual levels. This displacement vector field
is used to construct the final morphed image.

Before the pyramid matching is carried out, the ob-
served and synthetic satellite images are preprocessed
to a suitable form. First, the observed image is interpo-
lated to the model grid. Second, for the application
considered here, where IR imagery is used as a proxy to
locate precipitating cloud features, a threshold bright-
ness temperature is applied to mask out the land sur-
face and shallow nonprecipitating cloud.

The subsampling factor F, which defines the topmost
pyramid level and thus the maximum distance over
which features can be matched, must be chosen based
on the physical phenomenon of interest. A forecast and
an observed feature that are closer than this distance
will be considered to be the same feature, but displaced
in space (and a displacement vector will be computed),
whereas features separated by larger distances will be
assumed to be unrelated.

The mean magnitude of the displacement vector field
gives an indication of the forecast quality, provided that
there are features in the fields available to be matched.
However, in a case where a forecast cloud feature can-
not be matched because the observed one is outside of
the search environment (or not forecast at all), which
subjectively would be a forecast failure, the mean dis-
placement vector is zero and gives no indication of fore-
cast quality. A perfect forecast would also give a zero
mean displacement. Therefore, a second quantity is
needed to account for such cases. A large value of the
mean squared difference of the observed and morphed
images in a local region indicates such a forecast failure.
Combining both quantities, the following local forecast
quality measure (LFQM) is proposed:

LFQM � max�c1 · DIS, c2 · LSE�.

In a case where the forecast and observed features can
be matched, the magnitude of the displacement vector
DIS characterizes the forecast quality, whereas when
matching features cannot be found within the search
distance, the local squared error (LSE) between both
fields is used. The displacement is scaled with the maxi-
mum possible displacement (the corner-to-corner size
of the region that is tested at the topmost pyramid level;
see step 2 of the algorithm above),

c1 � DISmax
�1 � ��2 · 2F�2�

�1
,

and the LSE with the maximum squared observed
brightness temperature difference,

c2 � �BTmax � BTmin��2.

In this way the error assigned when no feature is avail-
able to match within the search distance (one image has
BTmin, indicating cold cloud, while the other has BTmax,
indicating no cloud) is approximately equal to the error
associated with a displacement equal to the maximum
search distance. The LFQM can then be averaged over
a verification area A to give an overall forecast quality
measure:

FQM �
1
A �

A

LFQM.

The measure FQM attains zero for a “perfect” forecast;
that is, the terms DIS and LSE are both zero.

The behavior of the pyramid matching algorithm is
illustrated for a simplified case. Consider two identical
features, say two squares (20 	 20 pixels each), origi-
nally at the same location, then increasingly separated
from each other. Such an idealized case is schematically
depicted in Fig. 1. Let the subsampling factor F be 4
(i.e., one pixel element at the coarsest scale of the pyra-
mid contains 16 	 16 pixels), and let the finest scale be
the original pixel resolution. The largest search distance
corresponds to 42 pixels at the original resolution using

FIG. 1. Schematic illustrating the setup of an idealized case: A
represents the “observed” feature, B (B
 etc.) the displaced
“model forecast” feature. The pyramidal image matcher is mor-
phing the increasingly separated (dsAB) feature B (B
 etc.) toward
the fixed feature A.
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a 5 	 5 Gaussian kernel. The values of DIS, LSE, FQM,
and a conventional measure, the equitable threat score
(ETS; Ebert et al. 2003) are depicted in Fig. 2 for in-
cremental separations of both features up to 60 pixels.
The mean magnitude of the displacement vector field
steadily increases with increasing separation distance
up to the largest search distance, DISmax � 42, where it
sharply decreases when no match between the two fea-
tures can be accomplished. At this distance, the LSE of
the fixed feature A and the morphed feature B abruptly
rises from close to zero to a constant value. Combining
both parameters in the FQM gives an almost monotoni-
cally increasing curve with increasing separation dis-
tance. When the features are separated by more than
the maximum search distance (ds � 42), the LSE com-
ponent of FQM masks the failing of the matching
marked by the step in FQM. The DIS component does
not go exactly to zero, since when there is no feature B

within the matching distance, the algorithm tries to
shrink feature A by producing a convergent vector
field. The normalization factors in DIS and LSE could
be tuned to produce an FQM that increases to exactly
unity for distances larger than DISmax, at least for this
particular idealized problem, but this sacrifice of sim-
plicity is unlikely to bring any measurable advantage
when the FQM is applied to complex observed images.

Consider in particular two different scenarios with
the feature B separated by 25 and 35 pixels, respec-
tively, from the fixed feature A. Using FQM allows an
objective distinction in quality between both scenarios;
FQM attaining 0.5 and 0.7, respectively. A smaller dis-
placement results in a lower value of FQM, which
agrees well with human intuition. Conventional scores
like the BIAS or ETS fail to describe the location errors
in this example. The BIAS attains 1 for all separations
(not shown), whereas the ETS decreases from 1 (when

FIG. 2. Four measures as a function of separation distance (in pixels) for the simplified case
in Fig. 1: (a) the mean displacement DIS (solid) and the LSE (dashed–dotted) of the observed
and morphed forecast features and (b) the novel measure FQM (solid) and the ETS (dashed–
dotted) as a reference measure.
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both features are identical, ds � 0) down to 0 at a
distance equal to the feature size (ds � 20; Fig. 2b). At
larger distances there is no information contained in the
conventional score ETS. Traditional measures like
BIAS and ETS fail to capture such differing location
errors. In contrast, the new measure FQM is able to
incorporate the advantages of distance- and amplitude-
based measures thus allowing an objective evaluation
of forecast quality based on image comparison.

3. The ensemble forecasting system and satellite
data

a. The regional ensemble system

The new forecast quality measure is applied to re-
gional ensemble forecasts generated using the Consor-
tium for Small Scale Modeling Limited-area Ensemble
Prediction System (COSMO-LEPS; Molteni et al. 2001;
Marsigli et al. 2001). In COSMO-LEPS, the global Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) Ensemble Prediction System (EPS) pro-
vides initial and boundary conditions for the Deutscher
Wetterdienst’s (DWD) high-resolution nonhydrostatic
Lokal-Modell (LM; Steppeler et al. 2003). A brute-
force approach that uses every member of the global
ensemble is likely to be inefficient, however, since
much of the variability in the global ensemble may be
confined outside of the domain of the limited-area
model. Therefore, global forecasts that are similar in
the target region are clustered, and only a single rep-
resentative set of boundary conditions is used for each
cluster. Marsigli et al. (2005) found that most of the
variability in the 51-member ECMWF EPS for a region
centered on central Europe can be retained by as few as
10 members. Probabilistic forecasts are routinely gen-
erated by assigning to each LM integration a weight
proportional to the population of the cluster from
which the representative member (providing initial and
boundary conditions) is selected (Marsigli et al. 2005).

For the present study, COSMO-LEPS is configured
as follows: one 51-member ECMWF EPS T255L40 ex-
periment (about 80-km horizontal resolution with 40
vertical levels; operational suite in 2005) started at 1200
UTC 8 July 2002 provides the initial and boundary con-
ditions (6 hourly) for the limited-area model. Following
the operational COSMO-LEPS procedure, a cluster
analysis is performed to determine 10 clusters (out of 51
global EPS forecasts) that are similar in the target re-
gion (Europe) in the forecast range of interest (�24 to
�36 h) based on the horizontal wind components (u, �),
geopotential (), and specific humidity (q) at three
pressure levels: 500, 700, and 850 hPa.

Subsequently, LM experiments (�72 h forecast

range) are performed for each representative member
using DWD’s operational LM domain (corresponding
to the area shown in Fig. 3; 325 	 325 grid points with
35 vertical levels), with a horizontal resolution of 7 km.
The LM prognostic variables are the three wind com-
ponents, temperature, pressure perturbation, specific
humidity, cloud liquid water, cloud ice, rain, and snow.
The sedimentation flux of rain and snow is the product
of the effective fall velocity and the density and is
treated using a three-dimensional semi-Lagrangian ad-
vection scheme (Baldauf and Schulz 2004). Moist con-
vection is parameterized after Tiedtke. For comparison
purposes, a deterministic forecast is run starting just
before the convective period at 0600 UTC 9 July 2002
and driven with deterministic forecast data of the global
model.

b. Synthetic satellite imagery

A forward model is needed to project model states
into observation space. In the LM, synthetic satellite
imagery is generated using the fast radiative transfer
model for the Television Infrared Operational Satellite
(TIROS) Operational Vertical Sounder (RTTOV-7),
which allows for fast simulation of brightness tempera-
tures (BTs) for various satellite radiometers [e.g., the
Meteosat-7 Visible and Infrared Imager (MVIRI) and
the Meteosat-8 Spinning Enhanced Visible and Infrared
Imager (SEVIRI); Saunders et al. 1999]. The input vari-
ables provided by LM are atmospheric profiles of tem-
perature and specific humidity, various cloud proper-
ties (cloud cover, cloud liquid water, cloud ice), the

FIG. 3. Observed Meteosat-7 IR image projected onto the LM
domain at 1600 UTC 9 Jul 2002. The black rectangle denotes the
area displayed in Fig. 4 for which the ranking (see Table 1) is
done.
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specific content of snow, and surface properties (skin
temperature, temperature and specific humidity at 2 m,
land–sea mask). The LM is configured to include pre-
cipitating snow crystals in the computation of synthetic
satellite imagery leading to better agreement among
the observed and simulated upper-tropospheric clouds
(Keil et al. 2006).

c. Satellite data

Satellite data from the geostationary satellite Meteo-
sat-7 are used in the present study.

Meteosat-7 is currently positioned at the equator on
the Greenwich meridian. The satellite’s spatial resolu-
tion is 5 km at nadir and about 8 km at 50°N, which is
comparable to the current resolution of the LM. The
infrared window channel (IR; 10.1–13.0 �m) is sensitive
to cloud amount throughout the troposphere. The un-
certainty caused by calibration error amounts to 2–4 K
(Köpken 2001) and is significantly smaller than the
cloud signals investigated in the present study.

4. Prefrontal summertime convection in Bavaria:
A case study

To give an initial idea of the behavior of the system
with real meteorological data, a case study will now be
presented. The performance of the pyramid matching
algorithm will be examined in detail for a single image,
and then the resulting FQM for a set of ensemble fore-
casts valid at this time will be compared to a subjective
ranking of forecast quality. Finally, the time evolution
of the FQM at hourly intervals over a 36-h period for
the various ensemble members will be considered, to
see if there is evidence of a persistence of quality that
could potentially be useful in a forecast context.

a. Subjective evaluation of ensemble members

Ahead of an eastward-propagating cold front, pre-
frontal convection developed in the northern Alpine
region in the afternoon of 9 July 2002. Meteosat-7 IR
imagery shows the cloud signature of two strong con-
vective cells north of the Alpine chain at 1600 UTC
(Fig. 3). The western cell was reinforced by Alpine
orography, while the eastern cell was initiated in the
northern Alps of southern Bavaria. The elongated,
north–south-oriented, cloud band across eastern
France marks the cold front. Two hours later, both con-
vective cells merged and formed a mesoscale convec-
tive system covering all of Bavaria, with a diameter of
approximately 400 km. This particular episode repre-
sents a typical case of mesoscale convective systems in
the northern Alpine region (Hagen et al. 2000).

The corresponding model-forecast synthetic IR im-
agery of the regional ensemble system is displayed on a
subdomain (900 	 900 km2) at 1600 UTC in Fig. 4.
Figures 4a–j show the 10 individual members, and Fig.
4k shows the short-range deterministic forecast (see
section 4d). Most of the clusters forecast some cloud
associated with the cold front in the western half of the
domain, while there are large differences with respect
to the prefrontal convection. Visual intercomparison of
the observed and synthetic IR imagery shows that the
ensemble generally underestimates the cloud amount
with considerable differences among the individual
members. Clearly, clusters 5 and 8 are able to repro-
duce the convection and the corresponding cloud sig-
nature in the region to some extent, while others fail
entirely in forecasting convective activity and even the
frontal cloudiness (e.g., cluster 9).

An important first test of the proposed FQM will be
to verify that it captures these subjective differences.
As a control, a small survey was performed, where eight
research scientists were asked to rank the 10 ensemble
members, based on their agreement with the observed
image in location structure and amount of cloud (Table
1). The mean rank correlation between pairs of col-
leagues is high (0.82), confirming a good agreement
among themselves and pointing toward a clear ranking
of the clusters.

b. Objective evaluation

Since the primary interest in the present study is to
quantify mesoscale position errors of convective storms
that may occur in similar synoptic environments, the
pyramid matcher has been applied with the following
configuration: (i) observed and forecast imagery are
both projected on a subdomain covering 128 	 128 LM
grid points (see Fig. 4), and (ii) the IR brightness tem-
perature threshold is set to �20°C (i.e., only middle-
and upper-tropospheric cloud structures shall be con-
sidered). To confine the matching to subsynoptic dis-
tances, the coarse-grain pixel elements are defined to
contain eight by eight LM grid points per pixel element
(subsampling factor F � 3), so that the maximum
search distance DISmax extends to about 300 km. The
coarse-grained image at the topmost pyramid level con-
sists of 16 	 16 pixel elements. It is to be expected that
the results will be somewhat sensitive to this choice of
maximum search distance. If it is chosen too small, the
error measure will only respond to nearly coincident
features, while if it is too large, the matching will con-
nect physically unrelated features. The distance over
which convective systems share the same synoptic en-
vironment is determined in midlatitudes by the Rossby
radius of deformation, which is the length scale over
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which significant horizontal temperature gradients can
be maintained (by geostrophic balance). A fixed maxi-
mum distance of 300 km was chosen in this paper, and
the results of the sensitivity tests where this distance
was altered will be noted in section 4e. The next logical
step would be to use a local radius of deformation
based on the total vorticity. This would yield a shorter

distance near features like fronts and prevent mis-
matches such as prefrontal convection being matched
to embedded convection within the front. Ideally, one
would use an anisotropic maximum distance that would
allow longer matching distances in the direction away
from the front.

An example sequence to help visualize the function-

FIG. 4. Forecast IR synthetic satellite imagery at 1600 UTC 9 Jul 2002 (LM �28 h forecast range): (a)–(j) the
individual members of clusters 1–10, (k) the short-term deterministic forecast, and (l) the Meteosat-7 observation
for comparison.
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ing of the algorithm is presented in Fig. 5. In the top
panel of both rows in Fig. 5 the observed BT, the fore-
cast BT, and the displacement vector field at different
scales for cluster 8 at 28-h forecast range are displayed.
First, the topmost pyramid level with coarse-grain im-
agery from the Meteosat, the LM, and the displacement

vector field superimposed on the forecast LM image
are depicted (Figs. 5a–c). The displacement arrows
show an inhomogeneous, partly converging vector field
indicating a northeastward displacement of the cloud
feature in the image’s western part, a southward dis-
placement in the central north, and a westward dis-
placement near the southeastern boundary. Second, at
the next smaller scale (one pixel element contains four
by four LM grid points) the observed and the forecast
BT field, in which the displacement resulting from the
coarse grain is already applied, are compared. The re-
sulting vectors are superimposed on the forecast image
in Fig. 5f, pushing the cloud field in the image’s center
to the southwest. The final result of applying the pyra-
mid matcher is depicted in the third row in Fig. 5, which
shows the observed image (Fig. 5g), the forecast super-

FIG. 5. Sequence of differently grained (a), (d) observed and (b), (e) forecast BT fields; (c), (f) are (b), (e)
superimposed with the displacement vector field for cluster 8 at 28-h forecast range. (g) The observed BT field, (h)
the forecast BT field superimposed with displacement vectors summarized over all pyramid levels, and (i) the
morphed forecast BT field displayed at full resolution.

TABLE 1. Ranking of the 10 clusters at 1600 UTC 9 Jul 2002
according to (i) the subjective visual evaluation of eight forecast-
ers, (ii) the objectively calculated forecast quality measure FQM,
and (iii) the cluster population (number of members per cluster).

Rank 1 2 3 4 5 6 7 8 9 10 Corr

Forecasters 5 8 1 6 7 10 3 2 4 9 0.81
FQM 5 8 6 7 1 10 4 4 9 2 0.92
Population 3 2 5 6 4 7 10 1 8 9 0.05
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imposed with the displacement vectors summarized
over all scales (Fig. 5h), and the morphed forecast field
(Fig. 5i). The vectors determined at the largest scale
dominate the overall displacement, moving the frontal
clouds in the western part toward the northeast and the
prefrontal convective clouds in the image’s center to-
ward the south. Converging displacement vectors
shrink the forecast cloudiness south of the Alps consid-
erably. Moreover, it is evident that pixel elements close
to the image boundary (for instance near the cold front
in the northwestern part) are kept fixed. This boundary
zone encompassing two pixel elements at the largest
scale; hence, a frame of 16 model grid points is excluded
in the calculation of the FQM.1

The application of the pyramidal image matcher on
the cloud pattern at 1600 UTC and the calculation of
FQM allow an objective ranking of the 10 clusters.
Comparison of the human ranking and the objective
one shows that the new measure provides a good error
measure (Table 1). The rank correlation between the
average human and the objective ranking attains 0.92,
confirming the consistent results of both rankings. In
contrast, the ranking based on the COSMO-LEPS clus-

ter population (number of members per cluster) shows
no correlation with the other rankings for this episode
of strong convection. This last result is perhaps to be
expected, since the cluster population is based on syn-
optic information over central Europe, and is not nec-
essarily well correlated with the cloud information in a
local region evaluated in the FQM.

c. Time series of forecast quality

Next, the time evolution of the FQM for the various
ensemble members is considered, to see if there is evi-
dence of a persistence of quality over some forecast
period. On 9 July 2002, convection initiated north of the
Alps at about 1400 UTC (�26 h forecast). Ten hours
later (�36 h forecast), the mesoscale convective system
starts to move out of the subdomain, while a new cloud
system enters from the west. The temporal evolution of
the FQM is displayed for a 36-h interval (�12 to �48 h
forecast range) in Fig. 6. Apparently, this period can be
subdivided into three distinct episodes: a preconvective
period with only scattered cloudiness in the subdomain
(�12 to �24 h forecast range), a convective period
marked by considerable spread of FQM (�24 to �36 h
forecast range), and a succeeding postconvective period
with the advent of a new synoptic-scale weather system.
The lack of prominent cloud features during the pre-
convective period precludes any well-defined ranking.

1 The computational requirements of the algorithm are small.
On a PC, this computation takes less than a minute per forecast–
observation pair.

FIG. 6. Time series of FQM for the 10 ensemble members and the short-term deterministic
forecast extending from 0000 UTC 9 Jul to 1200 UTC 10 Jul 2002 (forecast range �12 h until
�48 h). Highlighted are ensemble members 5 (dashed), 7 (solid gray), and 8 (solid black),
which are referred to in the text. For comparison the short-term deterministic forecast (ini-
tialized at 0600 UTC 9 Jul with a forecast range of �6 to �18 h) is also displayed (dotted). The
time interval corresponding to the life cycle of the convective cell discussed in the text is marked.
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However, this is clearly possible within the convective
period when clusters 5 and 8 outperform the other en-
semble members (small FQM values). This is consistent
with the previous discussion for the snapshot at 1600
UTC. Likewise, forecasts of clusters identified as “bad”
members at 1600 UTC remain bad throughout the con-
vective period. While there is considerable persistence
in FQM visible in Fig. 6 through the convective period,
there is little apparent relation to forecast quality be-
fore or after that period. The new synoptic-scale
weather system moving into the domain from 0000
UTC onward developed into the damaging Berlin
storm on 10 July 2002 (Gatzen 2004). The cloud signa-
ture of this second storm is best captured by clusters 5
and 7, while the forecast skill of cluster 8 strongly de-
creases (Fig. 6).

Figure 7 shows the time variation of the conventional
scores BIAS and ETS of all ensemble members. Ap-
parently, most of the forecasts underestimate the cloud
occurrence (BIAS � 1) through the convective period.
The LM is known to have a negative bias in cloud
amount (Keil et al. 2006), and the increase of the nega-
tive bias with time seen in Fig. 7 presumably represents
a relaxation toward the model climatology, albeit
heavily modulated by the various cloud features in the
small region used to compute the score at any given
time. The ETS values are generally poor (ETS � 0.4).
The ETS attains larger values for clusters 5 and 7 dur-
ing the second storm, which is in agreement with the
new measure (small FQM). Consider, for example, the
various scores at 1600 UTC (with corresponding imag-
ery shown in Fig. 4). At this 28-h forecast range the

BIAS indicates that clusters 5 and 8 predict the relative
amounts of cloudiness correctly whereas the ETS indi-
cates a forecast failure of all members with respect to
the exact location. In contrast, the proposed FQM in-
corporating an amplitude- and a distance-based com-
ponent allows a distinct ranking of the different fore-
casts.

d. Forecast quality of ensemble members versus a
short-range deterministic forecast

Generally, a short-term deterministic forecast is
thought to exhibit a better forecast quality than fore-
casts started at earlier times due to the more recent
data that have been incorporated into the data assimi-
lation process. The question of whether a short-term
deterministic forecast (started at 0600 UTC 9 July;
same as in the LM configuration) has a higher forecast
skill than individual ensemble members (started at 1200
UTC 8 July, i.e., 18 h earlier) can be assessed using the
new measure.

In the short-term deterministic forecast (0600 UTC
�18 h forecast range) a large convective cell is present
at 1600 UTC (Fig. 4k). Visual comparison with the ob-
servations indicates an eastward displacement of the
convection of about 100 km. Since this is within the
search distance, the matching algorithm is able to
morph the misplaced forecast cloud toward the ob-
served cloud features. The resulting FQM of the deter-
ministic forecast is 0.38, a value that indicates medium
forecast quality compared with the 10 ensemble mem-
bers (Table 2 and Fig. 6).

FIG. 7. Same as in Fig. 6 but for conventional (top) BIAS and (bottom) ETS scores.
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e. Dependence of FQM on maximum search radius

Results were also examined for other search dis-
tances (Table 2). Ensemble members that fail to pro-
duce a feature even within the largest radius (worst
members) result in the same FQM for all search dis-
tances (0.57–0.59). The best members, which produce
clouds in the vicinity of the observed system (good fore-
cast), give a smaller FQM that is largely independent of
search radius (0.18–0.23), except at the smallest radius
of 75 km. The deterministic forecast is an example of an
intermediate situation, where some features can be
matched if a large search radius is used (producing an
intermediate FQM of 0.37–0.38), but less matching is
possible with smaller search radii (FQM decreasing to
0.52). This behavior is expected, and underlines the fact
that there is no intrinsically optimal choice for the
maximum search radius. As noted previously the choice
in this paper of 300 km is motivated by the physical
argument that convective features separated by synop-
tic distances (500 km or more) form in different envi-
ronments, and are unlikely to be simply displaced.

5. Conclusions and outlook

A novel forecast quality measure FQM is proposed
based on application of the pyramid matching algo-
rithm to observed and model-forecast satellite imagery.
The new measure is composed of the displacement nec-
essary to match both fields (to measure differences in
location), and the local squared difference of the ob-
served and morphed forecast brightness temperature
fields (to account for cloud features in one field that
cannot be matched to any feature in the other field).

The FQM has been applied within the framework of
a regional ensemble system to evaluate the individual
members and to rank them. The displacement-based
error measure allows an objective evaluation of fore-
cast quality based on image comparison. The new
method provides a plausible measure of forecast error,
which is consistent with subjective rankings, as shown
for a typical episode of prefrontal summertime convec-
tion in Bavaria. The cluster population that is opera-
tionally used to weight the individual members in

COSMO-LEPS exhibits a poor indication of local skill
on 9 July 2002. Using the displacement-based error
measure, individual ensemble members compare better
with the observations than does a short-term determin-
istic forecast throughout the convective period. In con-
trast, traditional measures like BIAS and ETS fail to
capture differing location errors of convective cloudi-
ness. Importantly, “good” ensemble members remain
good throughout this convective episode.

If this case is typical, such a persistence of skill could
suggest that a selected best member, or a probability
distribution based on weighted ensemble members,
may be a useful tool for short-range forecasting, par-
ticularly if, as for the case shown here, the best member
is superior to more recent deterministic forecasts, or the
ensemble mean. It should be noted that although the
short-range deterministic forecast presented in this pa-
per used more recent synoptic information (provided
by the more recent initial global analysis), the recent
satellite data used in the image matching were not as-
similated, and a deterministic forecast using these data
might be better. It will not necessarily be better, how-
ever, since the deterministic forecast may suffer from
an initial spinup period, in contrast to the fully spunup
ensemble members, and may not benefit greatly from
an attempt to assimilate small-scale cloud information.
Experience suggests that information about convective
precipitation may not be retained by the model for long
if the background forecast does not have the right con-
ditions to support the convection (Leuenberger and
Rossa 2007). It does however suggest a hybrid ap-
proach, where the best ensemble member is selected as
background for a short-range data assimilation–
forecast cycle. This possibility is currently being inves-
tigated. However, this is speculative and has to be
proven in many other cases.

The pyramidal image matching method has also been
used as the basis of a cell-tracking method (ZMT),
which could be used to identify timing errors, similar to
Davis et al. (2006b). This possibility is currently being
explored.

A systematic evaluation of the performance of the
regional ensemble system using the proposed measure
and the suggested ensemble refiltering approach is
planned during the 3-month period of the Convective
and Orographically induced Precipitation Study
(COPS) field experiment that took place in the summer
2007 in a low-mountain area in southwestern Ger-
many–eastern France, which is characterized by high
summer thunderstorm activity and particularly low skill
of numerical weather prediction models (Wulf-
meyer et al. 2005). This will allow for a more reliable
comparison between the various error measures, in-

TABLE 2. FQM of “best” ensemble member, deterministic fore-
cast, and “worst” ensemble member for different search distances
at 1600 UTC 9 Jul 2002.

Subsampling factor F 4 3 2 1

Maximum search distance (km) 600 300 150 75
“Best” member 0.24 0.18 0.23 0.36
Deterministic forecast 0.37 0.38 0.44 0.52
“Worst” member 0.57 0.58 0.58 0.59
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cluding the establishment of climatological baseline val-
ues of FQM based on comparing random images, and
an assessment of the utility of the displacement-based
measure for capturing predictability information from
the ensemble.
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