Content-Length: 81683 | pFad | https://es.wikipedia.org/wiki/N%C3%BAmero_hexagonal

Número hexagonal - Wikipedia, la enciclopedia libre Ir al contenido

Número hexagonal

De Wikipedia, la enciclopedia libre

Un número hexagonal es un número poligonal que se puede representar en forma de hexágono

Los primeros cuatro números hexagonales.
Los primeros cuatro números hexagonales.

La fórmula para un número hexagonal n es:

Los primeros números hexagonales (sucesión A000384 en OEIS) son:

1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946.

Todos los números hexagonales son un número triangular, pero solo los números triangulares en posición impar (el 1º, 3º, 5º, 7º, etc.) son números hexagonales. Como números triangulares que son, la raíz numérica en base 10 de un número hexagonal sólo puede ser 1, 3, 6, o 9.

Test para números hexagonales

[editar]

Una prueba eficaz para determinar si un número es hexagonal es calculando:

Si n es un entero, entonces x es el número hexagonal n. Si n no es un entero, entonces x no es hexagonal.

Otras propiedades

[editar]

El enésimo número hexagonal n también puede expresarse a través de la siguiente suma.

Enlaces externos

[editar]








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://es.wikipedia.org/wiki/N%C3%BAmero_hexagonal

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy