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I. INTRODUCTION

Virtually all computer programming models presume reli-
able hardware for both their computation and data structures.
Even today, hardware experiences many errors, most of which
are masked by integrated error correction mechanisms [1], [2],
[3]. But once the errors exceed the capability of hardware cor-
rection (e.g. an “uncorrectable” error in DRAM), the system
simply gives up execution and resets the system. This works
well today, and so long as the resulting number of computation
failures is small.

In future hardware, as the benefits of Moore’s Law wane,
the industry is scaling voltages aggressively to reduce power,
producing rising error rates both in logic and memory [4],
[5]. These increases threaten our ability to reliable hardware
at the desired performance and power, and give rise to the
prospect that future software will have to be designed for
unreliable hardware. How to do this is challenging; what to
do if variables in registers or memory can change silently?
How can one build a working program?

Fault-tolerance in software has been pursued for decades
for mission-critical applications through replication, quorum
voting techniques, and checkpoint-restart, but these systems
are mainly designed to tolerate fail-stop of processes, not to
correct errors. In the future, we aspire to a much finer-grained
error detection and recovery, tolerating the computation and
data errors at the level of single words or a few instructions.
We believe that meeting these challenges requires pro-
gramming model support in the programming model for
detecting and recovering from errors.

We argue that future programming models provide sup-
port for dealing with hardware errors conveniently and
efficiently. In contrast to techniques proposed in conjunction
with specific hardware [6], we believe that programming mod-
els for unreliable hardware must be portable. If applications
make significant investment in programming for errors, then
this investment must be preserved across different hardware
platforms. This portable programming model support must
allow programs to:

• capture hardware detected and signalled errors,
• capture operating system detected errors,
• express computation error checks, and
• respond to errors when those checks fail.
We are not the first to raise this issue, but our advocacy

of this idea in a mainstream context for software is unique.

Efforts such as Recovery Blocks [7] were designed for highly-
reliable systems, and Relax include reliability-relaxing pro-
gramming extensions to increase energy-efficiency [6].

II. A PROGRAMMING MODEL FOR UNRELIABLE
HARDWARE

To illustrate the idea of programming model support for
unreliable hardware, we describe a few key elements of the
design of the Global View Resilience (GVR) system.

A. Creating Reliable State

All programs transform data, so we introduce as a central
element, and the basis for reliability, a variation on traditional
arrays. GVR introduces versioned arrays, that persist copies of
the array data, creating redundant data representation that en-
ables error checking and repair. Application programs indicate
when an array should be versioned, preserving its contents in
a snapshot. The implementation maintains multiple versions
of arrays, using them to allows applications to recover from
both immediate and latent errors (those that are detected long
after their occurrence) by simple rollback and replacement, or
more complex data repair.

B. Error checking and correction

GVR enables applications to express error checking func-
tions which can trigger error handling when state corruptions
are detected. These error checks are described as proce-
dures which compute over the arrays. It is important to
enable application-level checks as there are often application-
semantics based invariants for data structures. For example, in
a physical system simulation, conservation of mass or energy
(as embodied in particle count). In an operating system, the
notion that no two pages are allocated to a single page frame.
Or in a fluid dynamics simulation that pressure is always
positive.

Errors can also be signaled by the hardware or operating
system, enabling applications to use redundant information
in the application, or computation semantics to correct the
corrupted data. For example, a memory error uncorrectable in
hardware (double bit error in a SECDED memory), might be
correctable based on redundant pointers in a doubly-linked list.
In this case, a memory controller would notify the operating
system, which would backmap into the application address
space for the memory error. Figure 1 shows an example code
with application error checking and recovery.



void update_particles(gds_t) resilience_prio(low);
int count_particles(gds_t) resilience_prio(high);

alloc(..., PRIORITY_HIGH, &gds_p);
register_error_handler(gds_p, err_handler);

n_orig = count_particles(gds_p);
while (1) { ...

version_inc(gds_p, 1); /* record version */
if (finished) break;
update_particles(gds_p);
/* If particles not conserved, error! */
if (count_particles(gds_p) != n_orig)

raise_error(gds_p); }

status_t err_handler(gds_t gds, error_t err_desc)
resilience_prio(high) {

gds_t gds_latest;
descriptor_clone(gds, &gds_latest);
do { /* Find a good version */
move_to_prev(gds);

} while (full_check(gds) != OK);
/* Copy good data to resume */
get(buff, ..., gds); put(buff, ..., gds_latest);
move_to_newest(gds);
resume(gds); return OK; }

Fig. 1. GVR application-specific error checking, signaling, and recovery in a
particle simulation. The global array (gds_p) and each function is annotated
with resilience priorities.
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Fig. 2. Unified error handling which enables rich recovery from various
errors in an unreliable hardware

C. Resilience priorities

In an unreliable hardware environment, some parts of a
program (e.g. error checks and recovery) require highly reli-
able execution. Amongst the data, certain arrays may be more
critical or more difficult to recompute. In GVR, application
programmers specify a resilience priority for each array,
allowing the implementation to optimize the cost for resiliency,
without sacrificing the portability.

In the code example (see Figure 1), the code region for
updating particle information in the simulation has lower
resilience requirements, while the error checking routine has
a high priority.

III. EXAMPLES OF ARCHITECTURE AND OS SUPPORT

Architecture and operating system support for programming
models for unreliable hardware can not only improve execu-

tion efficiency, but also increase reliability.
Hardware Architecture

1) report all errors not fully recovered to operating system
or runtime, enable recovery at that level

2) mapping chip and DIMM errors to physical address
3) mapping processor errors to affected virtual address

space
4) special hardened cores for highly reliable execution, or

DVFS switch
5) special hardened memory for highly reliable execution
6) fast NVRAM access for array versioning

Operating System
1) report all errors not fully recovered to application, enable

recovery at that level
2) reverse translation (physical → process → virtual) for

memory errors
3) identify affected process for processor errors

Runtime/Compiler
1) report all errors not fully recovered to application, enable

recovery at that level
2) reverse translation (virtual → application datastructure)

for memory errors
3) dynamic computation replication and checking for

highly-reliable execution [8]
These examples all assume opening up the error handling

for cross-layer error handling as in Figure 2, and support
both efficient implementation of primitives but also semantic
mapping to enable sophisticated error recovery.
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