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Abstract. Despite significant progress in climate impact research, the narratives that science can presently

piece together of a 2, 3, 4, or 5 ◦C warmer world remain fragmentary. Here we briefly review past undertakings

to characterise comprehensively and quantify climate impacts based on multi-model approaches. We then report

on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a community-driven effort to compare

impact models across sectors and scales systematically, and to quantify the uncertainties along the chain from

greenhouse gas emissions and climate input data to the modelling of climate impacts themselves. We show how

ISI-MIP and similar efforts can substantially advance the science relevant to impacts, adaptation and vulnera-

bility, and we outline the steps that need to be taken in order to make the most of the available modelling tools.

We discuss pertinent limitations of these methods and how they could be tackled. We argue that it is time to

consolidate the current patchwork of impact knowledge through integrated cross-sectoral assessments, and that

the climate impact community is now in a favourable position to do so.

1 Introduction

Climate-change research has come a long way towards de-

termining the magnitude of required emissions reductions

given a politically chosen global warming limit (e.g. Ro-

gelj et al., 2011), as well as the means and costs of achiev-

ing those reductions (e.g. Clarke et al., 2009; Edenhofer et

al., 2010). However, despite a wealth of knowledge about

climate change impacts, the scientific basis for describing

the consequences of different global warming levels remains

“seriously incomplete” (Rosenzweig and Wilbanks, 2010;

Impacts World Conference, 2013).

The current state of the art would notably benefit from

comprehensive quantitative assessments of aggregate global

climate change impacts (Schellnhuber et al., 2014). Address-

ing this knowledge gap would greatly strengthen the scien-

tific underpinning of mitigation decisions, and is all the more

urgent in light of a potential review of the internationally

agreed upon target of stabilising global mean temperature

(GMT) rise below 2 ◦C (UNFCCC, 2010). Climate research

is also challenged to provide more robust and implementable

information on climate change impacts – in particular at lo-

cal and regional scales – for making science-based adaptation

choices in a warmer world (Kerr, 2011).
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Progress is particularly needed in two research areas that

have been largely neglected in the past – largely because of

the complexity of the challenges involved.

Firstly, climate impact research should strive for stronger

integration of different sectors (such as agriculture, water re-

sources, forestry, infrastructure, and industrial production)

and spatial scales (local, regional, global). Assessing the vul-

nerability of human and natural systems to climate change

should account for the interactive effects of simultaneous

and/or sequential impacts, which due to feedbacks and non-

linearities cannot be deduced from sector-specific studies

alone (Smith et al., 2001). So far, cascading impacts across

sectors – such as the effects of climate-induced yield loss

on malnutrition, the effects of ecosystem change on malaria

distribution, or the propagation of local damages along the

global supply network – are poorly understood (Warren,

2011). Better understanding of these multi-sectoral interac-

tions and the involved trade-offs is especially important in

the light of adaptation planning, as coping resources (such

as land area, public and private funds, and political will) are

often limited.

Improved integrative analysis across different spatial

scales would help to bridge the gap between global impact

assessments, currently not apt for local adaptation planning,

and local or regional approaches, which so far leave many

parts of the world “unexplored”. Using data from local and

regional models, for example, provides a large potential for

the improvement and better parameterisation of global mod-

els (Challinor et al., 2014a), which could eventually become

appropriate tools for devising global as well as local adapta-

tion measures.

Secondly, more emphasis could be put on the system-

atic and rigorously quantitative assessment of uncertainties,

which is indispensable if scientific findings are effectively to

support the climate-policy process as it moves towards quan-

titative risk assessment (Schneider and Mastrandrea, 2005;

Kunreuther et al., 2013). Hence, error ranges stemming from

climatic and socio-economic projections should be consid-

ered alongside uncertainty in the current understanding of

impacts per se.

Statistical (meta-)analyses and expert judgments (e.g.

Challinor et al., 2014b; Smith et al., 2009), building on a

wealth of specific case studies and empirical data, are impor-

tant elements of the necessary toolkit for addressing these

research gaps. Here our focus is on modelling approaches,

which are particularly well suited to integrating existing

knowledge and quantitatively assessing uncertainties. It is

worth noting that the discussion about economic modelling

frameworks (i.e. integrated assessment models), including

the controversial debate on the representation of climate im-

pacts in these models (e.g. Pindyck, 2013; Stern, 2013), is

beyond the scope of this study, despite their significance for

the aggregation of climate impacts and their important con-

tribution to uncertainty assessments.

Figure 1. State of global climate impact modelling in terms of

sectoral integration and existing model intercomparison projects.

Most studies to date have been based on one single-sector impact

model, limited to exploring the uncertainty in climate projections

by using input from different climate models (lower left quadrant).

Only a few studies have included several sectors within one com-

mon scenario setup, using one impact model per sector (lower right

quadrant). Likewise, only a few studies have compared impact mod-

els within one sector allowing for the analysis of structural uncer-

tainties (upper left quadrant). The recently initiated Inter-Sectoral

Impact Model Intercomparison Project (ISI-MIP) considers impact

model ensembles in several sectors simultaneously (upper right

quadrant).

To begin with, we describe efforts to extend first-

generation impact modelling schemes, based on just one

(biophysical) impact model for one sector, to include (i) sev-

eral sectors and (ii) an ensemble of impact models (Fig. 1).

We then turn to recent studies that combine a coherent anal-

ysis of climate impacts across sectors with a comprehensive,

multi-model assessment of uncertainties. Many of these stud-

ies have come out of the recently initiated Inter-Sectoral Im-

pact Model Intercomparison Project (ISI-MIP). In the main

part of the paper, we discuss some of the most important re-

sults from ISI-MIP and similar projects in light of the two

major knowledge gaps related to the sectoral integration and

characterisation of uncertainties. Despite well-acknowledged

shortcomings of existing model intercomparison efforts, we

argue that the climate impacts, adaptation and vulnerabil-

ity (IAV) community should continue along the multi-sector,

multi-model road it has now taken.
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2 Integrative, model-based assessments of climate

impacts – established approaches

2.1 Several sectors, one model

Significant progress has been made recently in the cross-

sectoral synthesis of climate impact knowledge based on

either single, internally consistent multi-sectoral models or

suites of independent sectoral models. These two approaches

complement each other. The former class of integrated mod-

els obviously allows for the direct simulation of cross-

sectoral feedbacks and interactions, but often suffers from

a less detailed representation of processes due to compu-

tational limitations. Also, despite some progress in con-

structing more comprehensive integrated modelling plat-

forms (Howells et al., 2013), so far, such studies have focused

on closely related sectors only, such as water and ecosys-

tems (e.g. Gerten et al., 2013), or ecosystems and agriculture

(e.g. Gervois et al., 2008). By contrast, the latter approach

of combining offline simulations of different uncoupled im-

pact models currently allows for more comprehensive impact

assessments, covering a higher sectoral diversity.

Here, we mention as examples a number of projects (form-

ing an incomplete list) that fall into the latter category. It

is worthwhile noting that some of these projects comprise

some element of model intercomparison (albeit not to the ex-

tent ISI-MIP does) and thus fulfil some criteria of the subse-

quently discussed integration approaches.

Within the PESETA project (Projection of Economic im-

pacts of climate change in Sectors of the European Union

based on bottom-up Analysis) consequences of climate

change across the European continent were quantified by in-

tegrating a set of high-resolution impact projections into a

single economic modelling framework (Ciscar et al., 2011).

The recently concluded second phase of the project consid-

ered eight sectors: agriculture, energy, river floods, forest

fires, transport infrastructure, coastal areas, tourism, and hu-

man health (Ciscar et al. 2014). Similar integrated assess-

ments of climate impacts in the United States are underway,

as part of the Climate Impact and Risk Analysis (CIRA)

project (Waldhoff et al., 2014). The CIRA project employed

over twenty detailed impact models with the primary goal

of assessing the regional benefits of global mitigation efforts

across six broad impact sectors. Early examples of multi-

sectoral, model-based climate-change risk assessments on

the global scale are the UK Fast Track project (Parry et al.,

1999) and the Climate Impact Response Functions initiative

(Füssel et al., 2003), but there are very few other compara-

ble studies. More recently, the study by Arnell et al. (2013)

provided projections of climate impacts in six sectors (wa-

ter availability, river flooding, coastal flooding, agriculture,

ecosystems, and energy demands) on the global scale, us-

ing a coherent set of climatic and socio-economic scenarios.

However, the majority of these studies used only one impact

model per sector, and were thus unable to address uncertain-

ties beyond those arising from climatic and socio-economic

input data.

2.2 Several models, one sector

On the other hand, impact model intercomparison efforts,

which provide a basis for quantifying and classifying these

uncertainties, have so far typically focused on one specific

sector or region. Examples of global studies include the as-

sessment of uncertainty in the response of the global terres-

trial biosphere to increasing CO2 concentrations and rising

temperatures, by comparing simulations of a suite of dy-

namic global vegetation models (DGVMs; Cramer et al.,

2001; Sitch et al., 2008). More recently, a large number of

global hydrological and land-surface models were compared

in the WaterMIP initiative (Haddeland et al., 2011; Hage-

mann et al., 2013), building upon earlier model compari-

son efforts in the water sector (Dirmeyer et al., 1999; Hoff

et al., 2010). An important ongoing community initiative is

the Agricultural Model Intercomparison and Improvement

Project (AgMIP), an ambitious multi-scale, multi-model im-

pact assessment in the agricultural sector (Rötter et al., 2011;

Rosenzweig et al., 2013). Several other research projects

have combined impact model ensembles with observational

records to analyse causes of past climate effects (e.g. on the

carbon and water cycles) (Vetter et al., 2008; Jung et al.,

2010), rather than to provide future projections. Regional ex-

amples include the comparison of modelling schemes to as-

sess climate change consequences for the hydrological cycle

in the US (Xia et al., 2012) and in the monsoon-dominated

countries of western Africa (Ruti et al., 2011).

3 The Inter-Sectoral Impact Model Intercomparison

Project (ISI-MIP)

The ISI-MIP, launched in 2012 (Schellnhuber et al., 2014), is

an example of a new type of community effort situated in the

otherwise largely unpopulated upper right corner of the im-

pact integration matrix (Fig. 1). It builds upon existing sec-

toral model intercomparison efforts, such as the WaterMIP

and AgMIP initiatives, but is designed to integrate these and

other impact simulation schemes across sectors and scales.

Integration pursued in ISI-MIP entails running models of dif-

ferent sectors and scales with a minimum level of harmonisa-

tion and common input data, rather than dynamically linking

these models.

In its recently concluded fast-track phase, the ISI-MIP in-

volved more than thirty international modelling teams and

covered five sectors (agriculture, water, ecosystems, coastal

infrastructure, and health) (Warszawski et al., 2014). Global

impact projections were based on common bias-corrected

climate input data (Hempel et al., 2013) and socio-economic

indicators, using state-of-the-art climate-change and socio-

economic scenarios representative concentration pathways
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Figure 2. Climate-impact cascades across sectors. Each arrow, overlain on the standard impact table from the 4th IPCC assessment report

(Parry et al., 2007), illustrates an exemplary inter-sectoral feedback. Whereas previous studies have commonly focused on individual sectors

in isolation (along the horizontal dimension), integrative efforts – such as ISI-MIP and AgMIP – now also allow for the analysis of feedbacks

and interactions across sectors (along the vertical dimension). *Feedbacks recently studied in the context of ISI-MIP (Davie et al., 2013;

Wada et al., 2013; Elliott et al., 2014; Frieler et al., 2014).

(RCPs; Moss et al., 2010) and shared socio-economic path-

ways (SSPs; Van Vuuren et al., 2012).

Major results of the ISI-MIP fast track were recently dis-

cussed by Schellnhuber et al. (2014). Here we present a syn-

opsis of important advances made by ISI-MIP and other re-

cent multi-model efforts with regards to (i) the integration

of impact projections across sectors and spatial scales, and

(ii) the quantification and classification of uncertainties. We

also define related research challenges, which should now be

addressed by the scientific community.

4 Cross-sectoral intercomparison of impact models

– major advances and future challenges

4.1 Integrating impact projections across sectors and

spatial scales

Juxtaposing impact measures from different sectors in or-

der to synthesise impacts requires a common scenario frame-

work. Earlier approaches, such as the summaries of impacts

at different levels of GMT rise presented by Hare (2006) and

Warren (2006), constitute important steps forward, but were

not always based on harmonised input (in particular with re-

gard to non-climatic drivers such as population scenarios and

land-use patterns). Integrative efforts that function as inter-

sectoral exercises from the outset circumvent such inconsis-

tencies. For example, based on ISI-MIP multi-model ensem-

bles, Piontek et al. (2014) presented an analysis of coinciding

biophysical impacts in four different sectors (agriculture, wa-

ter, ecosystems, health) to identify regional hotspots. Their

analysis included estimates of the number of people exposed

to severe change in one or several sectors, measured as sig-

nificant departures from the historical norm. The areas iden-

tified as hotspots in this analysis are of course contingent on

the limited number of sectors considered, and the employed

definitions of severe change.

An important development towards a more general map

of climate change hotspots would be to move from exposure

analyses to actual impact assessments that account for vul-

nerabilities and adaptive responses. As a first step, the results

from ISI-MIP allow for the assessment of inter-sectoral in-

teractions and adaptation trade-offs (Fig. 2), based on con-

sistent multi-sector, multi-model data. Using output of up to

11 global hydrological models and 7 crop models, two recent

studies (Elliott et al., 2014; Frieler et al., 2014) have, for ex-

ample, investigated the effect of climate change on food pro-

duction – directly, through climate-induced yield changes,

and indirectly, through the constraint that changing availabil-

ity of freshwater puts on the enhancement of irrigation. Com-

plementing the multi-sectoral ensemble by 7 global vegeta-

tion models, Frieler et al. (2014) have additionally studied

the loss of natural carbon sinks resulting from the expansion

of cropland required to meet the projected food demand. The
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necessary simulation data are now available to explore fur-

ther important inter-sectoral interactions and trade-offs, such

as the loss of arable land to sea-level rise, or the effect of

river floods on agricultural production (Fig. 2).

When integrating different sectors, it is important to in-

clude those that are socially relevant but which have largely

been ignored in the past. Climate impacts on agriculture, hy-

drology, ecosystems and forestry have been the subject of

intensive research. It is questionable whether the concept of

more or less clearly distinct sectors is a good one to start

with. However, the broad areas of human health, migration,

transport, infrastructure (also beyond coastal areas), energy

production and distribution, settlements (including mega-

cities), and marine ecosystems, clearly require the attention

of the impact research community. For some of these areas,

not even one global-scale model exists yet, let alone ensem-

bles of comparable models.

Regarding the integration across different spatial scales, it

is generally agreed that process-based impact models oper-

ating on different spatial scales are yet to be systematically

tested and compared (Challinor et al., 2014a). Global mod-

els often agree on large-scale patterns of change, but diverge

in their projections of specific changes on the regional scale

(where even the sign of the change often differs between

models) (Warszawski et al., 2013; Dankers et al., 2014).

Comparing global and regional models in selected areas (e.g.

major river basins or critical biomes such as the Amazon or

boreal forests) may contribute to constraining these large re-

gional uncertainties. Global models may “learn” from the re-

gional ones and help to generalise their results by extrap-

olations to other regions not covered by regional simula-

tions. Driving global impact models with higher-resolution

climate input (so-called hyper-resolution global modelling)

is another avenue potentially to improve local and regional

projections (Wood et al., 2011). Pinpointing and reducing the

existing scale dependency (Boone et al., 2004) constitutes an

important step towards the eventual use of global models for

on-the-ground adaptation planning.

4.2 Quantifying and classifying uncertainties

“Perturbed physics ensembles” commonly explore paramet-

ric uncertainties associated with a single model (e.g. Challi-

nor et al., 2009), with the major advantage that causes of

model spread can often be traced back to specific parame-

ters and processes. “Ensembles of opportunity”, based on the

comparison of several process-based impact models, consti-

tute another widespread approach to deriving probabilistic

assessments of climate change impacts. The challenge lies

in appropriately interpreting these multi-model simulations

(Sanderson and Knutti, 2012). The conventional approach,

which has been adopted by the majority of ISI-MIP-related

studies (e.g. Haddeland et al., 2014; Schewe et al., 2014),

is to treat all model output equally – despite model inter-

dependencies and common genealogies. This issue has been

widely discussed in the global climate modelling commu-

nity (Knutti, 2010), but requires more attention from climate

impact modellers in light of the increasing number of multi-

model assessments in this field.

If some models share more code or concepts than oth-

ers, or multiple versions of one model enter the ensem-

ble, a simple average of model outputs is necessarily bi-

ased, as these models are implicitly given greater weight

(Knutti et al., 2013). Understanding model genealogy is thus

important for assessing the significance of this bias, yet it has

rarely been made transparent for ensembles of global impact

models (GIMs); however, see Rosenzweig et al. (2014) for a

genealogy of global crop models.

A complementary approach, often adopted by global cli-

mate modellers, is weighting simulation output based on

model performance compared to observations. In this con-

text, a robust definition of what constitutes a “better” or

“poorer” model performance (Tebaldi and Knutti, 2007)

would be required. One important question with regard to

GCMs is, for example, to what extent the models’ ability to

represent current climate is related to their ability to repre-

sent future climates (Knutti, 2010). To our knowledge, the

only example of weighting impact models based on perfor-

mance so far can be found in a recent AgMIP study (Asseng

et al., 2013) on the uncertainty of simulating wheat yields

under climate change. Previous studies have rather relied on

weighted GCM output for deriving probabilistic impact as-

sessments (e.g. Rammig et al., 2010).

Beyond probabilistic interpretation of multi-model ensem-

bles, integrative modelling frameworks such as ISI-MIP al-

low for the identification of contributions to uncertainty from

different sources. A major finding emerging from these re-

cent multi-model assessments of climate impacts is that the

uncertainty stemming from GIMs is generally larger than the

uncertainty stemming from GCMs (e.g. for hydrology mod-

els: Schewe et al., 2014; for crop models: Rosenzweig et al.,

2014; for malaria models: Caminade et al., 2014; for veg-

etation models: Warszawski et al., 2013; see also Fig. 3).

One could deduce from this finding that investment in im-

pact model development and improvement – rather than fur-

ther constraining climate input data – is paramount in order to

reduce the overall uncertainty of climate impact projections.

This conclusion would also be supported by the argument

that great effort has already been put into the development

of GCMs, but that there might be much to be gained with

regard to the improvement of GIMs, for comparably little in-

vestment.

However, there are several important caveats to this state-

ment. Firstly, bias correction applied to GCM output will

reduce the inter-GCM variability, thereby potentially reduc-

ing the contribution of GCMs to the total uncertainty of im-

pact simulations (Dankers et al., 2014; Wada et al., 2013).

A recent study using global hydrological models concluded

that the uncertainty related to statistical bias correction is of

the same order of magnitude as the uncertainties related to
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the choice of GCM or GIM (Hagemann et al., 2011). More

in-depth studies on the role of bias correction should defi-

nitely be high up on the agenda of climate impact research.

(As a matter of fact, all statements about the relative con-

tributions of GCMs and GIMs to total impact uncertainty

made here would need to stand the test of using non-bias-

corrected GCM data.) Secondly, the proportion of uncer-

tainty due to GIMs and GCMs is contingent on the respective

ensemble sizes and characteristics (also pointed out by Prud-

homme et al., 2014). ISI-MIP relied on a subset of 5 GCMs

out of nearly 30 GCMs participating in the latest phase of

the Coupled Model Intercomparison Project (CMIP5) (Tay-

lor et al., 2011), which points to the need for more compre-

hensive analyses in the future. Thirdly, what is true for glob-

ally aggregated metrics may not apply on the regional scale.

For example, while GIMs contribute the largest proportion to

the total uncertainty in the length of the malaria transmission

season across most of the globe, variations between GCMs

dominate in regions where their precipitation projections di-

verge most strongly (Caminade et al., 2014). Fourthly, the

decomposition of uncertainty may change with both time and

the magnitude of GMT change (cf. Fig. 3, top and bottom). In

support of this argument, Wada et al. (2013) have found that

the contribution of GCMs to the overall uncertainty in simu-

lations of global irrigation water demand is greater at higher

GMT change. It follows from the third and fourth caveats that

the task of constraining uncertainty may differ strongly, de-

pending on whether the goal is to inform near-term, regional

adaptation or long-term, global mitigation decisions.

Finally, exploring the reasons for inter-model differences

can contribute to an improved understanding of the mech-

anisms that produce specific climate impacts. For example,

Friend et al. (2014) found that the implementation of plant

respiration and mortality processes in global vegetation mod-

els is key to explaining the different carbon source-sink dy-

namics simulated by these models. Taking a closer look at

ensemble spreads by comparing the output of different model

classes (e.g. site-based and ecosystem-type global crop mod-

els: Rosenzweig et al., 2014; hydrological models with and

without dynamic vegetation: Davie et al., 2013) forms an

important basis for future model development and improve-

ment.

5 General limitations of model intercomparison

approaches

Despite being powerful means of integration and uncertainty

assessment, multi-model approaches are no panacea for the

currently incomplete patchwork of impact knowledge. CMIP,

which now provides global climate projections in its fifth

phase (Taylor et al., 2011), is a suitable reference point to

judge not only the successes of, but also the risks involved

in, tightly integrated approaches. Ensemble convergence of-

ten results from consensus on metrics and observational data

sets rather than a converging understanding of processes.

Knutti (2010) suggested that there may even be an “element

of social anchoring”: without any deliberate adjustment of

models, participating groups tend to produce results that fall

in the middle of the ensemble instead of representing an out-

lier. It is also worth noting that uncertainty in global climate

projections (e.g. GMT, seasonal and spatial patterns of tem-

perature and precipitation change) has not been considerably

reduced between CMIP3 and CMIP5 (Knutti and Sedláček,

2013), despite continuing efforts into model development

and improvement.

Another potential shortcoming may arise in the commu-

nication of results to policy makers. Individual models and

small ensembles consisting of only a few models can of

course provide policy-relevant information. However, the
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general risk involved is that critical information on the as-

sumptions and characteristics of single models or model en-

sembles is not conveyed to policy makers, making results ap-

pear more general than they actually are. One example stems

from the intercomparison of integrated assessment models

led by the Energy Modeling Forum (EMF), which provided

estimates of the economic costs of stringent mitigation poli-

cies for the fourth IPCC assessment report. Since not all

models were able to run the lowest emission reduction sce-

nario, it was later controversially discussed whether these es-

timates were biased due to the selection of specific model

types in the considered EMF sub-ensemble (Tavoni and Tol,

2010; Knopf et al., 2011).

6 Conclusions

Keeping these caveats in mind, systematic and integrative

model intercomparisons in climate impact research (such as

initiated by ISI-MIP, AgMIP, and similar projects) nonethe-

less constitute a major step forward. As demonstrated here,

they are already on the road to delivering significant progress

towards an improved quantitative and consistent view of a

world exposed to a 2, 3, 4, or 5 ◦C higher GMT.

In the short term, improved understanding of climate im-

pacts across sectors and scales will support policy makers in

their review of the 2 ◦C temperature target (UNFCCC, 2010).

Inter-sectoral considerations can make a difference in policy

making, as recently demonstrated, for example, by an inte-

grated analysis of climate change, land use, energy and water

strategies with regard to the establishment of a local biofuel

industry in Mauritius (Howells et al., 2013).

In the longer term, establishing a community-driven pro-

cess that compares and evaluates impact models regularly

according to well-defined procedures will bring climate im-

pact research onto an equal footing with the corresponding

climatological and climate–economic sciences. In the latter

fields, intercomparisons of GCMs and earth system mod-

els (such as in CMIP), and of integrated assessment mod-

els (as through the Integrated Assessment Modelling Con-

sortium, IAMC), respectively, have evolved into community

benchmarks. As such, they advance the science and con-

tribute significantly to increasing transparency and accessi-

bility of modelling results. A comprehensive, publicly ac-

cessible archive of climate-change impact simulations, sim-

ilar to that provided by the CMIP archive, would synthesise

the state of the art in impact modelling and would guide

the scientific community in further addressing crucial model

gaps and inconsistencies among models. The ISI-MIP data

archive, which is now openly available, provides a good start-

ing point, but would require a much broader involvement of

the IAV research community to live up to its full potential.
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