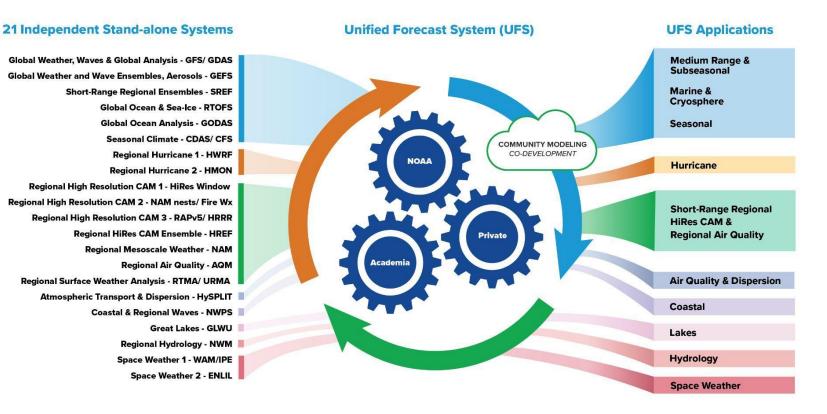


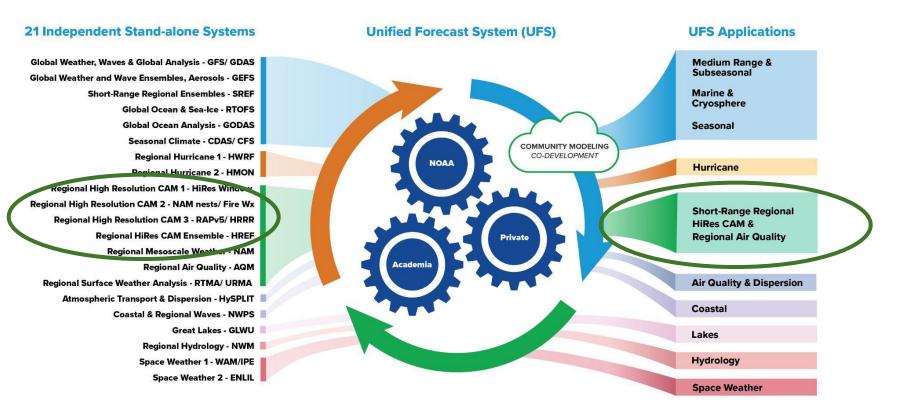
Status and Opportunities with the Rapid Refresh Forecast System

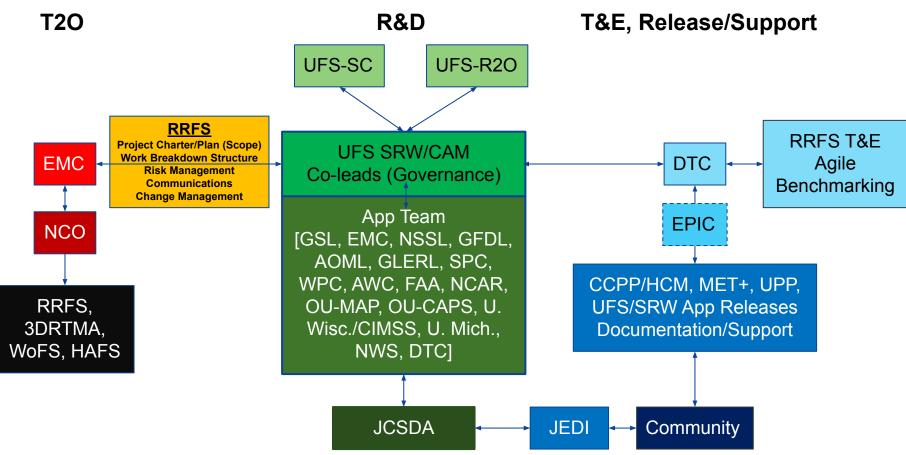
Jacob R. Carley¹ and Curtis R. Alexander² on behalf of the RRFS development team


¹NOAA/NWS/NCEP/EMC ²NOAA/OAR/GSL

July 20th, 2022

Simplifying NOAA's Operational Forecast Suite

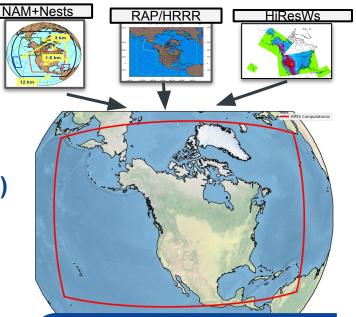

Reducing the 21 Stand-alone Operational Forecast Systems into Eight Applications


Simplifying NOAA's Operational Forecast Suite

Reducing the 21 Stand-alone Operational Forecast Systems into Eight Applications

UFS Era

RRFSv1 Project Plan


Informed by Stakeholder Feedback and Requirements

1	HRRRv4 Implementation & Evaluation (2020)	Project Plan for the Rapid Refresh Forecast System (RRFS) v1.0.0
2	HREFv3 Implementation & Evaluation (2021)	
3	UFS Forecaster priority workshops (2020-2021)	Project Plan for the Rapid Refresh Forecast System (RRFS) V1.0.0
4	UFS Metrics Workshops (2021)	VERSION 0.98
5	NOAA Testbed reports from HWT and HMT (2020, 2021)	06/09/2022
6	CaRDS 21-012	U.S. Department of Commerce (DOC) National Oceanic and Atmospheric Administration (NCAA) National Weather Service (NWS) National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC)
7	CaRDS CAM Ensemble (draft)	1

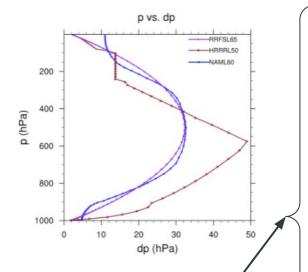
Rapid Refresh Forecast System (RRFS) A UFS Application

- Based on the FV3 dynamical core <u>Limited</u> <u>Area Model (LAM) capability</u>
 - Black et al. (JAMES, 2021)
- Rapidly updated
- Convection-allowing (~3 km grid spacing)
- 65 vertical layers
- Hybrid 3DEnVar assimilation (30-40 members)
- Deterministic forecasts to 18h every hour
- Ensemble forecasts to 60h every 6 hours
 - 9 members (+1 deterministic control)
 - IC perturbations, stochastic, & multiphysics

RRFSv1 Computational Domain

RRFS Development Status & Progress

		Model Infrastructure	Dynamics/Physics		Data Assimilation	Tes	sting/Eval/T2O
2018-19	•	FV3LAM established ESG grid GFS IC/LBC option	CCPP ready	•	GSI FV3LAM interface		
2020) • •	RAP/HRRR IC/LBC option Initial dynamics options	 RRFSv1 alpha suite Thompson/RRTMG UGW/MYNN/GFS SL 	•	Conventional DA	•	SFE/FFaIR/WWE RAPv5/HRRRv4
2021	• • •	N. America domain Cloud HPC deployment 65 vertical layers set	SPPT SPP	•	Partial cycling design Soil temp/moisture adj Radar reflectivity LH DA Satellite clear radiances	•	SFE/FFalR/WWE HREFv3 DTC benchmark MEG Alpha Eval
2022		Ensemble ICs	 8th order damping Ensemble physics FLAKE/CLM Lake NoabMP LSM 	•	Soil temp/moisture adj EnKF ensemble Cloud analysis Stoch phys in EnKF mem EnKF recentering/couplin		SFE/FFaIR/AWT/ WWE Agile prototyping
	•	Tested in real-time experim	ent • Some testin	g	More developm	ent	needed
	NORA						

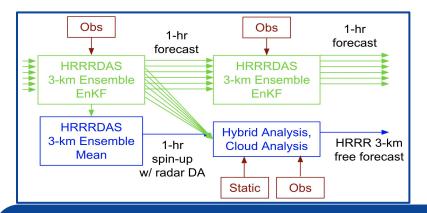

SUFS

RRFSv1 Physics and Vertical Resolution

- Tested L65 and L70 configurations for 30 cases
 - Performance between L65 and L70 is very similar
 - Both improved over NAM's L60
- 1.2% increase in HPC per vertical level
 - L70 is ~%6 more expensive than L65

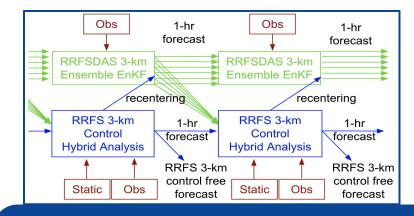
Parameter	RRFS	HRRRv4	NAMv4
Number of levels	65	50	60
Lowest level (m)	8	8	20
ſop (hPa)	2	20	2
Transition to pure pressure (hPa)	45	200	300

RRFS vertical resolution along with two historical configurations for reference.



- RRFSv1 physics suite (CCPP)
- Origin largely in HRRR physics
- Change to community LSM

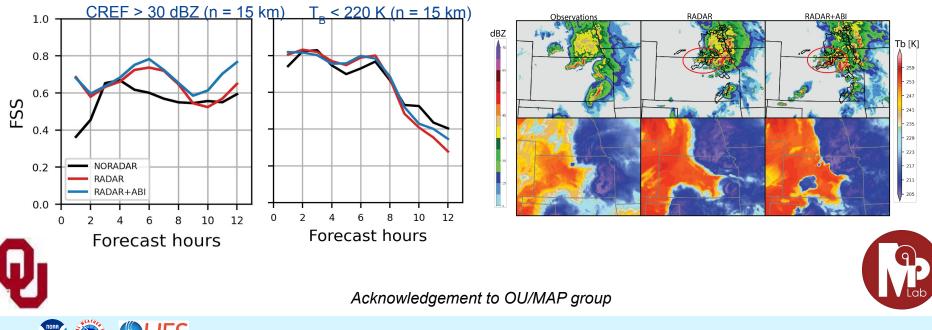
Physics	SCHEME	REFERENCE		
PBL/Turbulence	MYNN-EDMF	Olson et al. (2019)		
Surface Layer	MYNN	Olson et al. (2021)		
Microphysics	Thompson-Eidhammer	Thompson and Eidhammer (2014)		
Climatological Aerosols	Thompson-Eidhammer	Thompson and Eidhammer (2014)		
Smoke and Dust	RAVE fire data, FENGSA scheme for dust	Ahmadov et al., Freitas e al., 2010		
Shallow Convection	MYNN-EDMF	Olson et al. (2019) Angevine et al. (2020)		
Gravity Wave Physics	Small Scale and Turbulent Orographic Form Drag	Beljaars et al. (2004) Tsiringakis et al. (2017) Toy et al. (2021)		
Land Model	Noah-MP	Niu et al. (2011)		
Large Lakes	FVCOM	Fujisaki-Manome et al. (2020)		
Small Lakes	FLake/CLM Lake	Mironov (2008)/Subin et al. (2012), Mallard et al. (2015)		
Near-Surface Sea Temperature	NSST	Fairall et al. (1996), Derber and Li (2018)		
Long and Short Wave Radiation	RRTMG³	lacono et al. (2008), Mlawer (1997)		



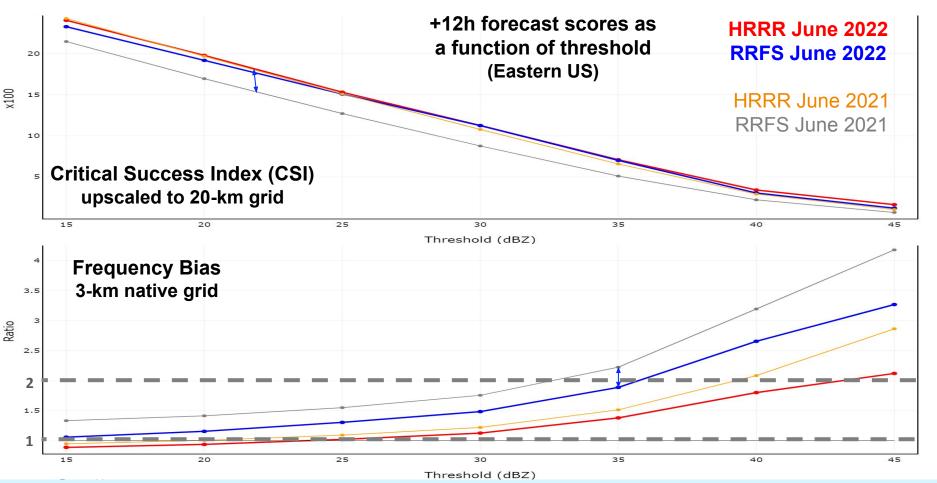
RRFSv1 Data Assimilation

Operational HRRRv4 HiRes Ensemble DA

- Ensemble covariances in deterministic analysis
- Leverages ensemble mean for deterministic forecast
- One-way information from ensemble to deterministic forecast
- Deterministic atmospheric forecast not hourly cycled
- Non-var/non-hybrid cloud/radar DA in deterministic
 HRRR
- Deterministic forecast can fall *outside* ensemble solutions

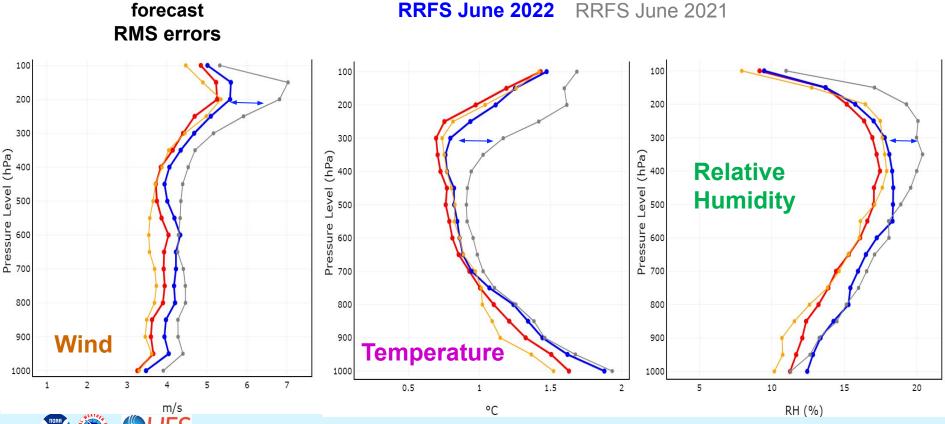

RRFSv1 HiRes Ensemble DA

- Ensemble covariances in deterministic analysis
- Ensemble mean recentered from deterministic analysis
- *Two-way* information between ensemble and control member
- Deterministic atmospheric forecast hourly cycled
- Hybrid cloud/radar DA in deterministic RRFS
- Deterministic/control forecast *within* ensemble solution space

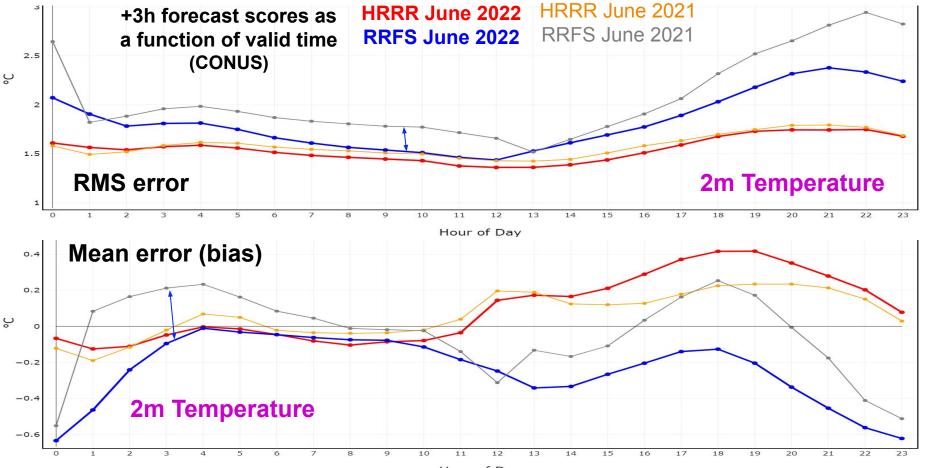


RRFS: Collaboration with OU/MAP Impacts of assimilating GOES ABI obs. on forecasts

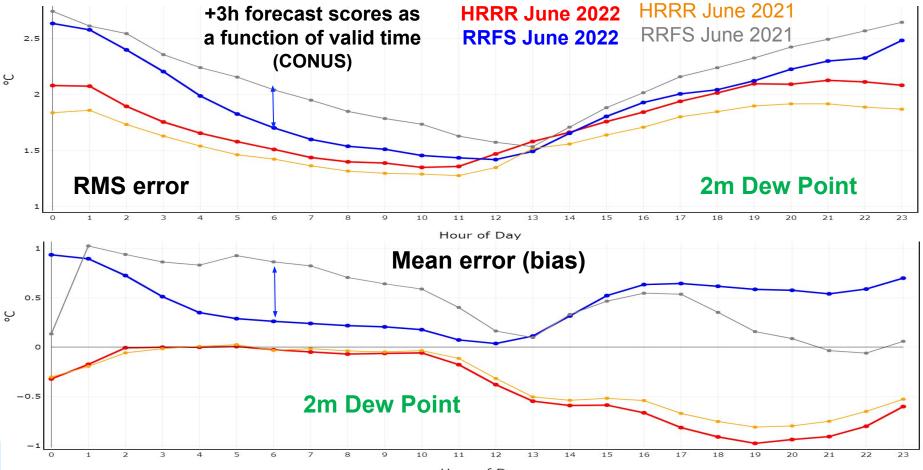
- Benefits from assimilating ABI observations continue into the forecast period, esp. for localized convection
- Impacts are smaller for T_b as all experiments produce too cold anvils that are larger than the obs


RRFS reflectivity skill closing gap compared to HRRR

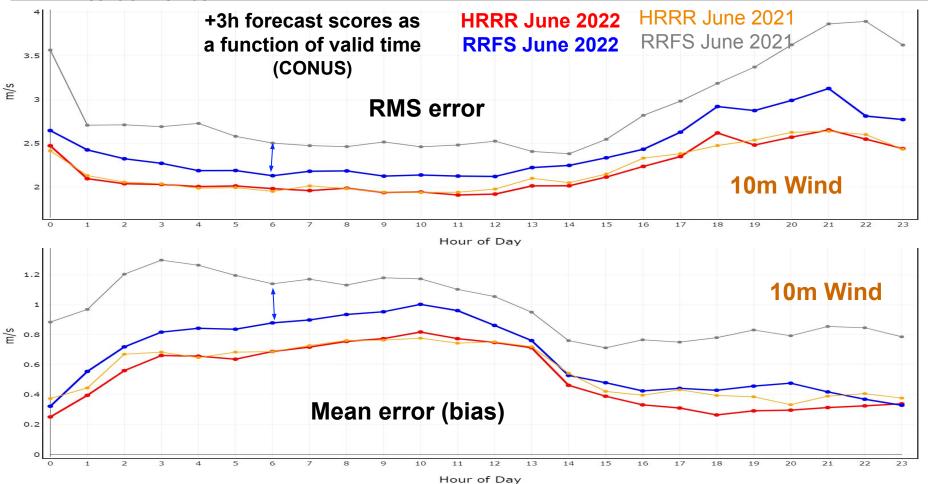
RRFS upper-air skill closing gap compared to HRRR


+12h

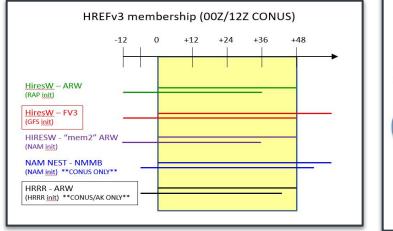
HRRR June 2022 HRRR June 2021


Department of Commerce // National Oceanic and Atmospheric Administration // 12

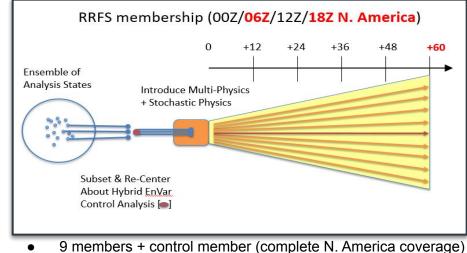
RRFS surface skill closing gap compared to HRRR


Hour of Dav

RRFS surface skill closing gap compared to HRRR



Hour of Day


RRFS surface skill closing gap compared to HRRR

RRFSv1 Forecast Ensemble Design

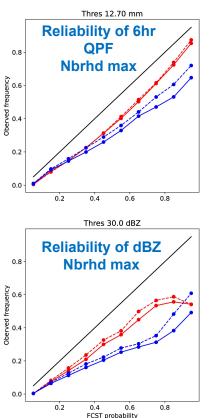
- 5 on time members + 5 time lagged
- 48H forecast length 2x per day
- Multi-dycore (3)
- ICs from NAM + nests, RAP, HRRR, GFS
- Multiphysics

- 60H forecast length 4x per day
- Single dycore
- IC perturbations subset from 30-40 member EnKF
- Multiphysics+stochastic physics
- Single core & physics CAM ensembles designed *to date* have typically been under-dispersive vs. HREF
- RRFSv1 ensemble design leveraging HRRRE development and HIWT, DSUP, UFS-R2O projects to incorporate methods of representing uncertainty (multiphysics, SPP, etc.)
- <u>Goal</u>: Skillful spread & error relationship.
 - RRFSv2+ converge toward single physics to facilitate fundamental reductions in forecast error

RRFS ensemble development in AWS cloud (2021 HWT)

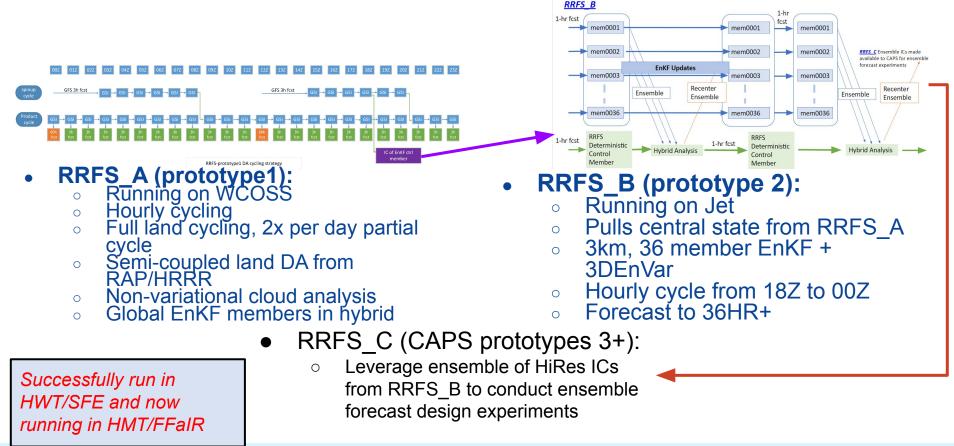
*Synergy with FY19 Disaster Supplemental IFHFW Project

First Real Time Prototype Test of RRFS Ensemble Made possible with cloud HPC


- 9 member ensemble
- 3-km North American domain
- Run in real time on AWS Cloud HPC for <u>2021</u> Testbeds

	IC/LBC (init from 6hr fcst)	physics	Stochastic physics
Mem1	GFS	MYNN PBL/sfc+Thompson MP	NA
Mem2	GEFS mem1	(RRFS suite)	SPPT
Mem3	GEFS mem2		SPPT/SHUM/SKEB
Mem4	GFS	TKE EDMF+GFS sfc+GFDL MP	NA
Mem5	GEFS mem1	(GFS suite)	SPPT
Mem6	GEFS mem2		SPPT/SHUM/SKEB
Mem7	GFS	Hybrid EDMF+GFS sfc+NSSL MP	NA
Mem8	GEFS mem1		SPPT
Mem9	GEFS mem2		SPPT/SHUM/SKEB
PPT: Stochastically Per	turbed Parameterization Tendencies	Thanks to Ted Mansell and	Larissa Reames of NSSL, Tim

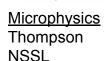
SPPT: Stochastically Perturbed Parameterization Tendencies SHUM: Stochastically-Perturbed boundary-layer Humidity SKEB: Stochastic Kinetic Energy Backscatter Thanks to Ted Mansell and Larissa Reames of NSSL, Tim Supinie of OU/CAPS for their help on NSSL MP


RRFS NMEP with NBR size=40 and 80 km

- HREF NMEP with NBR size=40 and 80 km

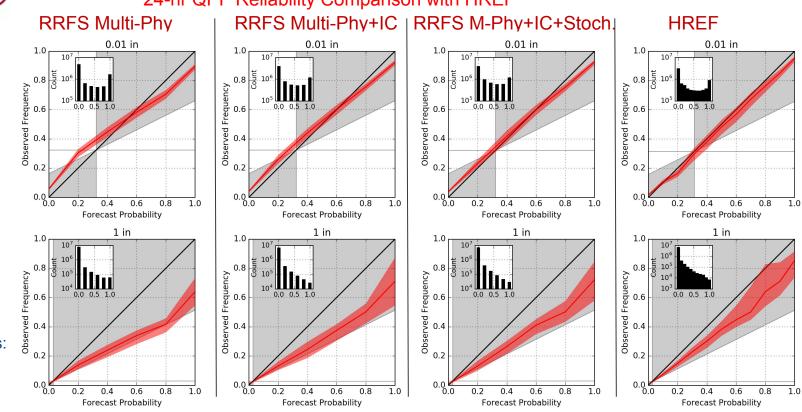
2021/05/03-2021/06/04 00Z cycles to 36 hours

Coordinated Testing and Development in NOAA Testbeds



CAPS Multi-Phy. and Stochastic Phy. Ensembles with RRFS prototype EnKF ICs (all 5 members)

24-hr QPF Reliability Comparison with HREF



<u>PBL</u> MYNN TKE-EDMF

<u>LSM</u> NOAH NOAH-MP RUC

Stochastic Pert: SPPT+SKEB+ SHUM

IC Perturbations: RRFS EnKF

EnKF IC+Multi-physics+Stochastic Perturbations is best but slightly lower reliability than HREF

Opportunities with the Rapid Refresh Forecast System

Opportunities with the Rapid Refresh Forecast System

UFS-Short Range Weather (SRW) Application Version 2 Public Release \rightarrow Foundation for RRFS

Here Weather App Users Guide

3. Container-Based Quick Start Guide

4. Building and Running the SRW App

5. SRW Application Components

6. Install and Build the HPC-Stack

8. Limited Area Model (LAM) Grids:

9. Workflow Parameters: Configuring the Workflow in config.sh and config defaults.sh

10. Rocoto Introductory Information

13. SRW App Contributor's Guide

11. Workflow End-to-End (WE2E) Tests

Predefined and User-Generated

7. Input and Output Files

12. Graphics Generation

Options

14. FAQ 15. Glossary

Search docs

1. Introduction

2. Ouick Start Guide

Welcome to the UFS Short-Range Weather Application wiki!

For a guide to building and running the Short-Range Weather (SRW) Application, see the SRW App User's Guide.

This repository contains the model code and external links needed to build the UFS Short-Range Weather Application, which focuses on predictions of atmospheric behavior from less than an hour to several days. The application includes a user-friendly workflow, with pre-processing (preparation of inputs), a forecast model, and post-processing. The forecast model used in this application is the UFS Weather Model: https://glthub.com/ufs-community/ufs-weather-model/wki

Getting Started

Before running the Short-Range Weather (SRW) Application, users should determine which of the four levels of support is applicable to their system. Generally, Level 1 & 2 systems are restricted to those with access through NOAA and its affiliates. These systems are named (e.g., Hera, Orion, Cheyenne). Levels 3 & 4 include some personal computers or non-NOAA-affiliated HPC systems.

The Quick Start Chapter provided in the User's Guide is an excellent place for new users to begin. It provides details on how to clone the SRW App, build it, and run a forecast. Users can access the documentation for the SRW App version that they plan to run.

Documentation and User Support

The UFS Short-Range Weather Application User's Guide has the most comprehensive information on the SRW App, including links to more thorough technical instructions.

Depending on what you are doing, you may need different versions of the Users Guide

Version	Description
Develop Branch/Latest	Documentation for the head of the development branch. This may have gaps and errors.
Release v2.0.0	Documentation for the most recent release (v2.0.0).
Tag ufs-v1.0.1	Documentation for the v1.0.1 release.
Tag ufs-v1.0.0	Documentation for the v1.0.0 release.

GitHub Code and Wiki

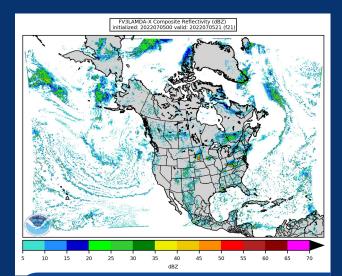
	SRWv2					
Physics Suite Definition	FV3_GFS_v16p8	FV3_RRFS_v1beta	FV3_WoFS	FV3_HRRR		
Radiation (SW/LW)	RRTMG	RRTMG	RRTMG	RRTMG		
Microphysics (MP)	GFDL	Thompson Aerosol Aware	NSSL	Thompson Aerosol Aware		
Boundary Layer (PBL)	TKE-EDMF	MYNN-EDMF	MYNN-EDMF	MYNN-EDMF		
Surface Layer (SL)	GFS	MYNN	MYNN	MYNN		
Gravity Wave Drag (GWD)	None	SSGWD/TOFD	SSGWD/TOFD	SSGWD/TOFD		
Land Surface Model (LSM)	Noah	NoahMP	Noah	RUC		
Deep Convection (DCU)	sa-SAS	None	None	None		
Shallow Convection (SCU)	sa-MF	None	None	None		
Lake Model (LM)	NSST	NSST	NSST	NSST		

Supported Physics Suites

https://ufs-srweather-app.readthedocs.io/en/release-public-v2/

*Acknowledge the EPIC, DTC, and NOAA teams for their tremendous effort!

Opportunities with the Rapid Refresh Forecast System R&D Needs → Areas Welcome for Community Contributions [*not exhaustive!*]


	Data Assimilation	Obs	Physics	Dynamics	Ensemble	Computing
Now (0-2 yrs)	 Multiscale/Blending Earth System Coupling New Forward Operators 	 GOES AllSky GLM GNSS (including ground based) Radar 	 CAM Parameterized Deep Convection (reduce high precip biases) Higher Vertical Res Land/Lake Models 	Physics-Dynamics Coupling	 Stochastic Physics Ad-Hoc Schemes 	• Cloud HPC
Next (2-5 yrs)	 Non-Gaussian, Non-Linear Hybrid PFs 	 UAVs IoT All sky Small sats 	Improved Acros	 hysics s UFS ban-Scale Nesting Height-Based Vertical Coordinate 	 Single Physics Al/ML Post-Processing 	 GPUs for parts of code Domain Specific Language ports
Later (5-10+ yrs)	 AI/ML Emulator Continuous In-Core 	 All Surface Phased array radar? 	Al/ML Emulators?	• Two-Way Nesting and couple to WoFS?	More members	 Full code on GPUs IPUs (1000s cores per node)

Closing

- RRFS is a major change
 - North American domain
 - 3 km ensemble
 - Rapid updates
- A community effort through the UFS
- RRFS will facilitate retirement and simplification of many longstanding systems
- Benchmark operational systems have decades of development
 - <u>A high bar is a good thing</u>
- RRFSv1 Implementation is planned for 2024
 - Targeting ~annual upgrade cadence thereafter

Experimental RRFS Forecast Column-Max Radar Reflectivity

Thank you!

