Supplement to Final Report BOEM 2021-051

Atlantic Marine Assessment Program for Protected Species: 2015-2019

Appendix I
Generalize Additive Density-Habitat
Models and Maps, by Species

Contents

Со	ntent	S	i
Lis	t of T	ables	vi
Lis	t of F	igures	x
1	Stu	udy Area	1
2		mpback Whale (<i>Megaptera novaeangliae</i>)	
	2.1	Data Collection	
	2.2	Mark-Recapture Distance Sampling Analysis	
	2.3	Generalized Additive Model Analysis	
	2.4	Model Cross-Validation	
2	2.5	Abundance Estimates for AMAPPS Study Area	9
2	2.6	Seasonal Prediction Maps	10
2	2.7	Offshore Energy Development Areas	26
3	Fin) Whale (<i>Balaenoptera physalus</i>)	28
;	3.1	Data Collection	29
;	3.2	Mark-Recapture Distance Sampling Analysis	31
;	3.3	Generalized Additive Model Analysis	33
;	3.4	Model Cross-Validation	33
;	3.5	Abundance Estimates for AMAPPS Study Area	34
;	3.6	Seasonal Prediction Maps	35
;	3.7	Offshore Energy Development Areas	51
4	Sei	i Whale (<i>Balaenoptera borealis</i>)	53
4	4.1	Data Collection	54
4	4.2	Mark-Recapture Distance Sampling Analysis	56
4	4.3	Generalized Additive Model Analysis	58
4	4.4	Model Cross-Validation	58
4	4.5	Abundance Estimates for AMAPPS Study Area	59
4	4.6	Seasonal Prediction Maps	60
4	4.7	Offshore Energy Development Areas	76
5	Mir	nke Whale (<i>Balaenoptera acutorostrata</i>)	78
ţ	5.1	Data Collection	79
	5.2	Mark-Recapture Distance Sampling Analysis	81

5.3	Generalized Additive Model Analysis	83
5.4	Model Cross-Validation	84
5.5	Abundance Estimates for AMAPPS Study Area	85
5.6	Seasonal Prediction Maps	86
5.7	Offshore Energy Development Areas	102
6 S	Sperm Whale (<i>Physeter macrocephalus</i>)	104
6.1	Data Collection	105
6.2	Mark-Recapture Distance Sampling Analysis	107
6.3	Generalized Additive Model Analysis	109
6.4	Model Cross-Validation	110
6.5	Abundance Estimates for AMAPPS Study Area	111
6.6	Seasonal Prediction Maps	112
6.7	Offshore Energy Development Areas	128
7 C	Cuvier's Beaked Whale (<i>Ziphius cavirostris</i>)	130
7.1	Data Collection	131
7.2	Mark-Recapture Distance Sampling Analysis	133
7.3	Generalized Additive Model Analysis	135
7.4	Model Cross-Validation	136
7.5	Abundance Estimates for AMAPPS Study Area	137
7.6	Seasonal Prediction Maps	138
7.7	Offshore Energy Development Areas	142
8 S	Sowerby's Beaked Whale (<i>Mesoplodon bidens</i>)	143
8.1	Data Collection	144
8.2	Mark-Recapture Distance Sampling Analysis	146
8.3	Generalized Additive Model Analysis	148
8.4	Model Cross-Validation	149
8.5	Abundance Estimates for AMAPPS Study Area	149
8.6	Seasonal Prediction Maps	150
8.7	Offshore Energy Development Areas	154
9 U	Jnidentified Beaked Whales	155
9.1	Data Collection	156
9.2	Mark-Recapture Distance Sampling Analysis	158
9.3	Generalized Additive Model Analysis	160
9.4	Model Cross-Validation	161
9.5	Abundance Estimates for AMAPPS Study Area	161
9.6	Seasonal Prediction Maps	162

9.7	Offshore Energy Development Areas	166
10 Py	gmy Sperm Whale or Dwarf Sperm Whale (<i>Kogia</i> spp.)	167
10.1	Data Collection	168
10.2	Mark-Recapture Distance Sampling Analysis	170
10.3	Generalized Additive Model Analysis	172
10.4	Model Cross-Validation	173
10.5	Abundance Estimates for AMAPPS Study Area	174
10.6	Seasonal Prediction Maps	175
10.7	Offshore Energy Development Areas	179
11 Sh	ort-finned Pilot Whale (Globicephala macrorhynchus)	180
11.1	Data Collection	181
11.2	Mark-Recapture Distance Sampling Analysis	183
11.3	Generalized Additive Model Analysis	185
11.4	Model Cross-Validation	186
11.5	Abundance Estimates for AMAPPS Study Area	187
11.6	Seasonal Prediction Maps	188
11.7	Offshore Energy Development Areas	204
12 Lor	ng-finned Pilot Whale (<i>Globicephala melas</i>)	206
12.1	Data Collection	207
12.2	Mark-Recapture Distance Sampling Analysis	209
12.3	Generalized Additive Model Analysis	211
12.4	Model Cross-Validation	212
12.5	Abundance Estimates for AMAPPS Study Area	213
12.6	Seasonal Prediction Maps	214
12.7	Offshore Energy Development Areas	230
13 Ris	sso's Dolphin (<i>Grampus griseus</i>)	232
13.1	Data Collection	233
13.2	Mark-Recapture Distance Sampling Analysis	235
13.3	Generalized Additive Model Analysis	237
13.4	Model Cross-Validation	238
13.5	Abundance Estimates for AMAPPS Study Area	239
13.6	Seasonal Prediction Maps	240
13.7	Offshore Energy Development Areas	256
14 Atla	antic White-sided Dolphin (Lagenorhynchus acutus)	258
14.1	Data Collection	
14.2	Mark-Recapture Distance Sampling Analysis	261

14.3	Generalized Additive Model Analysis	263
14.4	Model Cross-Validation	264
14.5	Abundance Estimates for AMAPPS Study Area	265
14.6	Seasonal Prediction Maps	266
14.7	Offshore Energy Development Areas	282
15 Co	ommon dolphin (<i>Delphinus delphis</i>)	284
15.1	Data Collection	285
15.2	Mark-Recapture Distance Sampling Analysis	287
15.3	Generalized Additive Model Analysis	289
15.4	Model Cross-Validation	290
15.5	Abundance Estimates for AMAPPS Study Area	291
15.6	Seasonal Prediction Maps	292
15.7	Offshore Energy Development Areas	308
16 Atl	lantic Spotted Dolphin (Stenella frontalis)	310
16.1	Data Collection	311
16.2	Mark-Recapture Distance Sampling Analysis	313
16.3	Generalized Additive Model Analysis	315
16.4	Model Cross-Validation	316
16.5	Abundance Estimates for AMAPPS Study Area	317
16.6	Seasonal Prediction Maps	318
16.7	Offshore Energy Development Areas	334
17 Str	riped Dolphin (Stenella coeruleoalba)	336
17.1	Data Collection	337
17.2	Mark-Recapture Distance Sampling Analysis	339
17.3	Generalized Additive Model Analysis	341
17.4	Model Cross-Validation	342
17.5	Abundance Estimates for AMAPPS Study Area	343
17.6	Seasonal Prediction Maps	344
17.7	Offshore Energy Development Areas	360
18 Co	ommon Bottlenose Dolphin (<i>Tursiops truncatus</i>)	362
18.1	Data Collection	363
18.2	Mark-Recapture Distance Sampling Analysis	365
18.3	Generalized Additive Model Analysis	
18.4	Model Cross-Validation	368
18.5	Abundance Estimates for AMAPPS Study Area	369
18.6	·	370

18.7	Offshore Energy Development Areas	386
19 Hai	rbor Porpoise (<i>Phocoena phocoena</i>)	388
19.1	Data Collection	389
19.2	Mark-Recapture Distance Sampling Analysis	391
19.3	Generalized Additive Model Analysis	393
19.4	Model Cross-Validation	395
19.5	Abundance Estimates for AMAPPS Study Area	396
19.6	Seasonal Prediction Maps	397
19.7	Offshore Energy Development Areas	413
20 Ref	ferences	415

List of Tables

Table 2-1 AMAPPS research effort 2010 to 2017 and humpback whale sightings	4
Table 2-2 Intermediate parameters in humpback whale mark-recapture distance sampling models	5
Table 2-3 2010 to 2017 density-habitat model output for humpback whales	7
Table 2-4 Diagnostic statistics from the humpback whale density-density-habitat model	8
Table 2-5 Humpback whale average abundance estimates for the AMAPPS study area	9
Table 2-6 Humpback whale abundance estimates for wind-energy study areas	26
Table 3-1 AMAPPS research effort 2010–2017 and fin whale sightings	30
Table 3-2 Intermediate parameters in fin whale mark-recapture distance sampling (MRDS) models	31
Table 3-3 2010 to 2017 density-habitat model output for fin whales	33
Table 3-4 Diagnostic statistics from the fin whale density-density-habitat model	33
Table 3-5 Fin whale average abundance estimates for the AMAPPS study area	34
Table 3-6 Fin whale abundance estimates for wind-energy study areas	51
Table 4-1 AMAPPS research effort 2010 to 2017 and sei whale sightings	55
Table 4-2 Intermediate parameters in sei whale mark-recapture distance sampling (MRDS) models	56
Table 4-3 2010 to 2017 density-habitat model output for sei whales	58
Table 4-4 Diagnostic statistics from the sei whale density-density-habitat model	58
Table 4-5 Sei whale average abundance estimates for the AMAPPS study area	59
Table 4-6 Sei whale abundance estimates for wind-energy study areas	76
Table 5-1 AMAPPS research effort 2010 to 2017 and minke whale sightings	80
Table 5-2 Intermediate parameters in minke whale mark-recapture distance sampling (MRDS) model	ls . 81
Table 5-3 2010 to 2017 density-habitat model output for minke whales	83
Table 5-4 Diagnostic statistics from the minke whale density-habitat model	84
Table 5-5 Minke whale average abundance estimates for the AMAPPS study area	85
Table 5-6 Minke whale abundance estimates for wind-energy study areas	102
Table 6-1 AMAPPS research effort 2010 to 2017 and sperm whale sightings	106
Table 6-2 Intermediate parameters in sperm whale mark-recapture distance sampling models	107
Table 6-3 2010 to 2017 density-habitat model output for sperm whales	109
Table 6-4 Diagnostic statistics from the sperm whale density-habitat model	110
Table 6-5 Sperm whale average abundance estimates for the AMAPPS study area	111

Table 6-6 Sperm whale abundance estimates for wind-energy study areas	128
Table 7-1 AMAPPS research effort 2010 to 2017 and Cuvier's beaked whale sightings	132
Table 7-2 Intermediate parameters in Cuvier's beaked whale mark-recapture distance sampling (MRI models	
Table 7-3 2010 to 2017 density-habitat model output for Cuvier's beaked whales	135
Table 7-4 Diagnostic statistics from the Cuvier's beaked whale density-habitat model	136
Table 7-5 Cuvier's beaked whale average abundance estimates for the AMAPPS study area	137
Table 7-6 Cuvier's beaked whale abundance estimates for wind energy areas	142
Table 8-1 AMAPPS research effort 2010 to 2017 and Sowerby's beaked whale sightings	145
Table 8-2 Intermediate parameters in Sowerby's beaked whale mark-recapture distance sampling (MRDS) models	146
Table 8-3 2010 to 2017 density-habitat model output for Sowerby's beaked whales	148
Table 8-4 Diagnostic statistics from the Sowerby's beaked whale density-habitat model	149
Table 8-5 Sowerby's beaked whale average abundance estimates for the AMAPPS study area	149
Table 8-6 Sowerby's beaked whale abundance estimates for wind-energy study areas	154
Table 9-1 AMAPPS research effort 2010 to 2017 and unidentified beaked whale sightings	157
Table 9-2 Intermediate parameters in unidentified beaked whale mark-recapture distance sampling (MRDS) models	158
Table 9-3 2010 to 2017 density-habitat model output for unidentified beaked whales	160
Table 9-4 Diagnostic statistics from the unidentified beaked whale density-habitat model	161
Table 9-5 Unidentified beaked whale average abundance estimates for the AMAPPS study area	161
Table 9-6 Unidentified beaked whale abundance estimates for wind-energy study areas	166
Table 10-1 AMAPPS research effort 2010 to 2017 and Kogia spp. sightings	169
Table 10-2 Intermediate parameters in Kogia spp. mark-recapture distance sampling (MRDS) models	s 170
Table 10-3 2010 to 2017 density-habitat model output for Kogia spp.	172
Table 10-4 Diagnostic statistics from the Kogia spp. density-habitat model	173
Table 10-5 Kogia spp. average abundance estimates for the AMAPPS study area	174
Table 10-6 Kogia spp. abundance estimates for wind-energy study areas	179
Table 11-1 AMAPPS research effort 2010 to 2017 and short-finned pilot whale sightings	182
Table 11-2 Intermediate parameters in short-finned pilot whale mark-recapture distance sampling (MI models	
Table 11-3 2010 to 2017 density-habitat model output for short-finned pilot whales	185

Table 11-4 Diagnostic statistics from the short-finned pilot whale density-habitat model	186
Table 11-5 Short-finned pilot whale average abundance estimates for the AMAPPS study area	187
Table 11-6 Short-finned pilot whale abundance estimates for wind-energy study areas	204
Table 12-1 AMAPPS research effort 2010 to 2017 and long-finned pilot whale sightings	208
Table 12-2 Intermediate parameters in long-finned pilot whale mark-recapture distance sampling (M models	RDS) 209
Table 12-3 2015–2017 density-habitat model output for long-finned pilot whales	211
Table 12-4 Diagnostic statistics from the long-finned pilot whale density-habitat model	212
Table 12-5 Long-finned pilot whale average abundance estimates for the AMAPPS study area	213
Table 12-6 Long-finned pilot whale abundance estimates for wind-energy study areas	230
Table 13-1 AMAPPS research effort 2010 to 2017 and Risso's dolphin sightings	234
Table 13-2 Intermediate parameters in Risso's dolphin mark-recapture distance sampling (MRDS) n	
Table 13-3 2010 to 2017 density-habitat model output for Risso's dolphins	237
Table 13-4 Diagnostic statistics from the Risso's dolphin density-habitat model	238
Table 13-5 Risso's dolphin average abundance estimates for the AMAPPS study area	239
Table 12.6 Discola delabia abundance estimates for wind anaray study areas	
Table 13-6 Risso's dolphin abundance estimates for wind-energy study areas	256
Table 13-6 Risso's dolprim abundance estimates for wind-energy study areas	
	260 ng
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261 263
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261 263
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261 263 264
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261 263 264 265
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng 261 263 264 265 282
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng261263264265282286
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng261263264265282286
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng261263264265282286287289
Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings	260 ng261263264265282286287289291

Table 16-2 Intermediate parameters in Atlantic spotted dolphin mark-recapture distance sampling (MRDS) models	313
Table 16-3 2010 to 2017 density-habitat model output for Atlantic spotted dolphins	315
Table 16-4 Diagnostic statistics from the Atlantic spotted dolphin density-habitat model	316
Table 16-5 Atlantic spotted dolphin average abundance estimates for the AMAPPS study area	317
Table 16-6 Atlantic spotted dolphin abundance estimates for wind-energy study areas	334
Table 17-1 AMAPPS research effort 2010 to 2017 and striped dolphin sightings	338
Table 17-2 Intermediate parameters in striped dolphin mark-recapture distance sampling (MRDS) mo	
Table 17-3 2010 to 2017 density-habitat model output for striped dolphins	341
Table 17-4 Diagnostic statistics from the striped dolphin density-habitat model	342
Table 17-5 Striped dolphin average abundance estimates for the AMAPPS study area	343
Table 17-6 Striped dolphin abundance estimates for wind-energy study areas	360
Table 18-1 AMAPPS research effort 2010 to 2017 and common bottlenose dolphin sightings	364
Table 18-2 Intermediate parameters in common bottlenose dolphin mark-recapture distance sampling (MRDS) models	
Table 18-3 2010 to 2017 density-habitat model output for common bottlenose dolphins	367
Table 18-4 Diagnostic statistics from the common bottlenose dolphin density-habitat model	368
Table 18-5 Common bottlenose dolphin average abundance estimates for the AMAPPS study area	369
Table 18-6 Common bottlenose dolphin abundance estimates for wind-energy study areas	386
Table 19-1 AMAPPS research effort 2010 to 2017 and harbor porpoise sightings	390
Table 19-2 Intermediate parameters in harbor porpoise mark-recapture distance sampling (MRDS) models	391
Table 19-3 2010 to 2017 density-habitat model output for harbor porpoises	393
Table 19-4 Diagnostic statistics from the harbor porpoise density-habitat model	395
Table 19-5 Harbor porpoise average abundance estimates for the AMAPPS study area	396
Table 19-6 Harbor porpoise abundance estimates for wind-energy study areas	413

List of Figures

Figure 1-1 AMAPPS study area and Massachusetts to North Carolina wind-energy study areas	1
Figure 2-1 Humpback Whale	2
Figure 2-2 Distribution of track lines and humpback whale sightings 2010 to 2017	3
Figure 2-3 Q-Q plots and detection functions from the MRDS analyses	6
Figure 2-4 Humpback whale density relative to significant habitat covariates	7
Figure 2-5 Annual abundance trends for humpback whales in the AMAPPS study area	9
Figure 2-6 Humpback whale spring average density estimates	10
Figure 2-7 Lower 2.5% confidence interval of the spring humpback whale density estimates	11
Figure 2-8 Upper 97.5% confidence interval of the spring humpback whale density estimates	12
Figure 2-9 CV of spring humpback whale density estimates	13
Figure 2-10 Humpback whale summer average density estimates	14
Figure 2-11 Lower 2.5% confidence interval of the summer humpback whale density estimates	15
Figure 2-12 Upper 97.5% confidence interval of the summer humpback whale density estimates	16
Figure 2-13 CV of summer humpback whale density estimates	17
Figure 2-14 Humpback whale fall average density estimates	18
Figure 2-15 Lower 2.5% confidence interval of the fall humpback whale density estimates	19
Figure 2-16 Upper 97.5% confidence interval of the fall humpback whale density estimates	20
Figure 2-17 CV of fall humpback whale density estimates	21
Figure 2-18 Humpback whale winter average density estimates	22
Figure 2-19 Lower 2.5% confidence interval of the winter humpback whale density estimates	23
Figure 2-20 Upper 97.5% confidence interval of the winter humpback whale density estimates	24
Figure 2-21 CV of winter humpback whale density estimates	25
Figure 2-22 Average seasonal abundance of humpback whales in the wind-energy study areas	27
Figure 3-1 Fin whale	28
Figure 3-2 Distribution of track lines and fin whale sightings 2010–2017	29
Figure 3-3 Q-Q plots and detection functions from the MRDS analyses	32
Figure 3-4 Fin whale density relative to significant habitat covariates	33
Figure 3-5 Annual abundance trends for fin whales in the AMAPPS study area	34
Figure 3-6 Fin whale spring average density estimates	35

Figure 3-7 Lower 2.5% confidence interval of the spring fin whale density estimates	36
Figure 3-8 Upper 97.5% confidence interval of the spring fin whale density estimates	37
Figure 3-9 CV of spring fin whale density estimates	38
Figure 3-10 Fin whale summer average density estimates	39
Figure 3-11 Lower 2.5% confidence interval of the summer fin whale density estimates	40
Figure 3-12 Upper 97.5% confidence interval of the summer fin whale density estimates	41
Figure 3-13 CV of summer fin whale density estimates	42
Figure 3-14 Fin whale fall average density estimates	43
Figure 3-15 Lower 2.5% confidence interval of the fall fin whale density estimates	44
Figure 3-16 Upper 97.5% confidence interval of the fall fin whale density estimates	45
Figure 3-17 CV of fall fin whale density estimates	46
Figure 3-18 Fin whale winter average density estimates	47
Figure 3-19 Lower 2.5% confidence interval of the winter fin whale density estimates	48
Figure 3-20 Upper 97.5% confidence interval of the winter fin whale density estimates	49
Figure 3-21 CV of winter fin whale density estimates	50
Figure 3-22 Average seasonal abundance of fin whales in the wind-energy study areas	52
Figure 4-1 Sei whale	53
Figure 4-2 Distribution of track lines and sei whale sightings 2010 to 2017	54
Figure 4-3 Q-Q plots and detection functions from the MRDS analyses	57
Figure 4-4 Sei whale density relative to significant habitat covariates	58
Figure 4-5 Annual abundance trends for sei whales in the AMAPPS study area	59
Figure 4-6 Sei whale spring average density estimates	60
Figure 4-7 Lower 2.5% confidence interval of the spring sei whale density estimates	61
Figure 4-8 Upper 97.5% confidence interval of the spring sei whale density estimates	62
Figure 4-9 CV of spring sei whale density estimates	63
Figure 4-10 Sei whale summer average density estimates	64
Figure 4-11 Lower 2.5% confidence interval of the summer sei whale density estimates	65
Figure 4-12 Upper 97.5% confidence interval of the summer sei whale density estimates	66
Figure 4-13 CV of summer sei whale density estimates	67
Figure 4-14 Sei whale fall average density estimates	68

Figure 4-15 Lower 2.5% confidence interval of the fall sei whale density estimates	69
Figure 4-16 Upper 97.5% confidence interval of the fall sei whale density estimates	70
Figure 4-17 CV of fall sei whale density estimates	71
Figure 4-18 Sei whale winter average density estimates	72
Figure 4-19 Lower 2.5% confidence interval of the winter sei whale density estimates	73
Figure 4-20 Upper 97.5% confidence interval of the winter sei whale density estimates	74
Figure 4-21 CV of winter sei whale density estimates	75
Figure 4-22 Average seasonal abundance of sei whales in the wind-energy study areas	77
Figure 5-1 Minke whale	78
Figure 5-2 Distribution of track lines and minke whale sightings 2010 to 2017	79
Figure 5-3 Q-Q plots and detection functions from the MRDS analyses	82
Figure 5-4 Minke whale density relative to significant habitat covariates	83
Figure 5-5 Annual abundance trends for minke whales in the AMAPPS study area	85
Figure 5-6 Minke whale spring average density estimates	86
Figure 5-7 Lower 2.5% confidence interval of the spring minke whale density estimates	87
Figure 5-8 Upper 97.5% confidence interval of the spring minke whale density estimates	88
Figure 5-9 CV of spring minke whale density estimates	89
Figure 5-10 Minke whale summer average density estimates	90
Figure 5-11 Lower 2.5% confidence interval of the summer minke whale density estimates	91
Figure 5-12 Upper 97.5% confidence interval of the summer minke whale density estimates	92
Figure 5-13 CV of summer minke whale density estimates	93
Figure 5-14 Minke whale fall average density estimates	94
Figure 5-15 Lower 2.5% confidence interval of the fall minke whale density estimates	95
Figure 5-16 Upper 97.5% confidence interval of the fall minke whale density estimates	96
Figure 5-17 CV of fall minke whale density estimates	97
Figure 5-18 Minke whale winter average density estimates	98
Figure 5-19 Lower 2.5% confidence interval of the winter minke whale density estimates	99
Figure 5-20 Upper 97.5% confidence interval of the winter minke whale density estimates	100
Figure 5-21 CV of winter minke whale density estimates	101
Figure 5-22 Average seasonal abundance of minke whales in the wind-energy study areas	103

Figure 6-1 Sperm whales	104
Figure 6-2 Distribution of track lines and sperm whale sightings 2010 to 2017	105
Figure 6-3 Q-Q plots and detection functions from the MRDS analyses	108
Figure 6-4 Sperm whale density relative to significant habitat covariates	109
Figure 6-5 Annual abundance trends for sperm whales in the AMAPPS study area	111
Figure 6-6 Sperm whale spring average density estimates	112
Figure 6-7 Lower 2.5% confidence interval of the spring sperm whale density estimates	113
Figure 6-8 Upper 97.5% confidence interval of the spring sperm whale density estimates	114
Figure 6-9 CV of spring sperm whale density estimates	115
Figure 6-10 Sperm whale summer average density estimates	116
Figure 6-11 Lower 2.5% confidence interval of the summer sperm whale density estimates	117
Figure 6-12 Upper 97.5% confidence interval of the summer sperm whale density estimates	118
Figure 6-13 CV of summer sperm whale density estimates	119
Figure 6-14 Sperm whale fall average density estimates	120
Figure 6-15 Lower 2.5% confidence interval of the fall sperm whale density estimates	121
Figure 6-16 Upper 97.5% confidence interval of the fall sperm whale density estimates	122
Figure 6-17 CV of fall sperm whale density estimates	123
Figure 6-18 Sperm whale winter average density estimates	124
Figure 6-19 Lower 2.5% confidence interval of the winter sperm whale density estimates	125
Figure 6-20 Upper 97.5% confidence interval of the winter sperm whale density estimates	126
Figure 6-21 CV of winter sperm whale density estimates	127
Figure 6-22 Average seasonal abundance of sperm whales in the wind-energy study areas	129
Figure 7-1 Cuvier's beaked whale	130
Figure 7-2 Distribution of track lines and Cuvier's beaked whale sightings 2010 to 2017	131
Figure 7-3 Q-Q plots and detection functions from the MRDS analyses	134
Figure 7-4 Cuvier's beaked whale density relative to significant habitat covariates	135
Figure 7-5 Annual abundance trends for Cuvier's beaked whales in the AMAPPS study area	137
Figure 7-6 Cuvier's beaked whale summer average density estimates	138
Figure 7-7 Lower 2.5% confidence interval of the summer Cuvier's beaked whale density estimates	139
Figure 7-8 Upper 97.5% confidence interval of the summer Cuvier's beaked whale density estimates	140

Figure 7-9 CV of summer Cuvier's beaked whale density estimates	141
Figure 7-10 Average seasonal abundance of Cuvier's beaked whales in the wind-energy study are	eas .142
Figure 8-1 Sowerby's beaked whale	143
Figure 8-2 Distribution of track lines and Sowerby's beaked whale sightings 2010 to 2017	144
Figure 8-3 Q-Q plots and detection functions from the MRDS analyses	147
Figure 8-4 Sowerby's beaked whale density relative to significant habitat covariates	148
Figure 8-5 Annual abundance trends for Sowerby's beaked whales in the AMAPPS study area	149
Figure 8-6 Sowerby's beaked whale summer average density estimates	150
Figure 8-7 Lower 2.5% confidence interval of the summer Sowerby's beaked whale density estimates	ates 151
Figure 8-8 Upper 97.5% confidence interval of the summer Sowerby's beaked whale density estim	
Figure 8-9 CV of summer Sowerby's beaked whale density estimates	
Figure 8-10 Average seasonal abundance of Sowerby's beaked whales in the wind-energy study a	
Figure 9-1 Unidentified beaked whales	155
Figure 9-2 Distribution of track lines and unidentified beaked whale sightings 2010 to 2017	156
Figure 9-3 Q-Q plots and detection functions from the MRDS analyses	159
Figure 9-4 Unidentified beaked whale density relative to significant habitat covariates	160
Figure 9-5 Annual abundance trends for unidentified beaked whales in the AMAPPS study area	161
Figure 9-6 Unidentified beaked whale summer average density estimates	162
Figure 9-7 Lower 2.5% confidence interval of the summer unidentified beaked whale density estim	
Figure 9-8 Upper 97.5% confidence interval of the summer unidentified beaked whale density esti	
Figure 9-9 CV of summer unidentified beaked whale density estimates	165
Figure 9-10 Average seasonal abundance of unidentified beaked whales in the wind-energy study	
Figure 10-1 Pygmy sperm whale or dwarf sperm whale	167
Figure 10-2 Distribution of track lines and Kogia spp. sightings 2010 to 2017	168
Figure 10-3 Q-Q plots and detection functions from the MRDS analyses	171
Figure 10-4 Kogia spp. density relative to significant habitat covariates	172
Figure 10-5 Annual abundance trends for <i>Kogia</i> spp. in the AMAPPS study area	174

Figure 10-6 Kogia spp. summer average density estimates	175
Figure 10-7 Lower 2.5% confidence interval of the summer Kogia spp. density estimates	176
Figure 10-8 Upper 97.5% confidence interval of the summer Kogia spp. density estimates	177
Figure 10-9 CV of summer Kogia spp. density estimates	178
Figure 10-10 Average seasonal abundance of Kogia spp. in the wind-energy study areas	179
Figure 11-1 Short-finned pilot whales	180
Figure 11-2 Distribution of track lines and short-finned pilot whale sightings 2010 to 2017	181
Figure 11-3 Q-Q plots and detection functions from the MRDS analyses	184
Figure 11-4 Short-finned pilot whale density relative to significant habitat covariates	185
Figure 11-5 Annual abundance trends for short-finned pilot whales in the AMAPPS study area	187
Figure 11-6 Long-finned pilot whale spring average density estimates	188
Figure 11-7 Lower 2.5% confidence interval of the spring short-finned pilot whale density estimate	es 189
Figure 11-8 Upper 97.5% confidence interval of the spring short-finned pilot whale density estima	tes 190
Figure 11-9 CV of spring short-finned pilot whale density estimates	191
Figure 11-10 Short-finned pilot whale summer average density estimates	192
Figure 11-11 Lower 2.5% confidence interval of the summer short-finned pilot whale density estim	nates193
Figure 11-12 Upper 97.5% confidence interval of the summer short-finned pilot whale density esti	
Figure 11-13 CV of summer short-finned pilot whale density estimates	
Figure 11-14 Short-finned pilot whale fall average density estimates	196
Figure 11-15 Lower 2.5% confidence interval of the fall short-finned pilot whale density estimates.	197
Figure 11-16 Upper 97.5% confidence interval of the fall short-finned pilot whale density estimate:	s198
Figure 11-17 CV of fall short-finned pilot whale density estimates	199
Figure 11-18 Short-finned pilot whale winter average density estimates	200
Figure 11-19 Lower 2.5% confidence interval of the winter short-finned pilot whale density estimate	tes201
Figure 11-20 Upper 97.5% confidence interval of the winter short-finned pilot whale density estimates	ates.202
Figure 11-21 CV of winter short-finned pilot whale density estimates	203
Figure 11-22 Average seasonal abundance of short-finned pilot whales in the wind-energy study	
Figure 12-1 Long-finned pilot whales	206
Figure 12-2 Distribution of track lines and long-finned pilot whale sightings 2010 to 2017	207

Figure 12-3 Q-Q plots and detection functions from the MRDS analyses	210
Figure 12-4 Long-finned pilot whale density relative to significant habitat covariates	211
Figure 12-5 Annual abundance trends for long-finned pilot whales in the AMAPPS study area	213
Figure 12-6 Long-finned pilot whale spring average density estimates	214
Figure 12-7 Lower 2.5% confidence interval of the spring long-finned pilot whale density estimates	215
Figure 12-8 Upper 97.5% confidence interval of the spring long-finned pilot whale density estimates	216
Figure 12-9 CV of spring long-finned pilot whale density estimates	217
Figure 12-10 Long-finned pilot whale summer average density estimates	218
Figure 12-11 Lower 2.5% confidence interval of the summer long-finned pilot whale density estimate	es 219
Figure 12-12 Upper 97.5% confidence interval of the summer long-finned pilot whale density estima	
Figure 12-13 CV of summer long-finned pilot whale density estimates	221
Figure 12-14 Long-finned pilot whale fall average density estimates	222
Figure 12-15 Lower 2.5% confidence interval of the fall long-finned pilot whale density estimates	223
Figure 12-16 Upper 97.5% confidence interval of the fall long-finned pilot whale density estimates	224
Figure 12-17 CV of fall long-finned pilot whale density estimates	225
Figure 12-18 Long-finned pilot whale winter average density estimates	226
Figure 12-19 Lower 2.5% confidence interval of the winter long-finned pilot whale density estimates	227
Figure 12-20 Upper 97.5% confidence interval of the winter long-finned pilot whale density estimate	s228
Figure 12-21 CV of winter long-finned pilot whale density estimates	229
Figure 12-22 Average seasonal abundance of long-finned pilot whales in wind-energy study areas	231
Figure 13-1 Risso's dolphin	232
Figure 13-2 Distribution of track lines and Risso's dolphin sightings 2010 to 2017	233
Figure 13-3 Q-Q plots and detection functions from the MRDS analyses	236
Figure 13-4 Annual abundance trends for Risso's dolphins in the AMAPPS study area	237
Figure 13-5 Annual abundance trends for Risso's dolphins in the AMAPPS study area	239
Figure 13-6 Risso's dolphin spring average density estimates	240
Figure 13-7 Lower 2.5% confidence interval of the spring Risso's dolphin density estimates	241
Figure 13-8 Upper 97.5% confidence interval of the spring Risso's dolphin density estimates	242
Figure 13-9 CV of spring Risso's dolphin density estimates	243
Figure 13-10 Risso's dolphin summer average density estimates	244

Figure	13-11 Lower 2.5% confidence interval of the summer Risso's dolphin density estimates	245
Figure	13-12 Upper 97.5% confidence interval of the summer Risso's dolphin density estimates	246
Figure	13-13 CV of summer Risso's dolphin density estimates	247
Figure	13-14 Risso's dolphin fall average density estimates	248
Figure	13-15 Lower 2.5% confidence interval of the fall Risso's dolphin density estimates	249
Figure	13-16 Upper 97.5% confidence interval of the fall Risso's dolphin density estimates	250
Figure	13-17 CV of fall Risso's dolphin density estimates	251
Figure	13-18 Risso's dolphin winter average density estimates	252
Figure	13-19 Lower 2.5% confidence interval of the winter Risso's dolphin density estimates	253
Figure	13-20 Upper 97.5% confidence interval of the winter Risso's dolphin density estimates	254
Figure	13-21 CV of winter Risso's dolphin density estimates	255
Figure	13-22 Average seasonal abundance of Risso's dolphins in the wind-energy study areas	257
Figure	14-1 White-sided dolphins	258
Figure	14-2 Distribution of track lines and white-sided dolphin sightings 2010 to 2017	259
Figure	14-3 Q-Q plots and detection functions from the MRDS analyses	262
Figure	14-4 Atlantic white-sided dolphin density relative to significant habitat covariates	263
Figure	14-5 Annual abundance trends for Atlantic white-sided dolphins in the AMAPPS study area	265
Figure	14-6 Atlantic white-sided dolphin spring average density estimates	266
Figure	14-7 Lower 2.5% confidence interval of the spring white-sided dolphin density estimates	267
Figure	14-8 Upper 97.5% confidence interval of the spring white-sided dolphin density estimates	268
Figure	14-9 CV of spring Atlantic white-sided dolphin density estimates	269
Figure	14-10 Atlantic white-sided dolphin summer average density estimates	270
Figure	14-11 Lower 2.5% confidence interval of the summer white-sided dolphin density estimates	271
Figure	14-12 Upper 97.5% confidence interval of the summer white-sided dolphin density estimates	272
Figure	14-13 CV of summer Atlantic white-sided dolphin density estimates	273
Figure	14-14 Atlantic white-sided dolphin fall average density estimates	274
Figure	14-15 Lower 2.5% confidence interval of the fall white-sided dolphin density estimates	275
Figure	14-16 Upper 97.5% confidence interval of the fall white-sided dolphin density estimates	276
Figure	14-17 CV of fall Atlantic white-sided dolphin density estimates	277
Figure	14-18 Atlantic white-sided dolphin winter average density estimates	278

Figure 14-19 Lower 2.5% confidence interval of the winter white-sided dolphin density estimates	279
Figure 14-20 Upper 97.5% confidence interval of the winter white-sided dolphin density estimates	280
Figure 14-21 CV of winter Atlantic white-sided dolphin density estimates	281
Figure 14-22 Average seasonal abundance of white-sided dolphins in the wind-energy study areas.	283
Figure 15-1 Common dolphin	284
Figure 15-2 Distribution of track lines and common dolphin sightings 2010 to 2017	285
Figure 15-3 Q-Q plots and detection functions from the MRDS analyses	288
Figure 15-4 Common dolphin density related to significant habitat covariates	289
Figure 15-5 Annual abundance trends for common dolphins in the AMAPPS study area	291
Figure 15-6 Common dolphin spring average density estimates	292
Figure 15-7 Lower 2.5% confidence interval of the spring common dolphin density estimates	293
Figure 15-8 Upper 97.5% confidence interval of the spring common dolphin density estimates	294
Figure 15-9 CV of spring common dolphin density estimates	295
Figure 15-10 Common dolphin summer average density estimates	296
Figure 15-11 Lower 2.5% confidence interval of the summer common dolphin density estimates	297
Figure 15-12 Upper 97.5% confidence interval of the summer common dolphin density estimates	298
Figure 15-13 CV of summer common dolphin density estimates	299
Figure 15-14 Common dolphin fall average density estimates	300
Figure 15-15 Lower 2.5% confidence interval of the fall common dolphin density estimates	301
Figure 15-16 Upper 97.5% confidence interval of the fall common dolphin density estimates	302
Figure 15-17 CV of fall common dolphin density estimates	303
Figure 15-18 Common dolphin winter average density estimates	304
Figure 15-19 Lower 2.5% confidence interval of the winter common dolphin density estimates	305
Figure 15-20 Upper 97.5% confidence interval of the winter common dolphin density estimates	306
Figure 15-21 CV of winter common dolphin density estimates	307
Figure 15-22 Average seasonal abundance of common dolphins in the wind-energy study areas	309
Figure 16-1 Atlantic Spotted Dolphins	310
Figure 16-2 Distribution of track lines and Atlantic spotted dolphin sightings 2010 to 2017	311
Figure 16-3 Q-Q plots and detection functions from the MRDS analyses	314
Figure 16-4 Atlantic spotted dolphin density relative to significant habitat covariates	315

Figure	16-5 Annual abundance trends for Atlantic spotted dolphins in the AMAPPS study area	317
Figure	16-6 Atlantic spotted dolphin spring average density estimates	318
Figure	16-7 Lower 2.5% confidence interval of the spring Atlantic spotted dolphin density estimates	319
Figure	16-8 Upper 97.5% confidence interval of the spring Atlantic spotted dolphin density estimates	320
Figure	16-9 CV of spring Atlantic spotted dolphin density estimates	321
Figure	16-10 Atlantic spotted dolphin summer average density estimates	322
Figure	16-11 Lower 2.5% confidence interval of the summer Atlantic spotted dolphin density estimates	
_	16-12 Upper 97.5% confidence interval of the summer Atlantic spotted dolphin density estimate	s
Figure	16-13 CV of summer Atlantic spotted dolphin density estimates	325
Figure	16-14 Atlantic spotted dolphin fall average density estimates	326
Figure	16-15 Lower 2.5% confidence interval of the fall Atlantic spotted dolphin density estimates	327
Figure	16-16 Upper 97.5% confidence interval of the fall Atlantic spotted dolphin density estimates	328
Figure	16-17 CV of fall Atlantic spotted dolphin density estimates	329
Figure	16-18 Atlantic spotted dolphin winter average density estimates	330
Figure	16-19 Lower 2.5% confidence interval of the winter Atlantic spotted dolphin density estimates	331
Figure	16-20 Upper 97.5% confidence interval of the winter Atlantic spotted dolphin density estimates	332
Figure	16-21 CV of winter Atlantic spotted dolphin density estimates	333
Figure	16-22 Average seasonal abundance of Atlantic spotted dolphins in the wind-energy study area	
Figure	17-1 Striped Dolphins	336
Figure	17-2 Distribution of track lines and striped dolphin sightings 2010 to 2017	337
Figure	17-3 Q-Q plots and detection functions from the MRDS analyses	340
Figure	17-4 Striped dolphin density relative to significant habitat covariates	341
Figure	17-5 Annual abundance trends for striped dolphins in the AMAPPS study area	343
Figure	17-6 Striped dolphin spring average density estimates	344
Figure	17-7 Lower 2.5% confidence interval of the spring striped dolphin density estimates	345
Figure	17-8 Upper 97.5% confidence interval of the spring striped dolphin density estimates	346
Figure	17-9 CV of spring striped dolphin density estimates	347
Figure	17-10 Striped dolphin summer average density estimates	348
Figure	17-11 Lower 2.5% confidence interval of the summer striped dolphin density estimates	349

Figure 17-12 Upper 97.5% confidence interval of the summer striped dolphin density estimates	350
Figure 17-13 CV of summer striped dolphin density estimates	351
Figure 17-14 Striped dolphin fall average density estimates	352
Figure 17-15 Lower 2.5% confidence interval of the fall striped dolphin density estimates	353
Figure 17-16 Upper 97.5% confidence interval of the fall striped dolphin density estimates	354
Figure 17-17 CV of fall striped dolphin density estimates	355
Figure 17-18 Striped dolphin winter average density estimates	356
Figure 17-19 Lower 2.5% confidence interval of the winter striped dolphin density estimates	357
Figure 17-20 Upper 97.5% confidence interval of the winter striped dolphin density estimates	358
Figure 17-21 CV of winter striped dolphin density estimates	359
Figure 17-22 Average seasonal abundance of striped dolphins in the wind-energy study areas	361
Figure 18-1 Common bottlenose dolphins	362
Figure 18-2 Distribution of track lines and common bottlenose dolphin sightings 2010 to 2017	363
Figure 18-3 Q-Q plots and detection functions from the MRDS analyses	366
Figure 18-4 Annual abundance trends for common bottlenose dolphins in the AMAPPS study area	367
Figure 18-5 Annual abundance trends for common bottlenose dolphins in the AMAPPS study area	369
Figure 18-6 Common bottlenose dolphin spring average density estimates	370
Figure 18-7 Lower 2.5% confidence interval of the spring common bottlenose dolphin density estimates and the spring common bottlenose dolphin density estimates.	
Figure 18-8 Upper 97.5% confidence interval of the spring common bottlenose dolphin density estim	
Figure 18-9 CV of spring common bottlenose dolphin density estimates	373
Figure 18-10 Common bottlenose dolphin summer average density estimates	374
Figure 18-11 Lower 2.5% confidence interval of the summer common bottlenose dolphin density estimates	375
Figure 18-12 Upper 97.5% confidence interval of the summer common bottlenose dolphin density estimates	376
Figure 18-13 CV of summer common bottlenose dolphin density estimates	377
Figure 18-14 Common bottlenose dolphin fall average density estimates	378
Figure 18-15 Lower 2.5% confidence interval of the fall common bottlenose dolphin density estimate	s. 379
Figure 18-16 Upper 97.5% confidence interval of the fall common bottlenose dolphin density estimate	
	380

Figure 18-17 CV of fall common bottlenose dolphin density estimates	381
Figure 18-18 Common bottlenose dolphin winter average density estimates	382
Figure 18-19 Lower 2.5% confidence interval of the winter common bottlenose dolphin density estin	
Figure 18-20 Upper 97.5% confidence interval of the winter common bottlenose dolphin density est	imates
Figure 18-21 CV of winter common bottlenose dolphin density estimates	385
Figure 18-22 Average seasonal abundance of common bottlenose dolphins in the wind-energy studies areas	
Figure 19-1 Harbor porpoises	388
Figure 19-2 Distribution of track lines and harbor porpoise sightings 2010 to 2017	389
Figure 19-3 Q-Q plots and detection functions from the MRDS analyses	392
Figure 19-4 Harbor porpoise density relative to significant habitat covariates	394
Figure 19-5 Annual abundance trends for harbor porpoises in the AMAPPS study area	396
Figure 19-6 Harbor porpoise spring average density estimates	397
Figure 19-7 Lower 2.5% confidence interval of the spring harbor porpoise density estimates	398
Figure 19-8 Upper 97.5% confidence interval of the spring harbor porpoise density estimates	399
Figure 19-9 CV of spring harbor porpoise density estimates	400
Figure 19-10 Harbor porpoise summer average density estimates	401
Figure 19-11 Lower 2.5% confidence interval of the summer harbor porpoise density estimates	402
Figure 19-12 Upper 97.5% confidence interval of the summer harbor porpoise density estimates	403
Figure 19-13 CV of summer harbor porpoise density estimates	404
Figure 19-14 Harbor porpoise fall average density estimates	405
Figure 19-15 Lower 2.5% confidence interval of the fall harbor porpoise density estimates	406
Figure 19-16 Upper 97.5% confidence interval of the fall harbor porpoise density estimates	407
Figure 19-17 CV of fall harbor porpoise density estimates	408
Figure 19-18 Harbor porpoise winter average density estimates	409
Figure 19-19 Lower 2.5% confidence interval of the winter harbor porpoise density estimates	410
Figure 19-20 Upper 97.5% confidence interval of the winter harbor porpoise density estimates	411
Figure 19-21 CV of winter harbor porpoise density estimates	412
Figure 19-22 Average seasonal abundance of harbor porpoises in the wind-energy study areas	414

1 Study Area

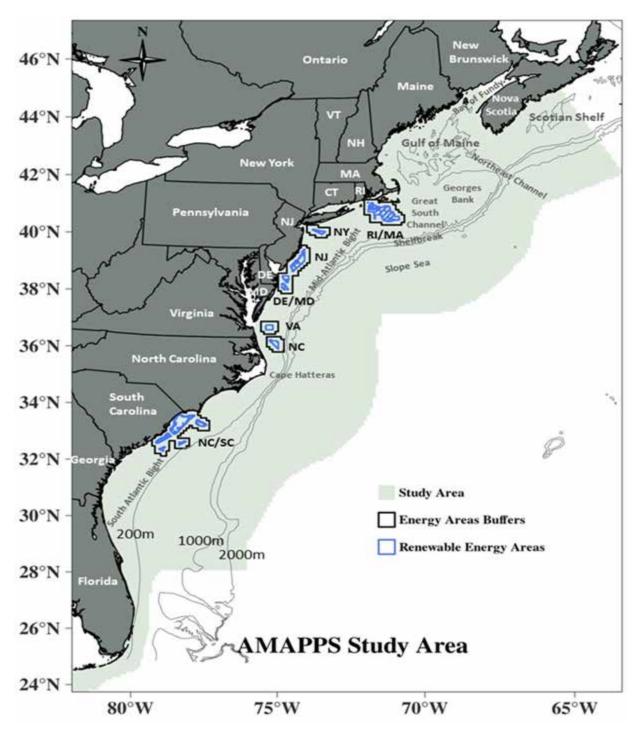


Figure 1-1 AMAPPS study area and Massachusetts to North Carolina wind-energy study areas We identified the locations of the offshore wind energy areas (blue line) along with a 10 km buffer (black line) in relationship to the AMAPPS study area (green shaded).

1

2 Humpback Whale (*Megaptera novaeangliae*)

Figure 2-1 Humpback Whale Image collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Tim Cole

2.1 Data Collection

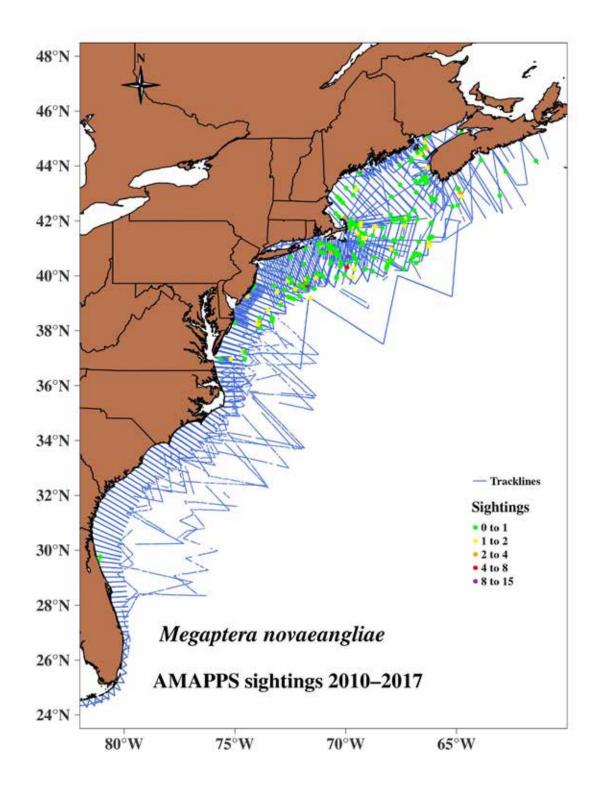
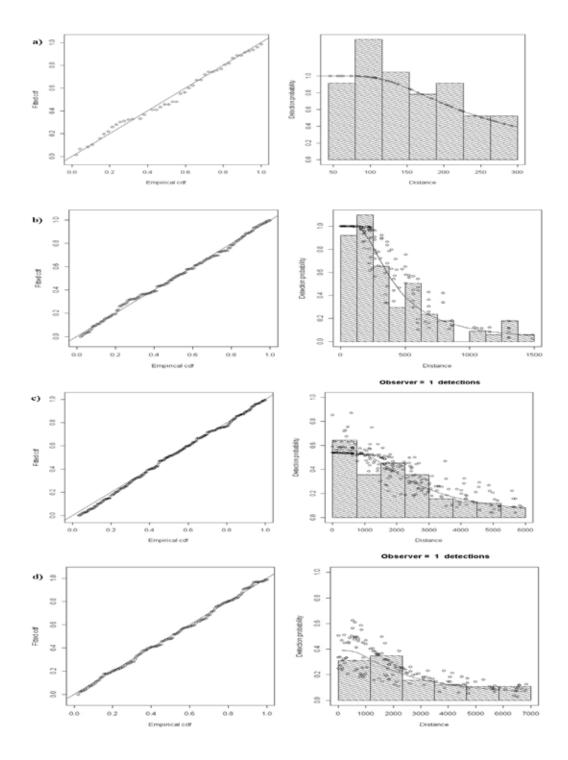


Figure 2-2 Distribution of track lines and humpback whale sightings 2010 to 2017

Table 2-1 AMAPPS research effort 2010 to 2017 and humpback whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	157	370
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	13	20
NE Aerial	Summer	25,867	68	88
NE Aerial	Fall	37,850	75	101
NE Aerial	Winter	12,179	7	10
SE Shipboard	Spring	8,853	45	76
SE Shipboard	Summer	12,968	1	1
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	8	9
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	3	6
SE Aerial	Winter	8,950	2	2

2.2 Mark-Recapture Distance Sampling Analysis

Table 2-2 Intermediate parameters in humpback whale mark-recapture distance sampling models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE-aerial group 3	distance + group size	1500	distance + sea state + quality	1500	HR	0.67	0.09	0.06	0.87	0.94
NE- shipboard group 8	distance + time of day	7000	distance + glare	7000	HR	0.39	0.24	0.31	0.98	0.99
SE– shipboard group 5	distance * observer + group size	6000	distance + glare + time of day	6000	HR	0.57	0.11	0.24	0.61	0.65

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 2-3 Q-Q plots and detection functions from the MRDS analysesa) SE-aerial analysis set 4; b) NE-aerial analysis set 3; c) NE-shipboard analysis set 8; d) SE-shipboard analysis set 5.

2.3 Generalized Additive Model Analysis

Table 2-3 2010 to 2017 density-habitat model output for humpback whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstmur)	2.89	4	10.58	2.95	<0.0001
s(mld)	0.93	4	3.34	1.96	0.0001
s(picma)	0.87	4	1.45	0.79	0.0094
s(pp)	2.72	4	16.04	8.07	< 0.0001
s(dist125)	2.35	4	16.34	8.88	<0.0001
s(dist1000)	1.15	4	5.09	1.70	< 0.0001
s(lat)	3.70	4	19.32	9.24	< 0.0001
te(LY,chlfma)	10.02	24	2.86	8.13	<0.0001

Adjusted $R^2 = 0.0328$. Deviance explained = 41.7%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 2-4 Humpback whale density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

2.4 Model Cross-Validation

Table 2-4 Diagnostic statistics from the humpback whale density-density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
	Spearman rank			
RHO	correlation	Non-zero density	0.272	Fair to good
	Mean absolute			
MAPE	percentage error	Non-zero density	90.700	Fair to good
	Spearman rank	All data divided in 25		
RHO	correlation	random samples	0.107	Fair to good
		All data divided in 25		
MAE	Mean absolute error	random samples	0.001	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50% MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

2.5 Abundance Estimates for AMAPPS Study Area

Table 2-5 Humpback whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March–May)	581	0.44	238-1,238
Summer (June-August)	1,366	0.42	599-2,908
Fall (September–November)	414	0.42	184-892
Winter (December–February)	111	0.46	44-248
Summer 2011 U.S. surveys ¹	335	0.42	199-564
Summer 2016 U.S. surveys ¹	2,368	0.48	1,315-4,264

¹Hayes et al. 2020

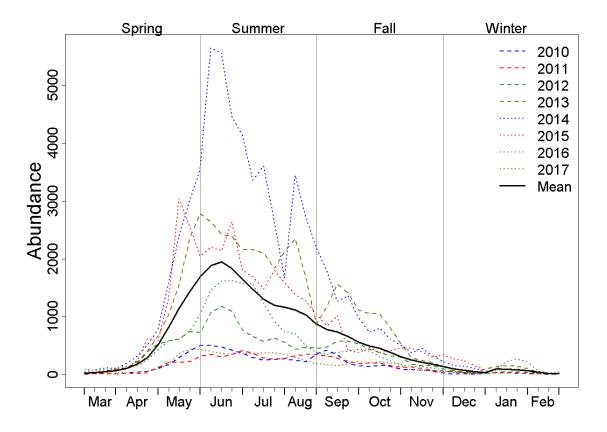


Figure 2-5 Annual abundance trends for humpback whales in the AMAPPS study area

2.6 Seasonal Prediction Maps

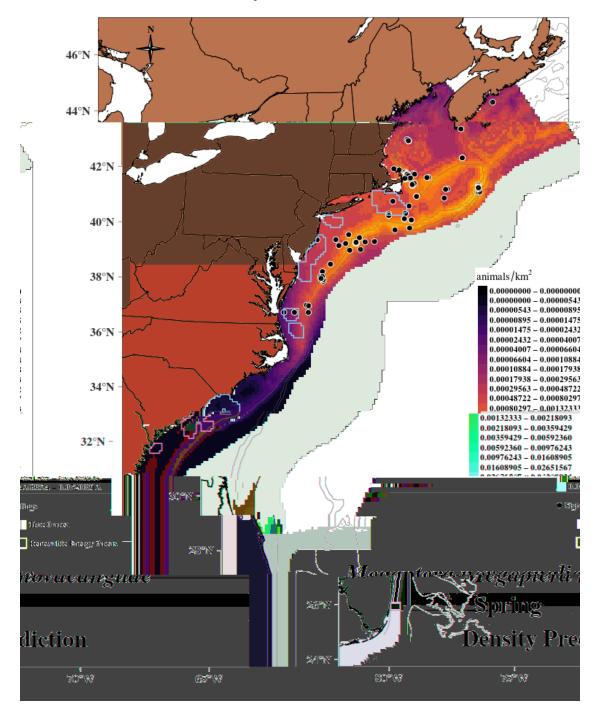
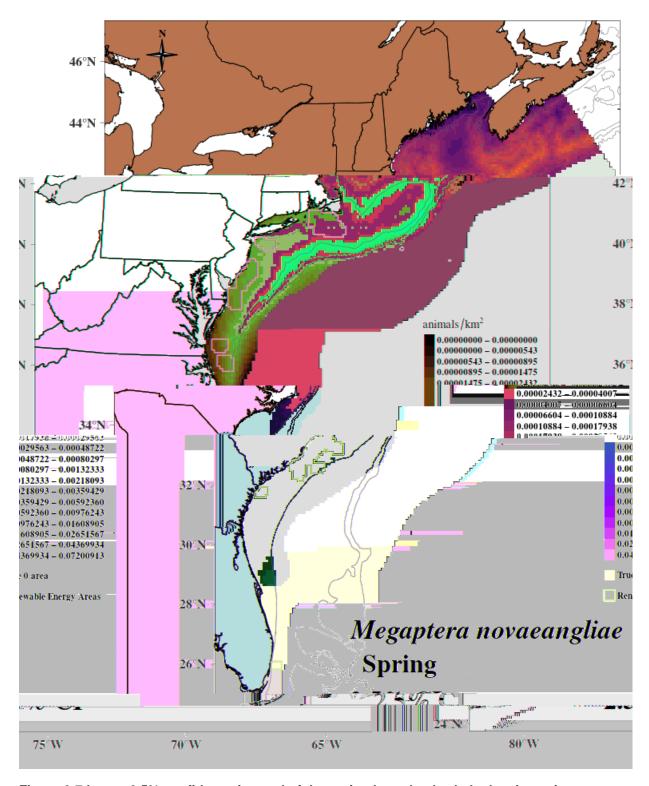
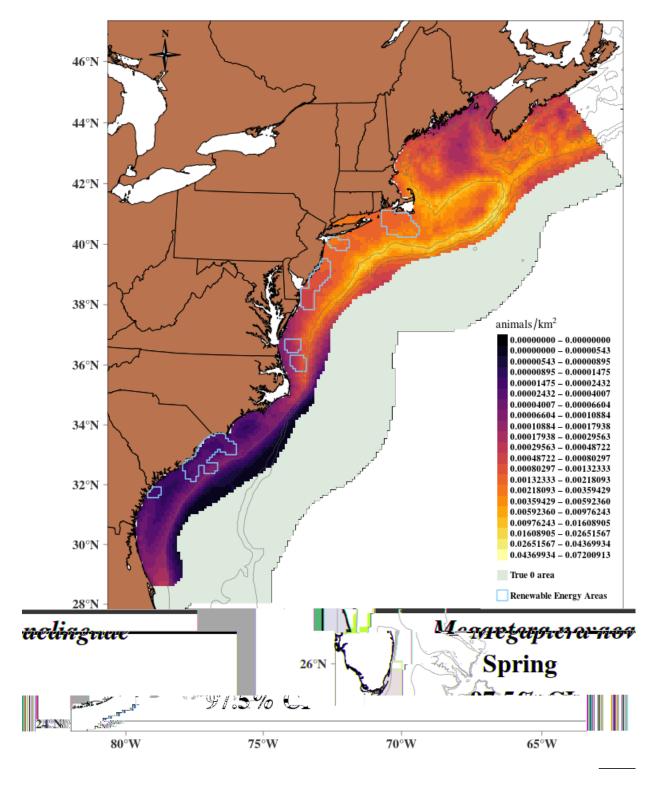




Figure 2-6 Humpback whale spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-7 Lower 2.5% confidence interval of the spring humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-8 Upper 97.5% confidence interval of the spring humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

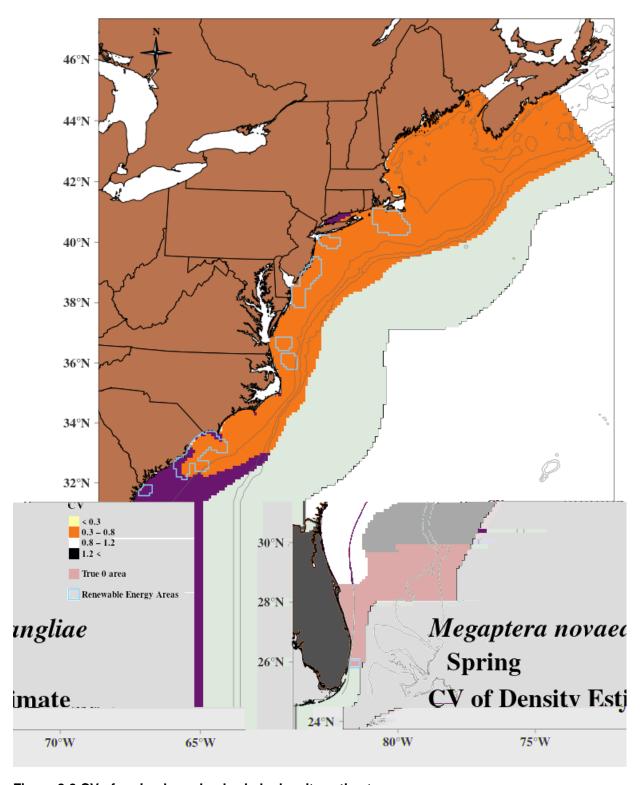


Figure 2-9 CV of spring humpback whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

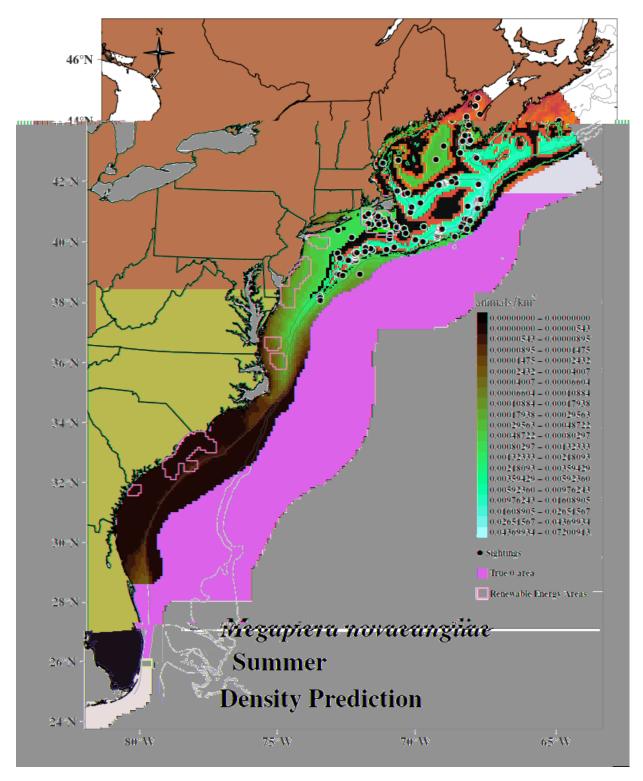
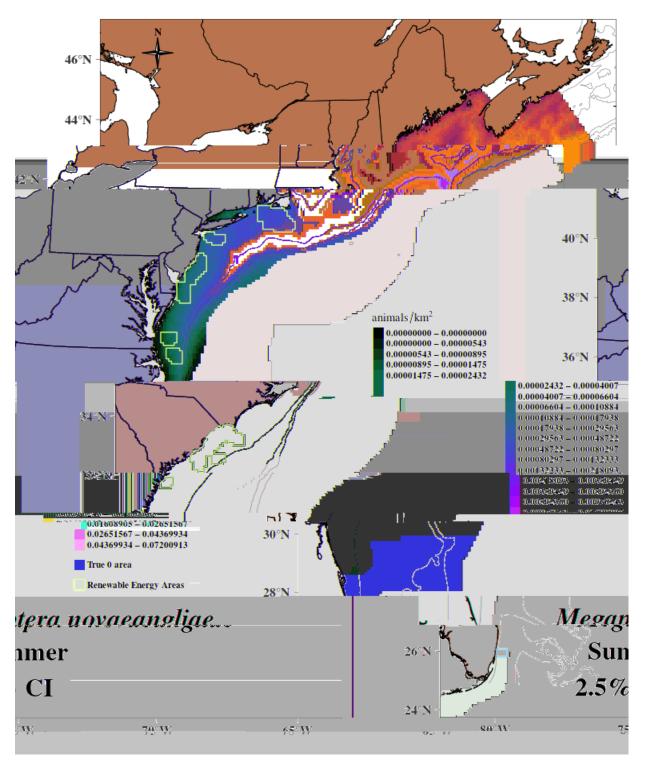
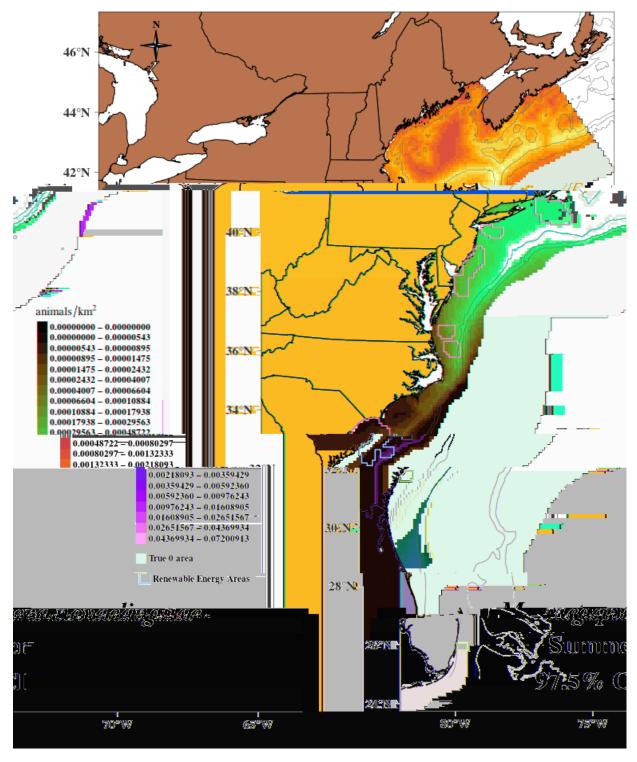




Figure 2-10 Humpback whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-11 Lower 2.5% confidence interval of the summer humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-12 Upper 97.5% confidence interval of the summer humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

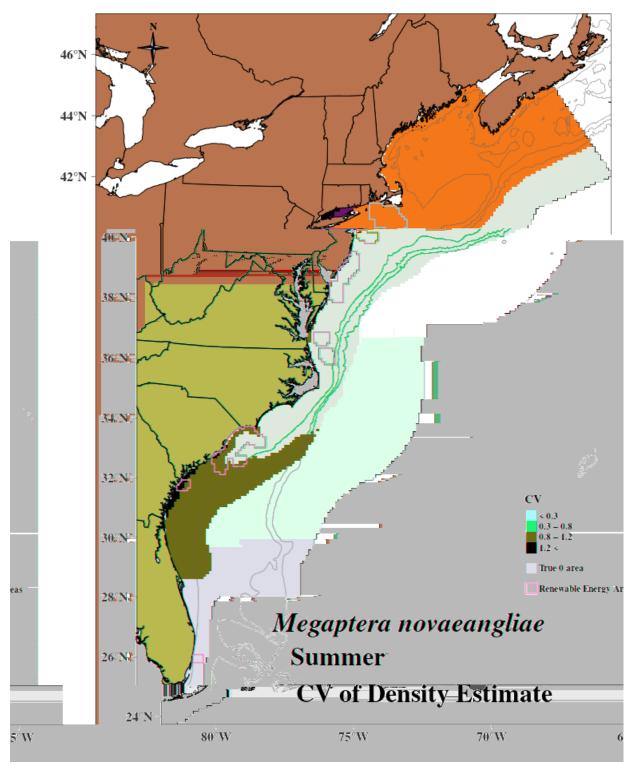


Figure 2-13 CV of summer humpback whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

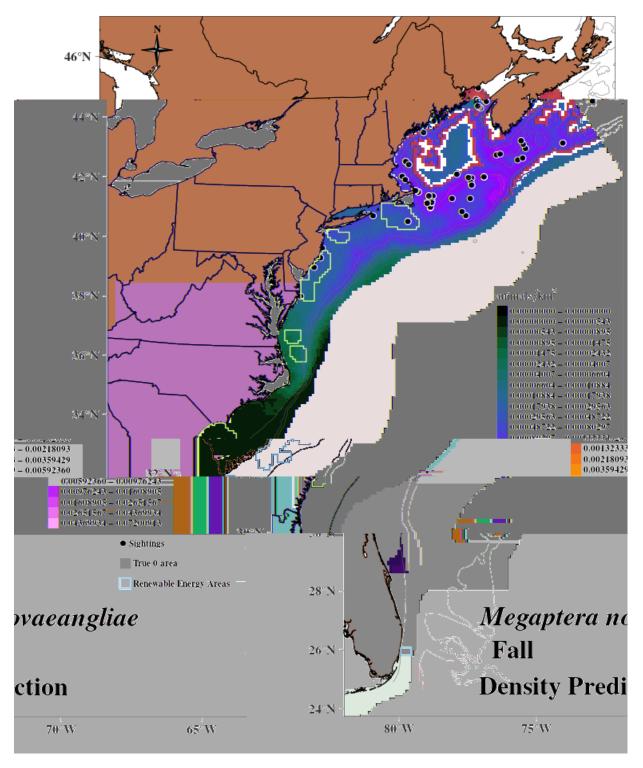
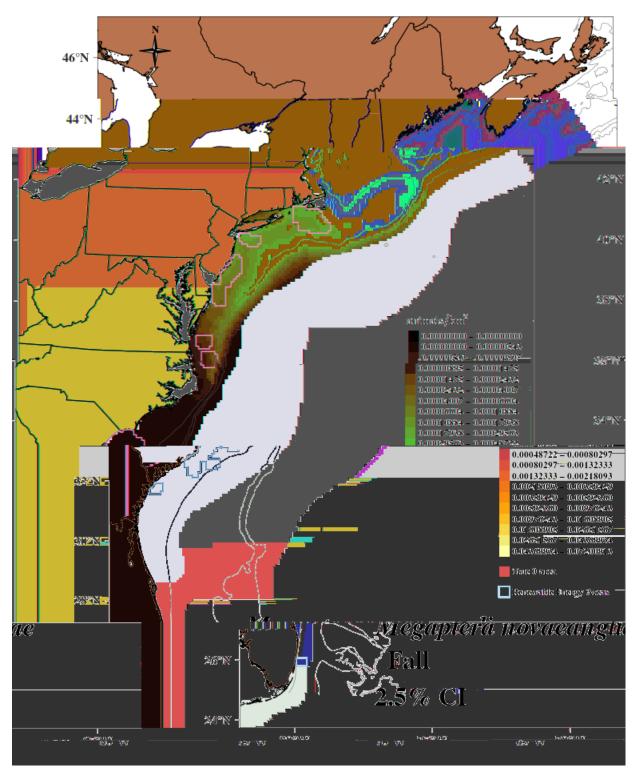
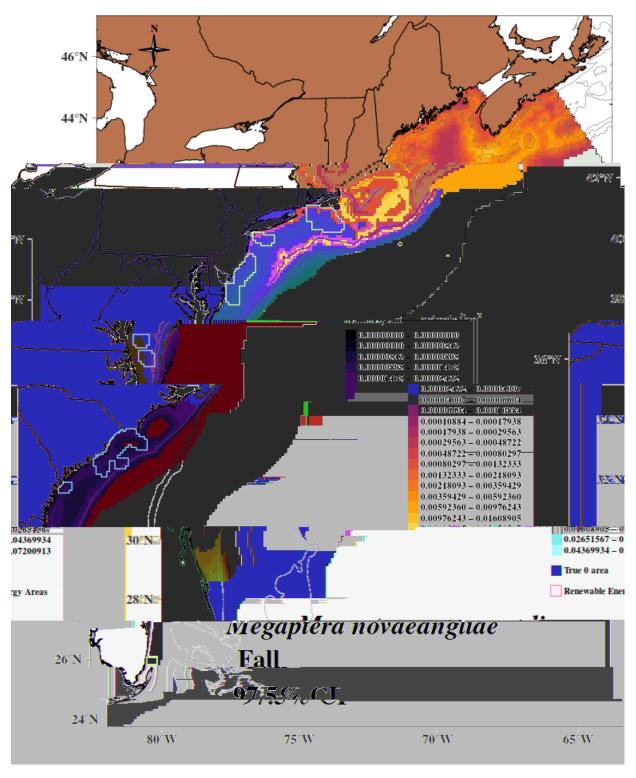




Figure 2-14 Humpback whale fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-15 Lower 2.5% confidence interval of the fall humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-16 Upper 97.5% confidence interval of the fall humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

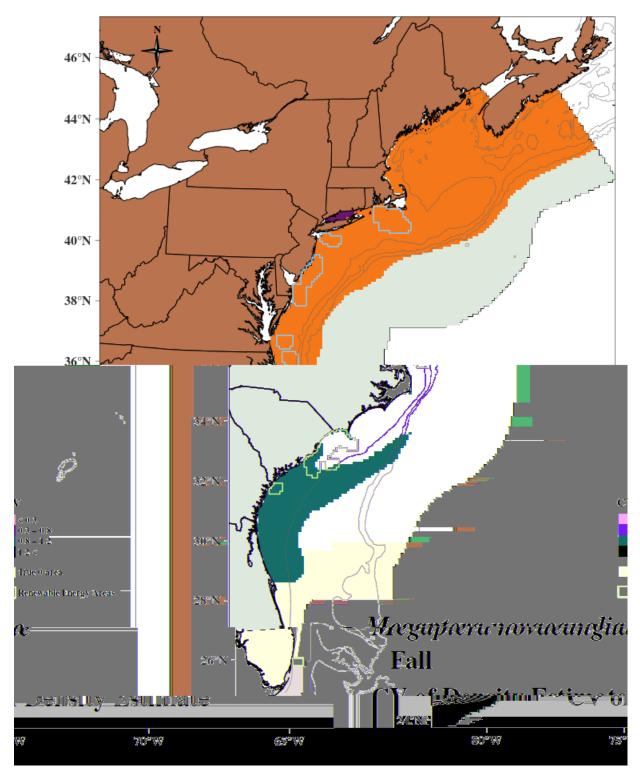


Figure 2-17 CV of fall humpback whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

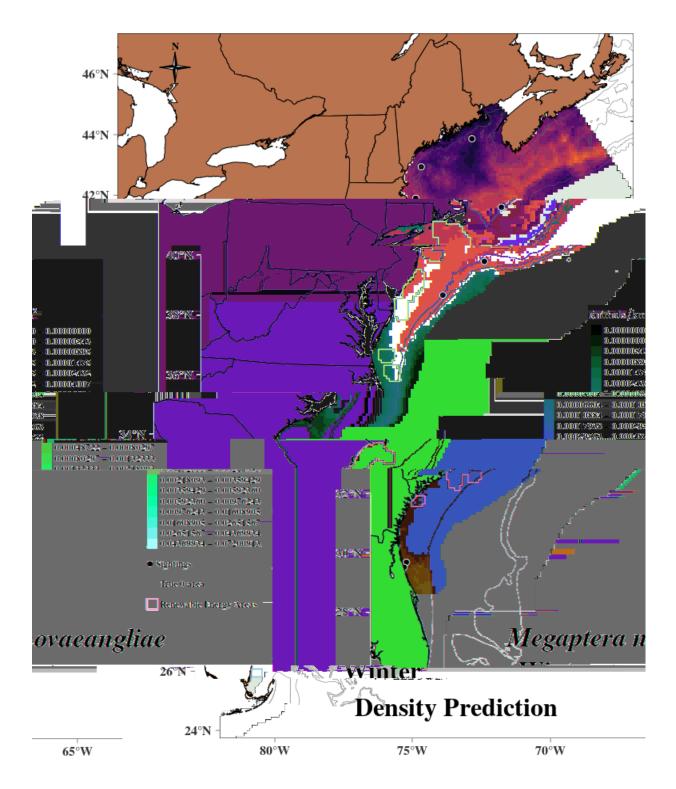
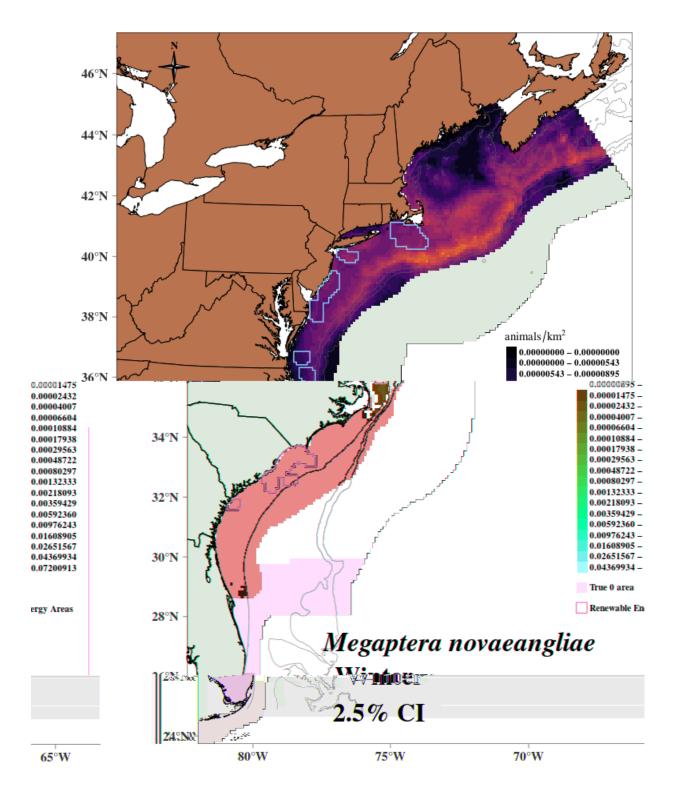
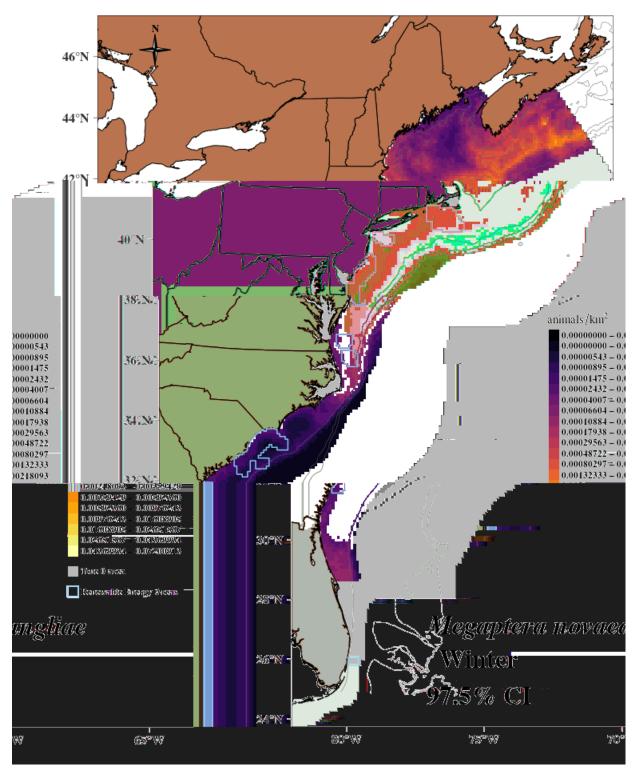




Figure 2-18 Humpback whale winter average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-19 Lower 2.5% confidence interval of the winter humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 2-20 Upper 97.5% confidence interval of the winter humpback whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

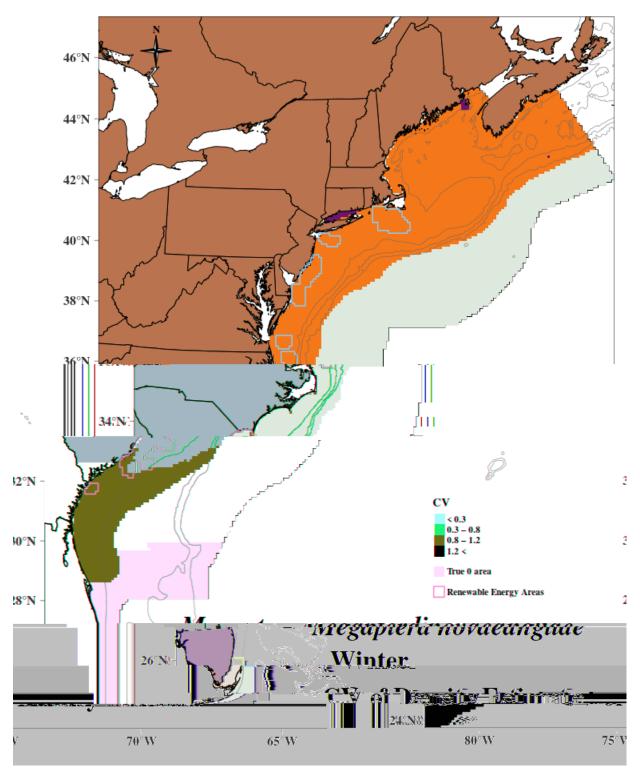


Figure 2-21 CV of winter humpback whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

2.7 Offshore Energy Development Areas

Table 2-6 Humpback whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*	
Spring	RI/MA	12.5	0.46	5.3–29.6	
(Mar-May)	NY	2.6	0.50	1.0–6.5	
	NJ	3.3	0.49	1.3-8.2	
	DE/MD	1.2	0.47	0.5–2.8	
	VA	0.4	0.50	0.1–0.9	
	NC	0.8	0.52	0.3–2.1	
	NC/SC	0.1	0.77	0.0-0.5	
Summer	RI/MA	2.0	0.49	0.8–4.9	
(Jun-Aug)	NY	1.7	0.51	0.7–4.4	
	NJ	0.6	0.49	0.2–1.5	
	DE/MD	0.2	0.49	0.1–0.4	
	VA	0.3	0.48	0.1–0.8	
	NC	0.0	0.79	0.0-0.2	
	NC/SC	0.0	1.09	0.0-0.0	
Fall	RI/MA	1.7	0.50	0.7-4.3	
(Sep-Nov)	NY	0.5	0.49	0.2-1.3	
	NJ	0.1	0.49	0.0-0.2	
	DE/MD	0.1	0.50	0.1–0.3	
	VA	0.0	0.78	0.0-0.1	
	NC	0.0	0.96	0.0-0.0	
	NC/SC	1.8	0.45	0.8-4.3	
Winter	RI/MA	0.3	0.47	0.1–0.7	
(Dec-Feb)	NY	0.1	0.48	0–0.3	
	NJ	0.2	0.50	0.1–0.6	
	DE/MD	0.1	0.77	0.0-0.3	
	VA	0.0	0.96	0.0-0.0	
	NC	12.5	0.46	5.3-29.6	
	NC/SC	2.6	0.50	1.0–6.5	

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

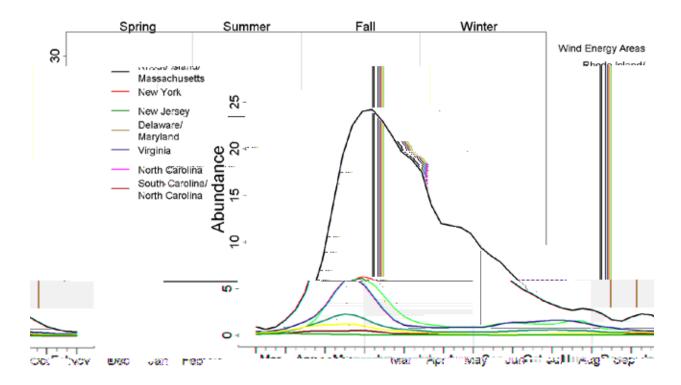


Figure 2-22 Average seasonal abundance of humpback whales in the wind-energy study areas

Figure 3-1 Fin whale Image collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Brenda Rhone.

3.1 Data Collection

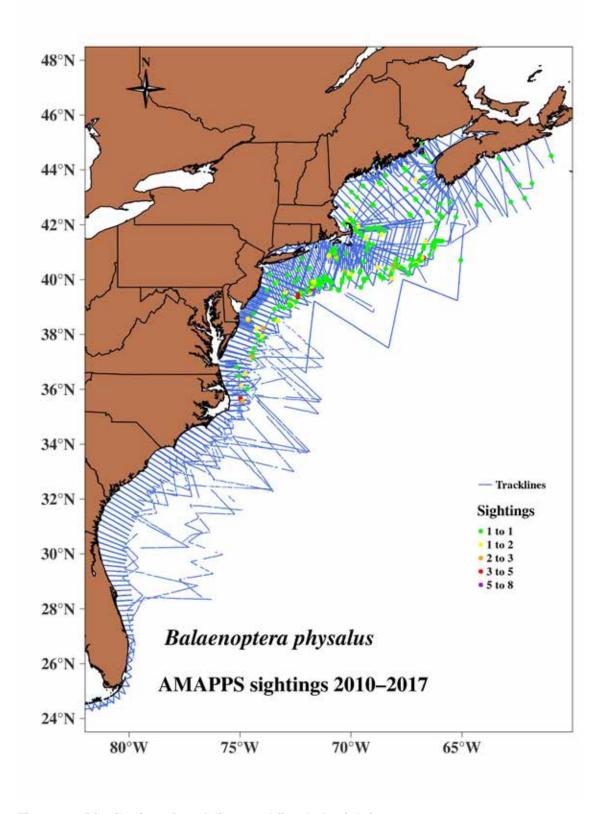
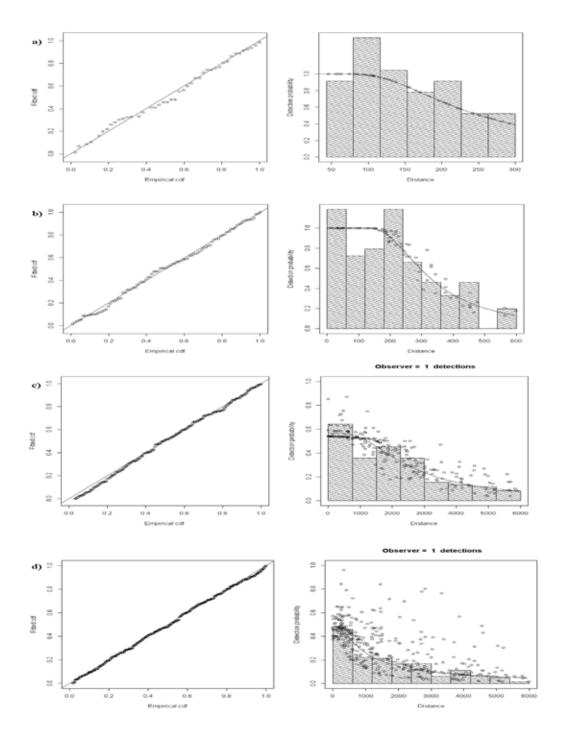


Figure 3-2 Distribution of track lines and fin whale sightings 2010–2017

Table 3-1 AMAPPS research effort 2010–2017 and fin whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	345	533
NE Shipboard	Fall	1,065	1	1
NE Aerial	Spring	13,314	25	36
NE Aerial	Summer	25,867	31	31
NE Aerial	Fall	37,850	55	60
NE Aerial	Winter	12,179	4	4
SE Shipboard	Spring	8,853	34	48
SE Shipboard	Summer	12,968	5	8
SE Shipboard	Fall	3,012	3	9
SE Aerial	Spring	41,293	16	21
SE Aerial	Summer	28,236	5	7
SE Aerial	Fall	18,974	6	10
SE Aerial	Winter	8,950	1	2

3.2 Mark-Recapture Distance Sampling Analysis

Table 3-2 Intermediate parameters in fin whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE–aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE-aerial group 1	distance * observer + quality	600	distance + sea state	600	HR	0.67	0.16	0.24	0.98	0.99
NE–shipboard group 10	distance * observer + group size + sea state	6000	distance + time of day + group size	6000	HR	0.48	0.10	0.28	0.92	0.95
SE–shipboard group 5	distance * observer + group size	6000	distance + glare + time of day	6000	HR	0.57	0.11	0.24	0.61	0.65

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 3-3 Q-Q plots and detection functions from the MRDS analysesa) SE-aerial analysis set 4; b) NE-aerial analysis set 1; c) NE-shipboard analysis set 10; d) SE-shipboard analysis set 5.

3.3 Generalized Additive Model Analysis

Table 3-3 2010 to 2017 density-habitat model output for fin whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(mlp)	0.86	4	1.39	1.78	0.0088
s(pp)	2.43	4	6.41	5.16	< 0.0001
s(dist200)	1.14	4	30.98	16.40	< 0.0001
s(lat)	2.23	4	14.70	4.51	< 0.0001
te(LY,dist2GSNw)	12.27	24	4.70	14.38	< 0.0001

Adjusted $R^2 = 0.0563$. Deviance explained = 42.2%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

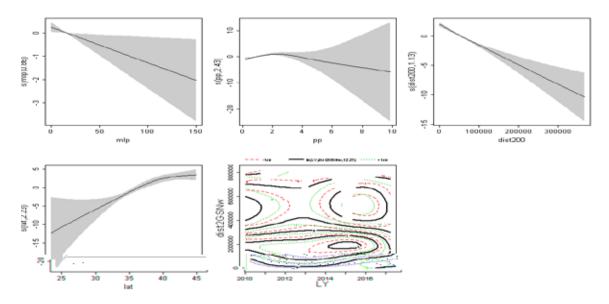


Figure 3-4 Fin whale density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

3.4 Model Cross-Validation

Table 3-4 Diagnostic statistics from the fin whale density-density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
	Spearman rank			
RHO	correlation	Non-zero density	0.190	Fair to good
	Mean absolute			
MAPE	percentage error	Non-zero density	86.900	Fair to good
	Spearman rank	All data divided in 25		
RHO	correlation	random samples	0.124	Fair to good
		All data divided in 25		
MAE	Mean absolute error	random samples	0.002	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

3.5 Abundance Estimates for AMAPPS Study Area

Table 3-5 Fin whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March–May)	1,648	0.35	846–3,209
Summer (June-August)	2,285	0.34	1,195–4,369
Fall (September–November)	1,343	0.35	690–2,615
Winter (December–February)	613	0.34	321–1,172
Summer 2011 U.S. surveys ¹	1,618	0.33	
Summer 2016 U.S. surveys ¹	2,390	0.38	

¹Hayes et al. 2020

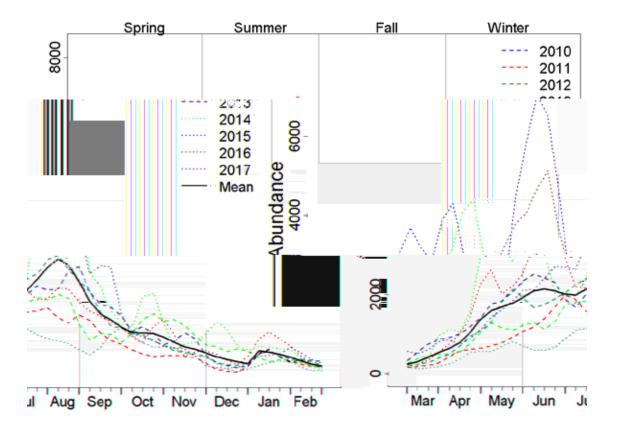


Figure 3-5 Annual abundance trends for fin whales in the AMAPPS study area

3.6 Seasonal Prediction Maps

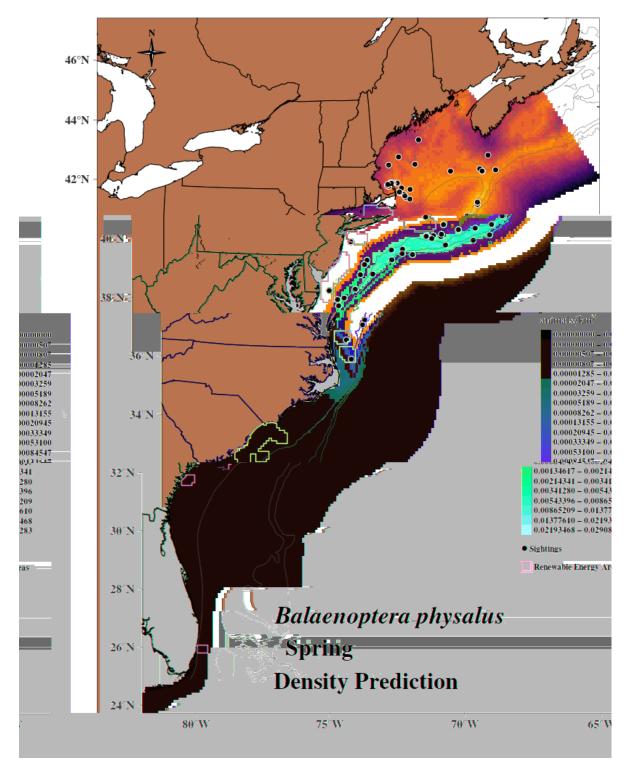
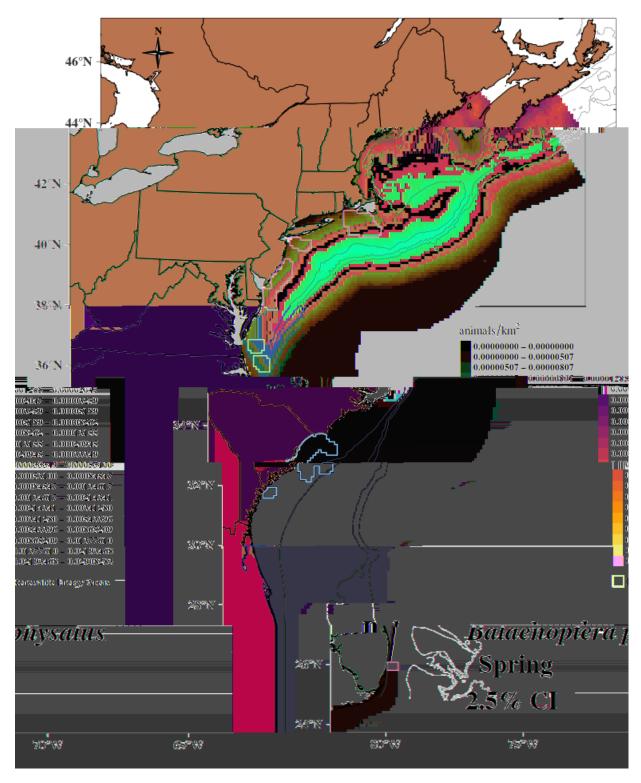
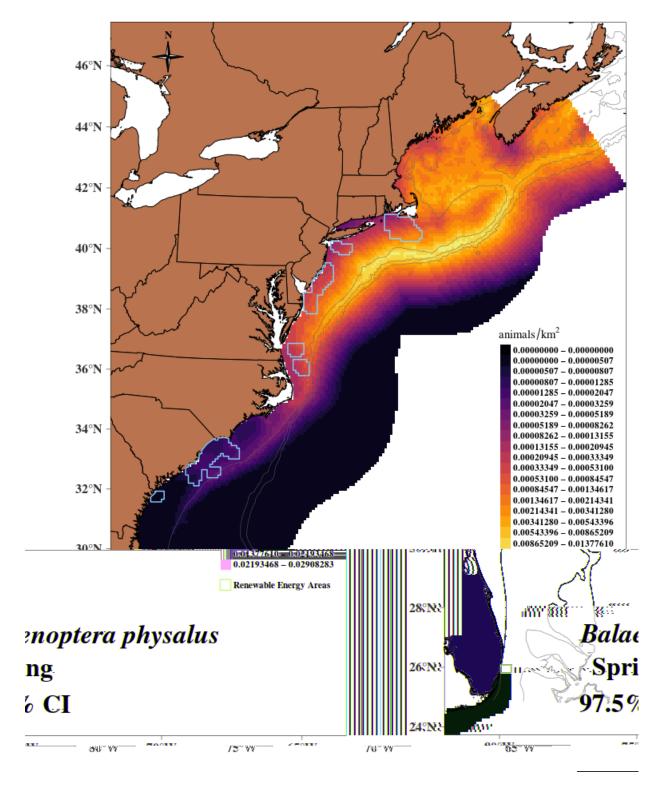




Figure 3-6 Fin whale spring average density estimates

Figure 3-7 Lower 2.5% confidence interval of the spring fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 3-8 Upper 97.5% confidence interval of the spring fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

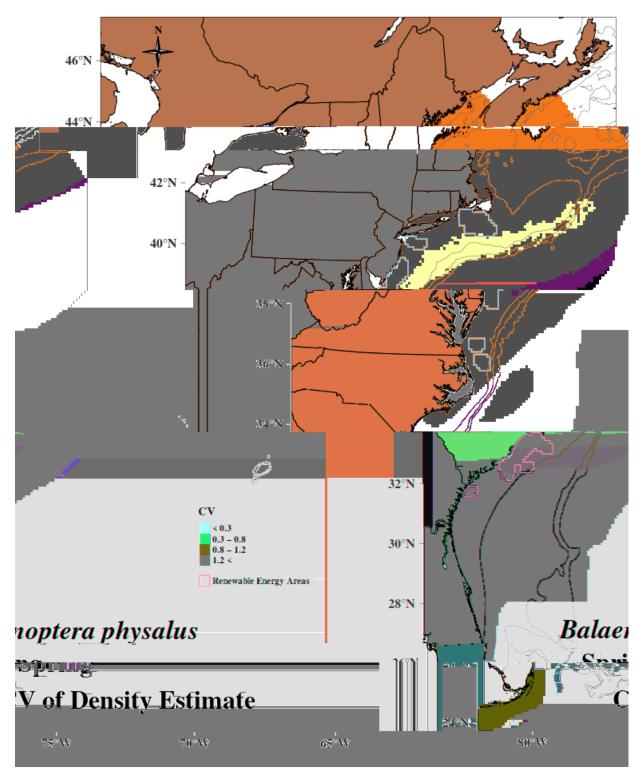


Figure 3-9 CV of spring fin whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

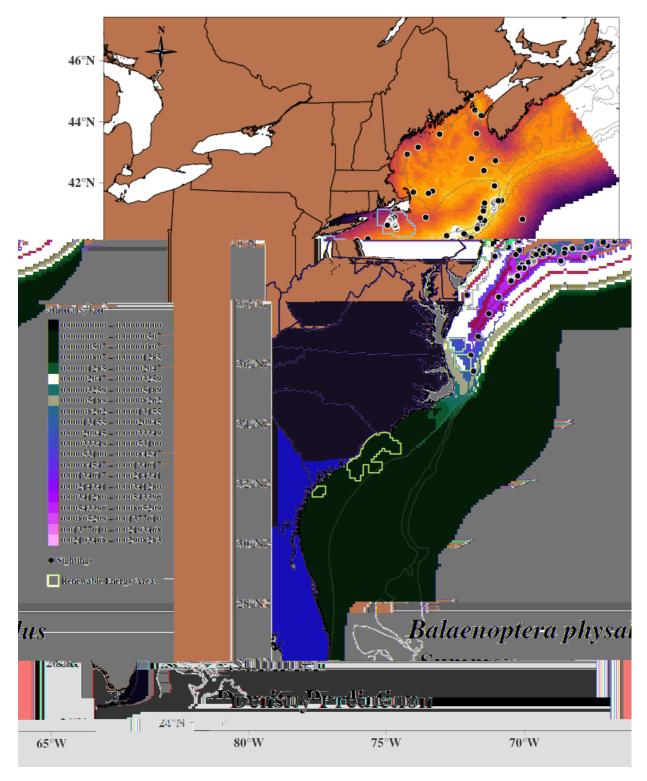
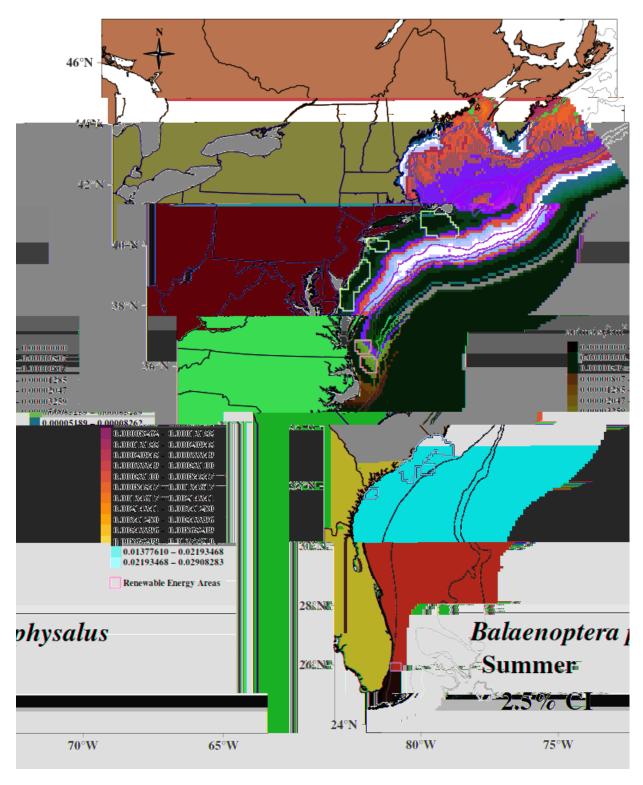
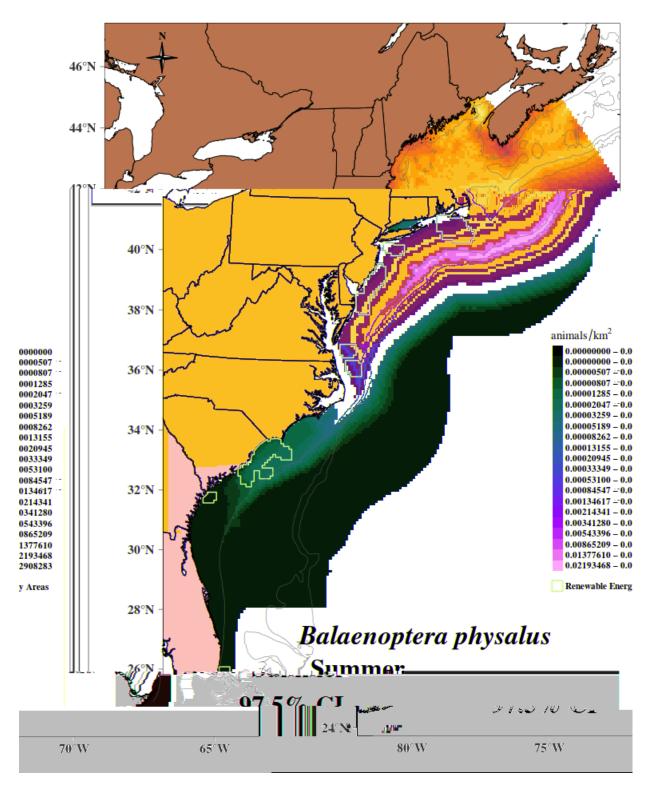




Figure 3-10 Fin whale summer average density estimates

Figure 3-11 Lower 2.5% confidence interval of the summer fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 3-12 Upper 97.5% confidence interval of the summer fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

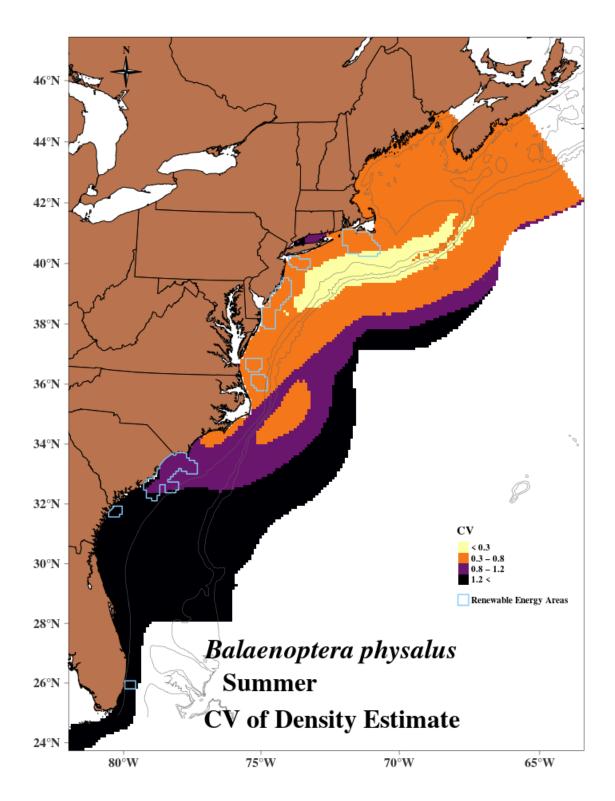
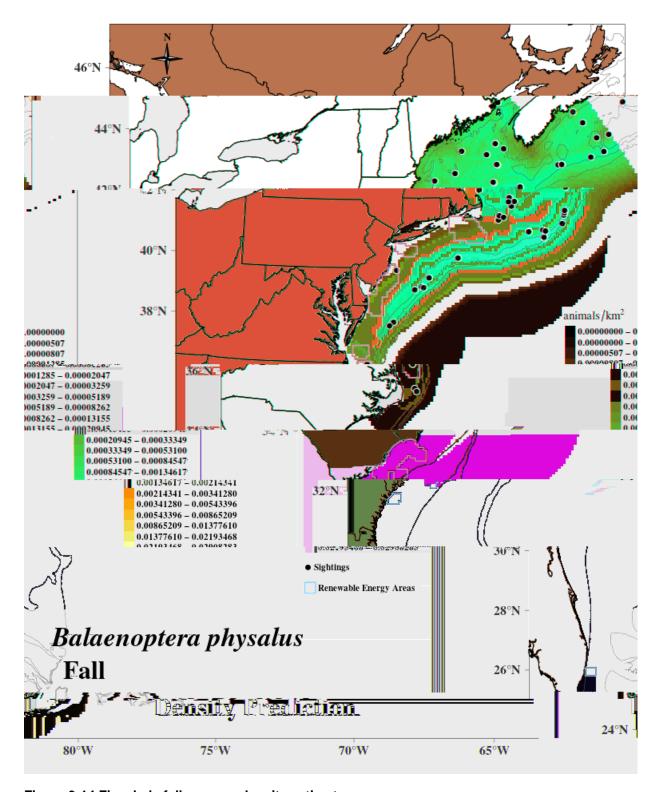
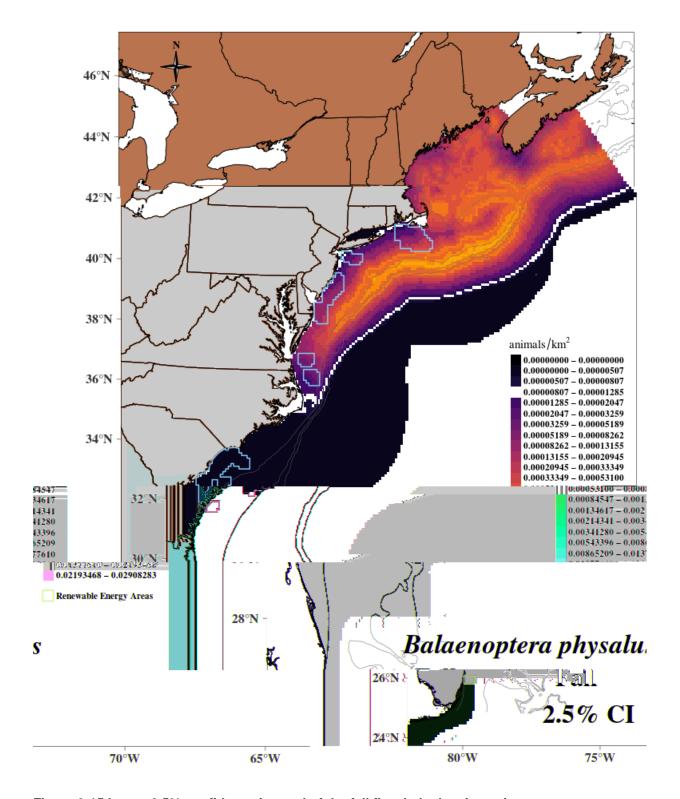
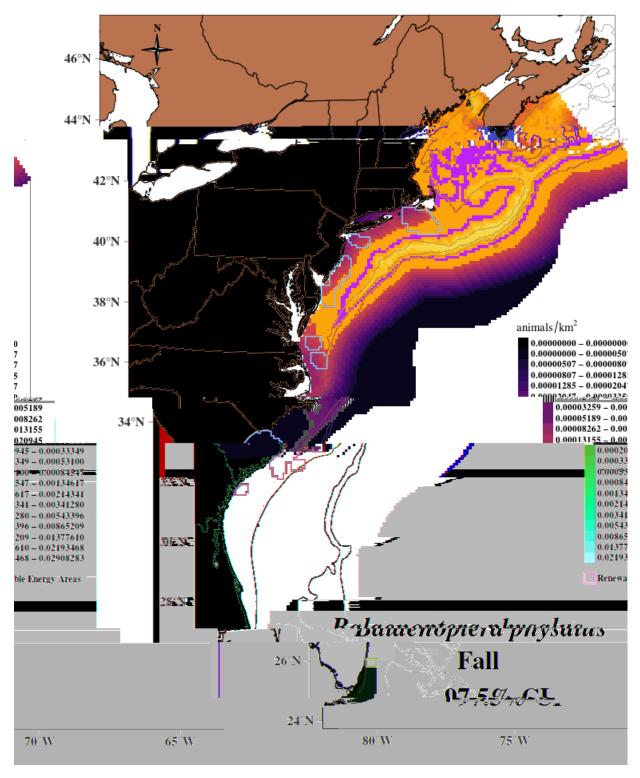


Figure 3-13 CV of summer fin whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

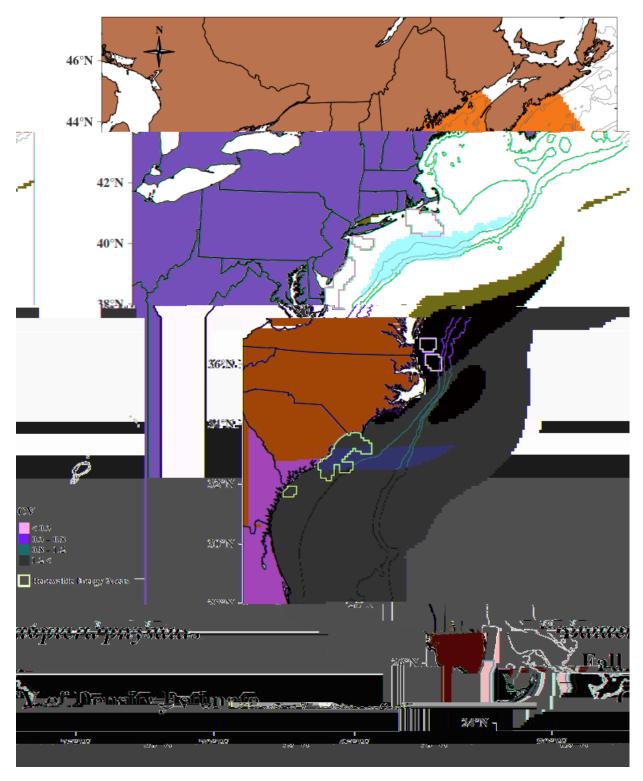

Figure 3-14 Fin whale fall average density estimates

Figure 3-15 Lower 2.5% confidence interval of the fall fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 3-16 Upper 97.5% confidence interval of the fall fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 3-17 CV of fall fin whale density estimatesCV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

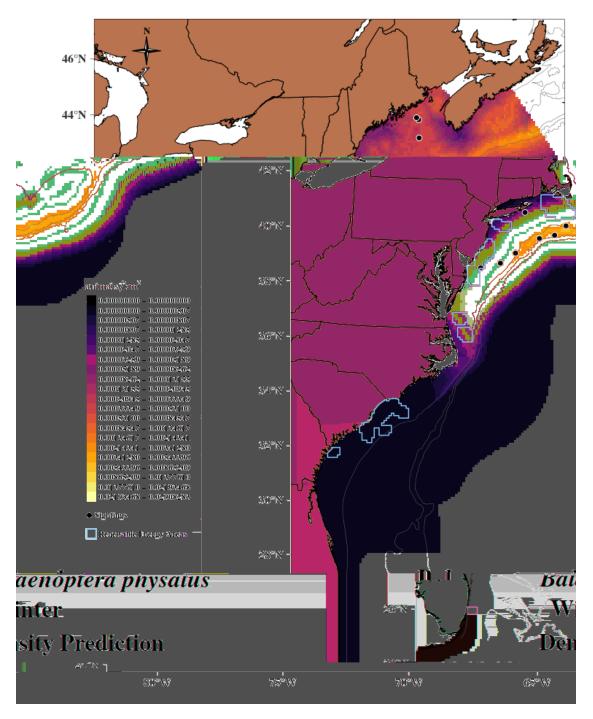
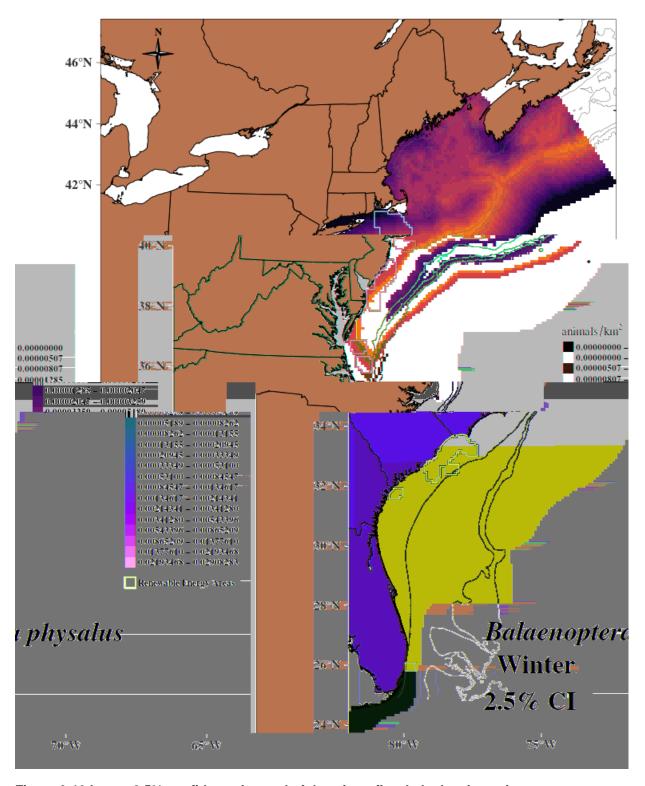
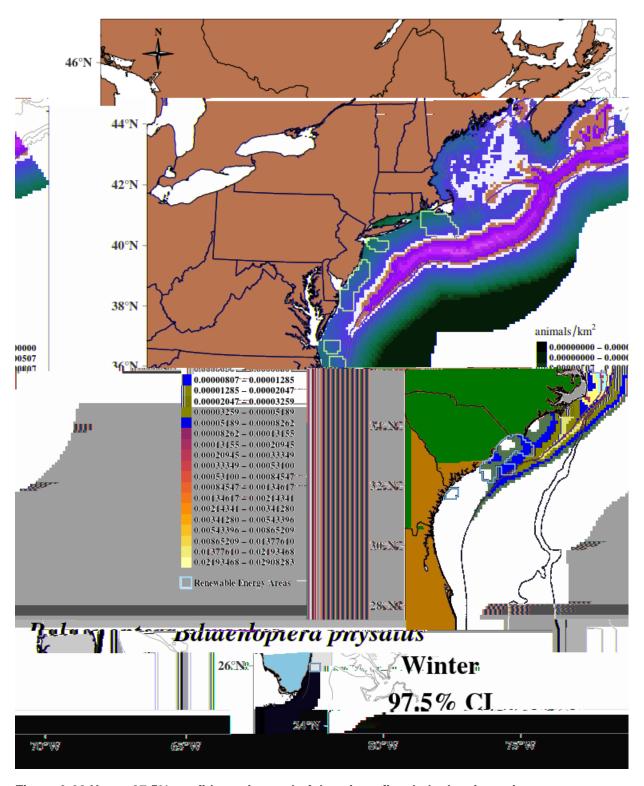




Figure 3-18 Fin whale winter average density estimates

Figure 3-19 Lower 2.5% confidence interval of the winter fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 3-20 Upper 97.5% confidence interval of the winter fin whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

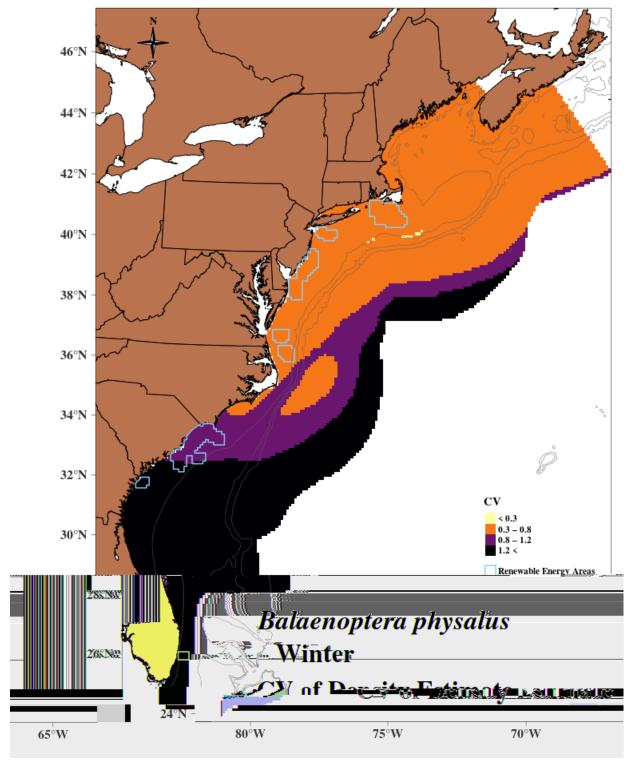


Figure 3-21 CV of winter fin whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

3.7 Offshore Energy Development Areas

Table 3-6 Fin whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	6.3	0.35	3.2–12.1
(Mar-May)	NY	0.5	0.37	0.2–1.0
	NJ	1.6	0.36	0.8–3.1
	DE/MD	1.4	0.34	0.8–2.8
	VA	0.6	0.40	0.3–1.2
	NC	0.5	0.50	0.2–1.3
	NC/SC	0.0	1.05	0.0-0.2
Summer	RI/MA	10.0	0.33	5.4–18.8
(Jun-Aug)	NY	0.9	0.39	0.4–1.9
, , , ,	NJ	2.7	0.39	1.3–5.6
	DE/MD	2.5	0.36	1.3–5.0
	VA	1.0	0.42	0.5–2.2
	NC	0.8	0.51	0.3–2.0
	NC/SC	0.1	1.07	0.0-0.3
Fall	RI/MA	4.2	0.33	2.2-8.0
(Sep-Nov)	NY	0.3	0.40	0.2-0.7
, , ,	NJ	1.3	0.38	0.6–2.7
	DE/MD	1.3	0.36	0.7–2.6
	VA	0.4	0.40	0.2-0.9
	NC	0.3	0.54	0.1–0.7
	NC/SC	0.0	1.05	0.0-0.2
Winter	RI/MA	1.9	0.34	1.0–3.8
(Dec-Feb)	NY	0.1	0.38	0.1-0.3
,	NJ	0.6	0.36	0.3–1.3
	DE/MD	0.7	0.33	0.3–1.3
	VA	0.2	0.41	0.1–0.5
	NC	0.2	0.53	0.1–0.5
	NC/SC	0.0	1.05	0.0–0.1

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

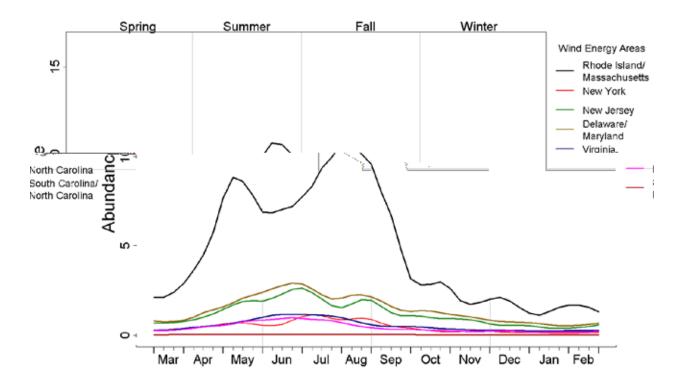


Figure 3-22 Average seasonal abundance of fin whales in the wind-energy study areas

4 Sei Whale (Balaenoptera borealis)

Figure 4-1 Sei whale Image collected under MMPA Research permit #775-1875 Credit: NOAA/NEFSC/Genevieve Davis.

4.1 Data Collection

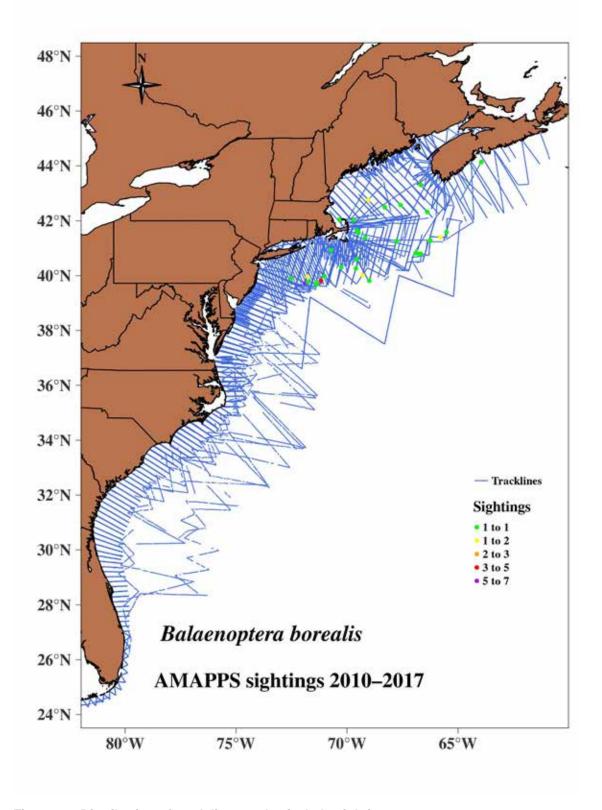
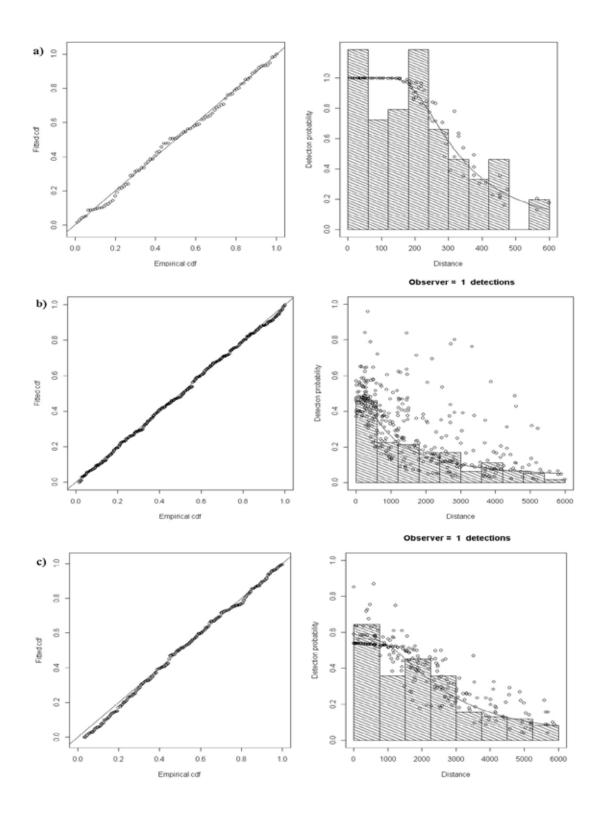


Figure 4-2 Distribution of track lines and sei whale sightings 2010 to 2017

Table 4-1 AMAPPS research effort 2010 to 2017 and sei whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	20	28
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	13	33
NE Aerial	Summer	25,867	5	6
NE Aerial	Fall	37,850	6	12
NE Aerial	Winter	12,179	2	5
SE Shipboard	Spring	8,853	28	33
SE Shipboard	Summer	12,968	0	0
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

4.2 Mark-Recapture Distance Sampling Analysis

Table 4-2 Intermediate parameters in sei whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
NE-aerial group 1	distance * observer + quality	600	distance + sea state	600	HR	0.67	0.16	0.24	0.98	0.99
NE- shipboard group 10	distance * observer + group size + sea state	6000	distance + time of day + group size	6000	HR	0.48	0.10	0.28	0.92	0.95
SE– shipboard group 5	distance * observer + group size	6000	distance + glare + time of day	6000	HR	0.57	0.11	0.24	0.61	0.65

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 4-3 Q-Q plots and detection functions from the MRDS analyses a) NE-aerial analysis set 1; b) NE-shipboard analysis set 10; c) SE-shipboard analysis set 5.

4.3 Generalized Additive Model Analysis

Table 4-3 2010 to 2017 density-habitat model output for sei whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstfmt)	0.95	4	2.59	9.51	0.0008
s(picma)	0.89	4	1.54	3.24	0.0084
te(LY,lat)	4.73	23	1.37	26.37	< 0.0001

Adjusted $R^2 = 0.00299$. Deviance explained = 39.1%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

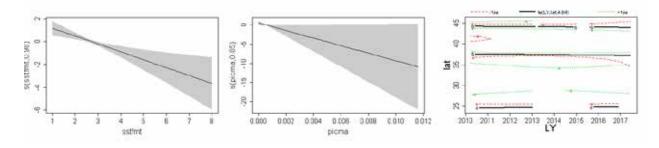


Figure 4-4 Sei whale density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

4.4 Model Cross-Validation

Table 4-4 Diagnostic statistics from the sei whale density-density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.335	Excellent
MAPE	Mean absolute percentage error	Non-zero density	98.750	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.0634	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.0001	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

4.5 Abundance Estimates for AMAPPS Study Area

Table 4-5 Sei whale average abundance estimates for the AMAPPS study area

Sacan	Time Deried	Average Abundance	CV	95% Confidence
Season	Time Period	Average Abundance	CV	Interval
	2010–2013	243	0.45	
Spring (March-May)	2014-2017	43	0.47	
	2010–2017	142	0.46	
	2010-2013	208	0.45	
Summer (June-August)	2014-2017	32	0.50	
	2010–2017	121	0.45	
	2010–2013	192	0.45	
Fall (September-	2014–2017	28	0.50	
November)	2010–2017	110	0.45	
	2010-2013	258	0.47	
Winter (December-	2014–2017	42	0.48	
February)	2010–2017	150	0.47	
Summer 2011 U.S.				
surveys ¹		357	0.52	
Summer 2016 U.S.				
surveys ¹		52	0.53	

¹Hayes et al. 2020

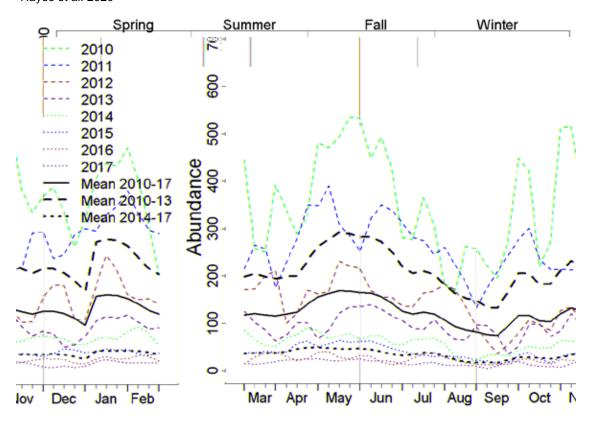


Figure 4-5 Annual abundance trends for sei whales in the AMAPPS study area

4.6 Seasonal Prediction Maps

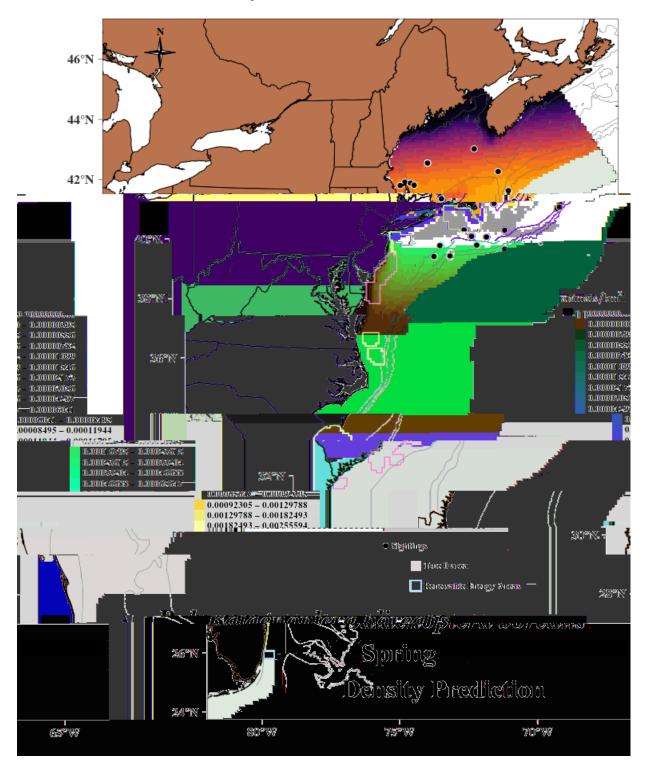
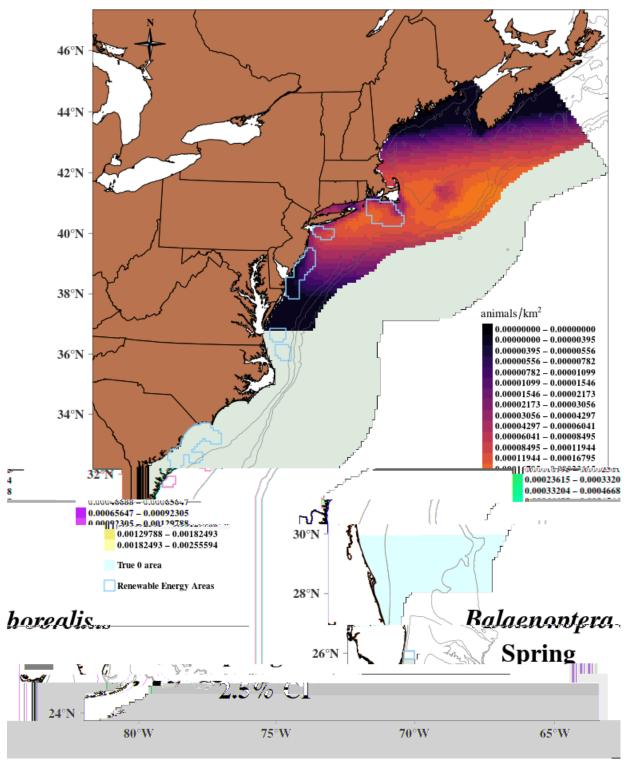
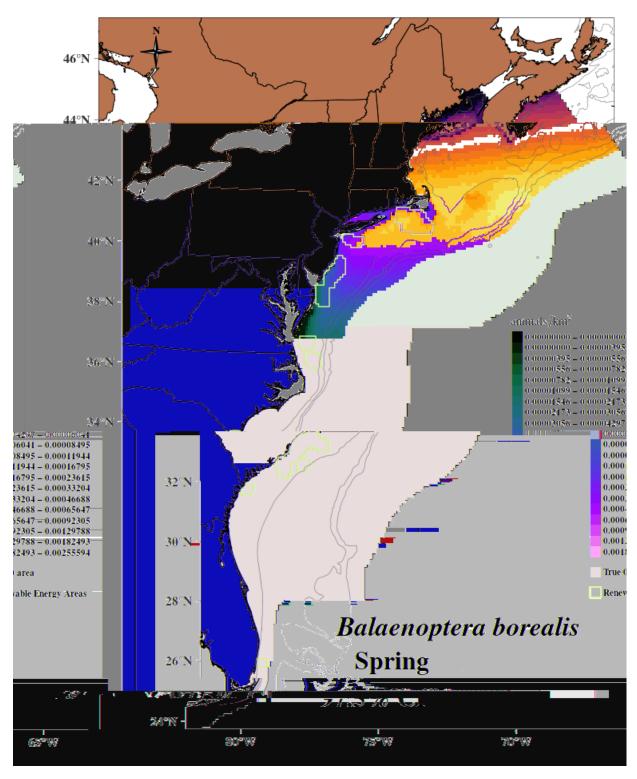




Figure 4-6 Sei whale spring average density estimates

Figure 4-7 Lower 2.5% confidence interval of the spring sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 4-8 Upper 97.5% confidence interval of the spring sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

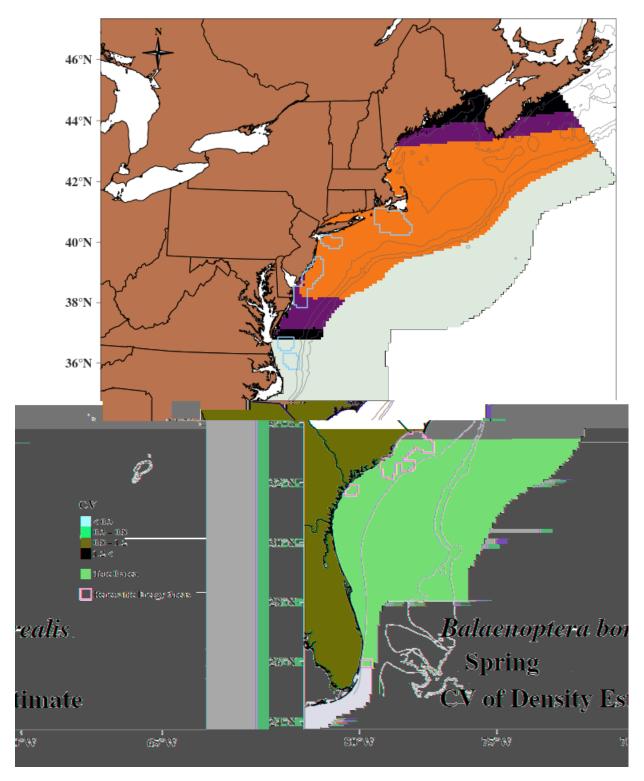


Figure 4-9 CV of spring sei whale density estimates

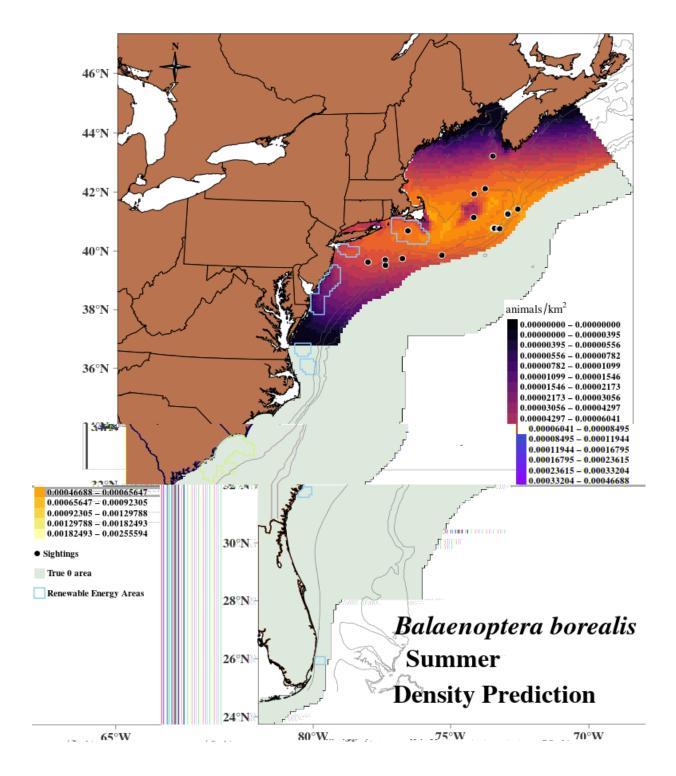
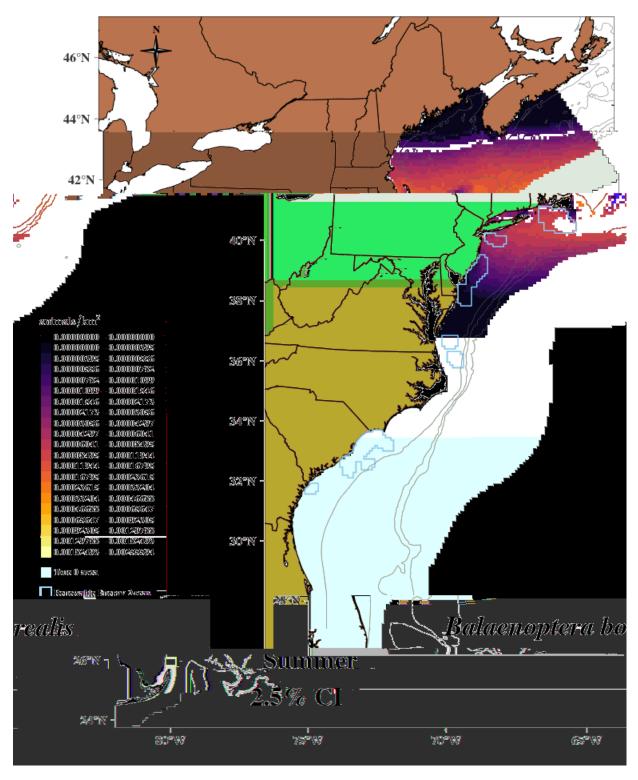
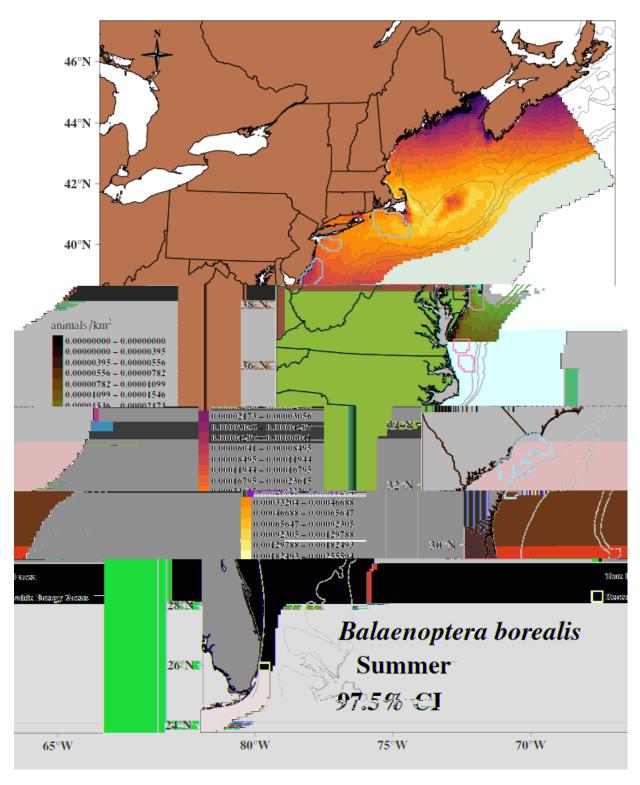




Figure 4-10 Sei whale summer average density estimates

Figure 4-11 Lower 2.5% confidence interval of the summer sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 4-12 Upper 97.5% confidence interval of the summer sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

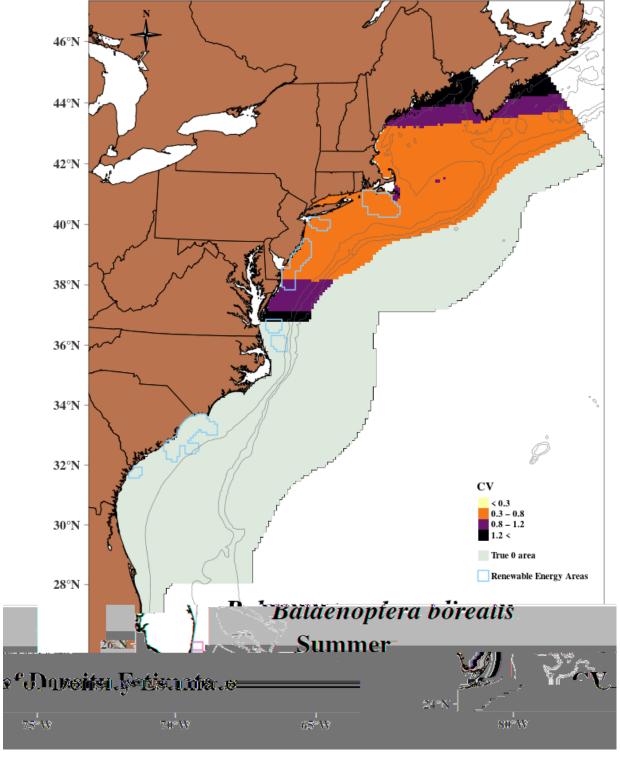


Figure 4-13 CV of summer sei whale density estimates

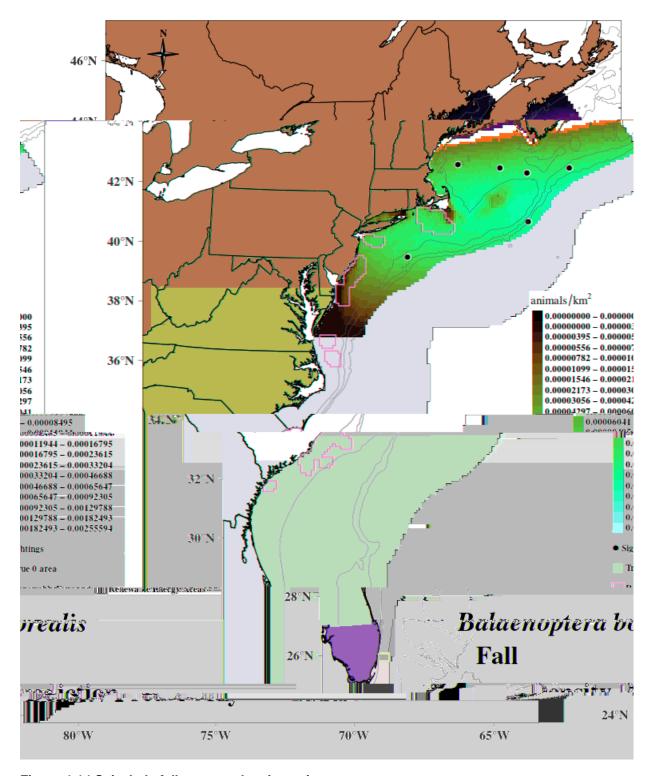


Figure 4-14 Sei whale fall average density estimates

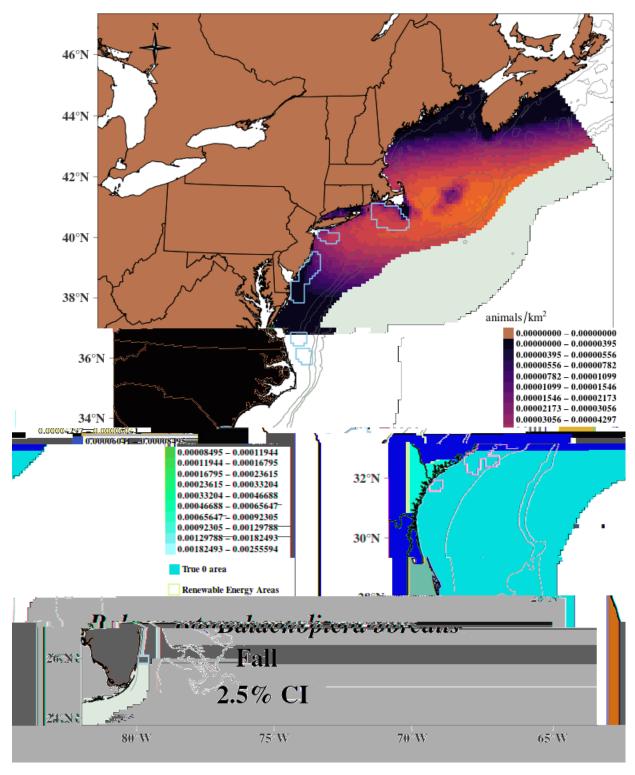


Figure 4-15 Lower 2.5% confidence interval of the fall sei whale density estimates

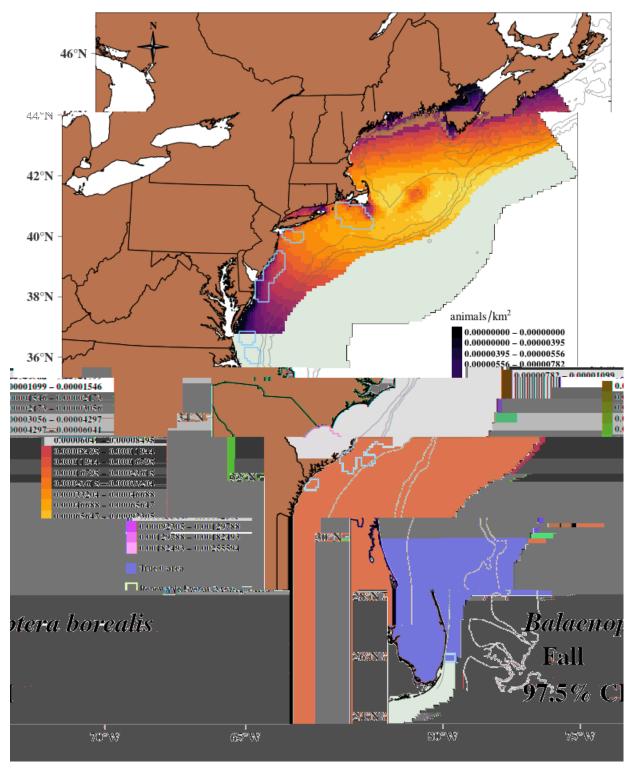


Figure 4-16 Upper 97.5% confidence interval of the fall sei whale density estimates

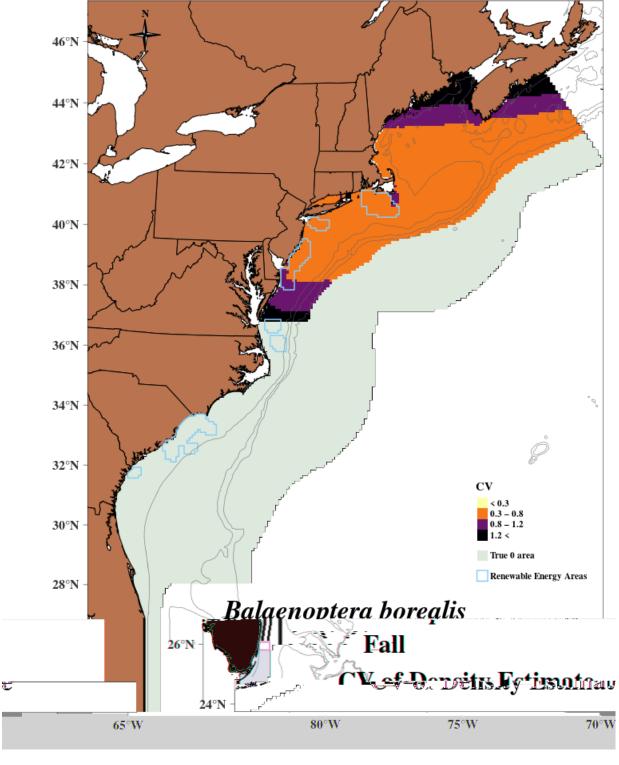


Figure 4-17 CV of fall sei whale density estimates

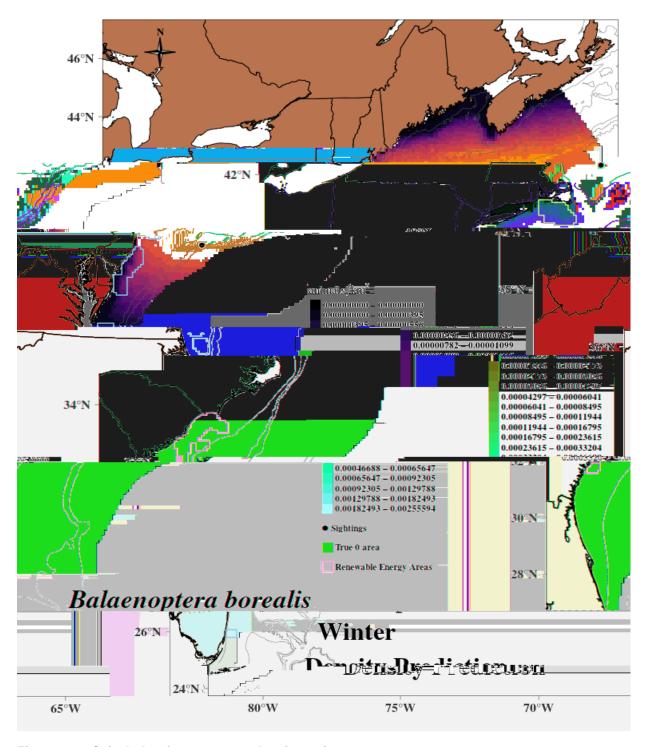
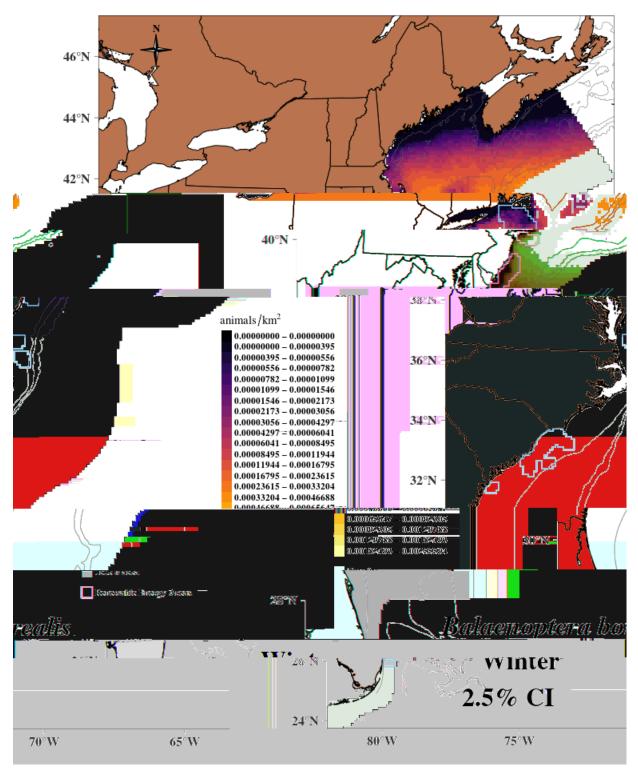
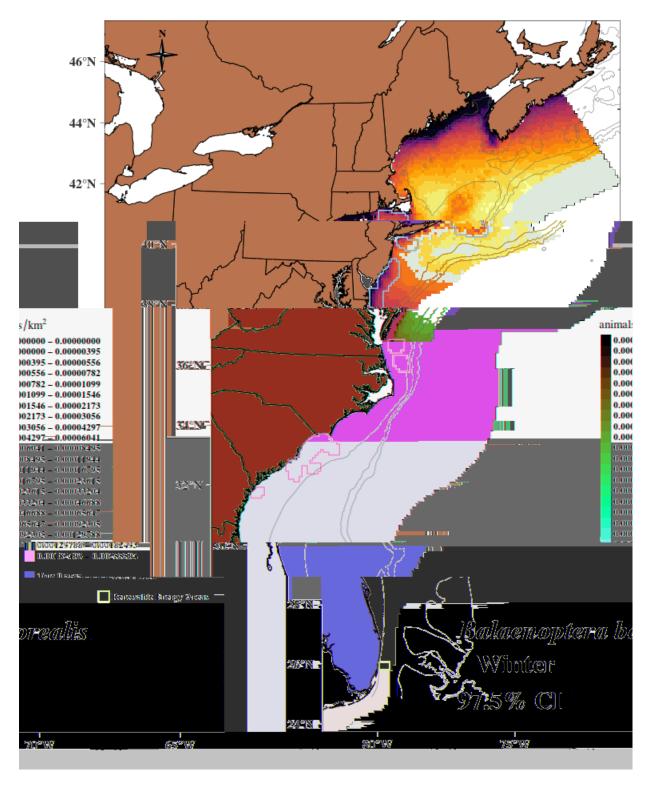




Figure 4-18 Sei whale winter average density estimates

Figure 4-19 Lower 2.5% confidence interval of the winter sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 4-20 Upper 97.5% confidence interval of the winter sei whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

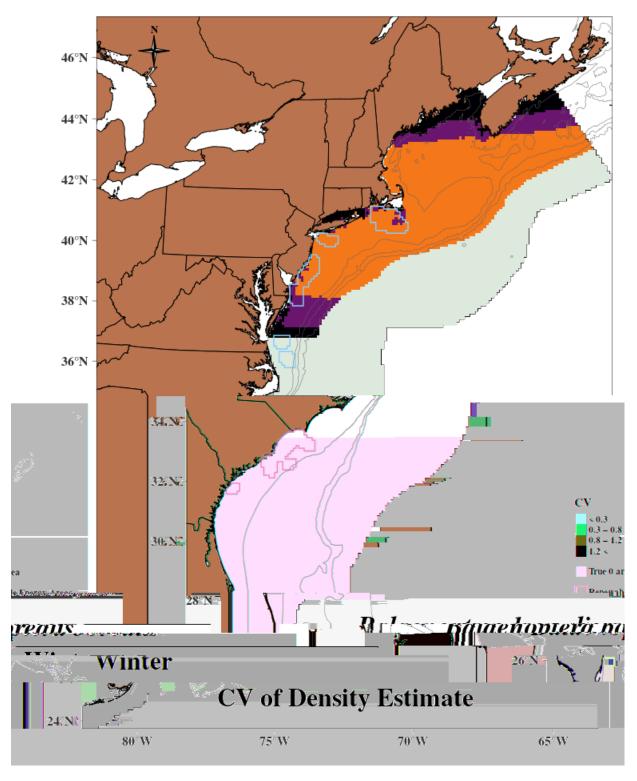


Figure 4-21 CV of winter sei whale density estimates

4.7 Offshore Energy Development Areas

Table 4-6 Sei whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	11.1	0.43	5.0–24.7
(Mar-May)	NY	1.3	0.46	0.6–3.1
	NJ	0.3	0.66	0.1–1.0
	DE/MD	0.0	0.94	0.0–0.1
	VA	0.0	2.25	0.0–0.0
Summer	RI/MA	9.0	0.41	4.1 - 19.5
(Jun-Aug)	NY	0.7	0.43	0.3 - 1.7
	NJ	0.2	0.66	0.1 - 0.7
	DE/MD	0.0	0.91	0.0 - 0.1
	VA	9.0	0.41	4.1 - 19.5
Fall	RI/MA	5.9	0.43	2.6 - 13.4
(Sep-Nov)	NY	0.7	0.45	0.3 - 1.5
	NJ	0.2	0.67	0.1 - 0.5
	DE/MD	0.0	0.93	0.0 - 0.1
	VA	0.0	2.29	0.0 - 0.0
Winter	RI/MA	4.8	0.54	1.7 - 12.9
(Dec-Feb)	NY	0.8	0.46	0.3 - 1.9
	NJ	0.2	0.68	0.1 - 0.7
	DE/MD	0.0	0.96	0.0 - 0.1
	VA	0.0	2.32	0.0 - 0.0

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

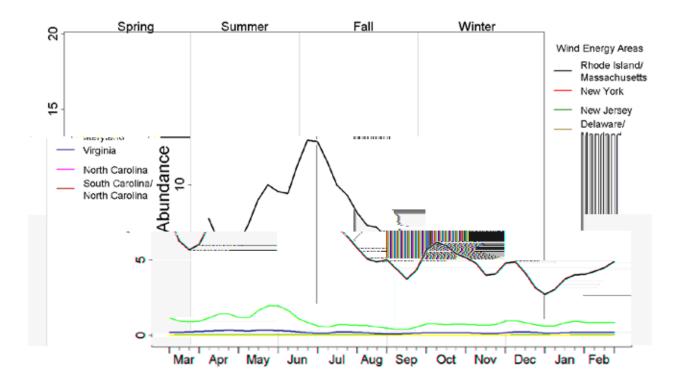


Figure 4-22 Average seasonal abundance of sei whales in the wind-energy study areas

5 Minke Whale (Balaenoptera acutorostrata)

Figure 5-1 Minke whale Image collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Leah Crowe

5.1 Data Collection

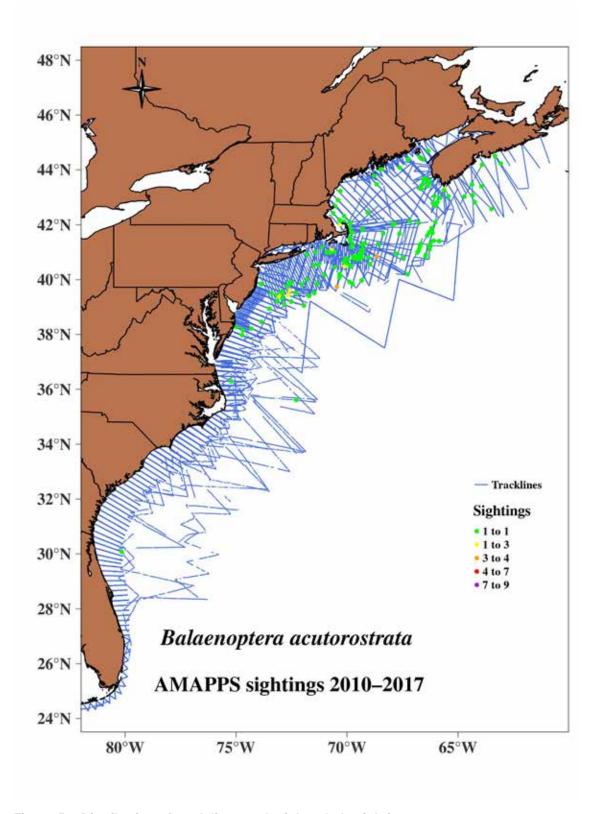
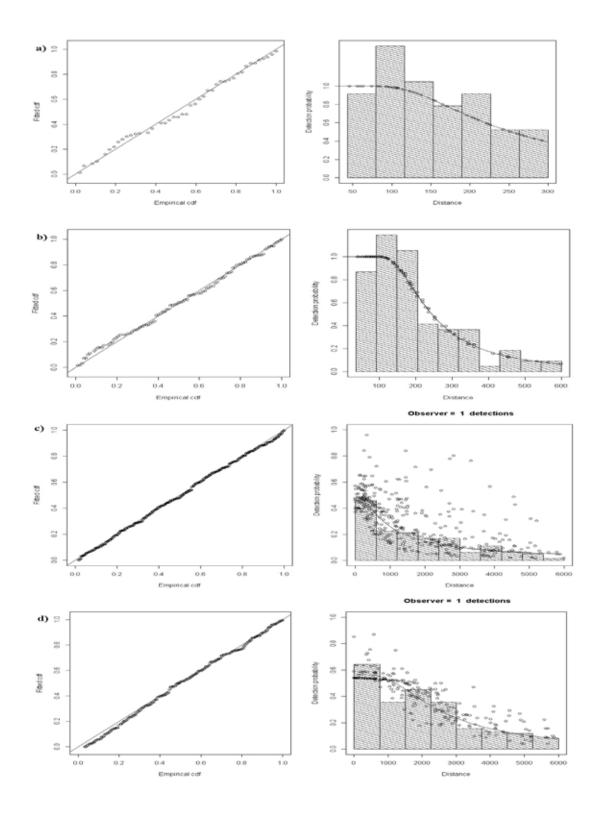


Figure 5-2 Distribution of track lines and minke whale sightings 2010 to 2017

Table 5-1 AMAPPS research effort 2010 to 2017 and minke whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	32	32
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	10	11
NE Aerial	Summer	25,867	60	65
NE Aerial	Fall	37,850	37	52
NE Aerial	Winter	12,179	5	5
SE Shipboard	Spring	8,853	8	11
SE Shipboard	Summer	12,968	1	1
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	11	14
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	3	3
SE Aerial	Winter	8,950	1	1

5.2 Mark-Recapture Distance Sampling Analysis

Table 5-2 Intermediate parameters in minke whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE-aerial group 2	distance * observer + sea state + quality + group size	600	distance + sea state	LT35-600	HR	0.62	0.19	0.86	0.89	0.91
NE- shipboard group 10	distance * observer + group size + sea state	6000	distance + time of day + group size	6000	HR	0.48	0.10	0.28	0.92	0.95
SE– shipboard group 5	distance * observer + group size	6000	distance + glare + time of day	6000	HR	0.57	0.11	0.24	0.61	0.65

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 5-3 Q-Q plots and detection functions from the MRDS analysesa) SE-aerial analysis set 4; b) NE-aerial analysis set 2; c) NE-shipboard analysis set 10; d) SE-shipboard analysis set 5.

5.3 Generalized Additive Model Analysis

Table 5-3 2010 to 2017 density-habitat model output for minke whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstmur)	2.12	4	6.00	4.90	< 0.0001
s(mld)	0.93	4	2.76	4.59	0.0005
s(chlfma)	0.80	4	0.87	1.06	0.0352
s(pocma)	0.88	4	1.60	0.67	0.0061
s(pp)	0.88	4	1.77	1.35	0.0039
s(dist200)	2.98	4	3.62	4.27	0.0012
s(dist1000)	0.86	4	1.16	2.73	0.0158
s(lat)	2.27	4	8.05	9.95	<0.0001

Adjusted $R^2 = 0.00682$. Deviance explained = 29.5%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

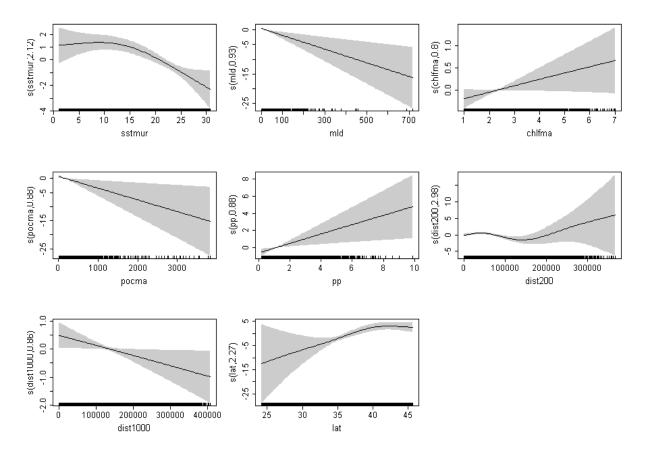


Figure 5-4 Minke whale density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

5.4 Model Cross-Validation

Table 5-4 Diagnostic statistics from the minke whale density-habitat model

Diagnostic	Description	Coloulate durith	Model	C
Statistic	Description	Calculated with	Values (x)	Score
	Spearman rank			
RHO	correlation	Non-zero density	0.153	Fair to good
	Mean absolute			
MAPE	percentage error	Non-zero density	97.410	Fair to good
	Spearman rank	All data divided in 25		
RHO	correlation	random samples	0.121	Fair to good
		All data divided in 25		
MAE	Mean absolute error	random samples	0.001	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

5.5 Abundance Estimates for AMAPPS Study Area

Table 5-5 Minke whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	1,334	0.43	595–2,991
Summer (June-August)	1,197	0.33	637– 2,248
Fall (September–November)	616	0.32	334–1,136
Winter (December–February)	24	0.39	11– 50
Summer 2011 U.S. surveys ¹	2,591	0.81	
Summer 2016 U.S. surveys ¹	2,802	0.81	

¹Hayes et al. 2020

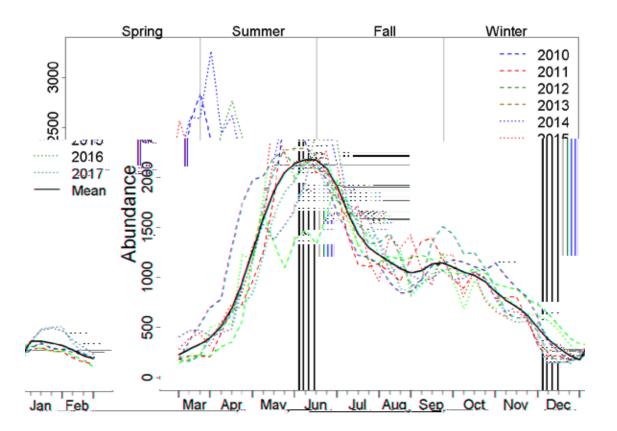


Figure 5-5 Annual abundance trends for minke whales in the AMAPPS study area

5.6 Seasonal Prediction Maps

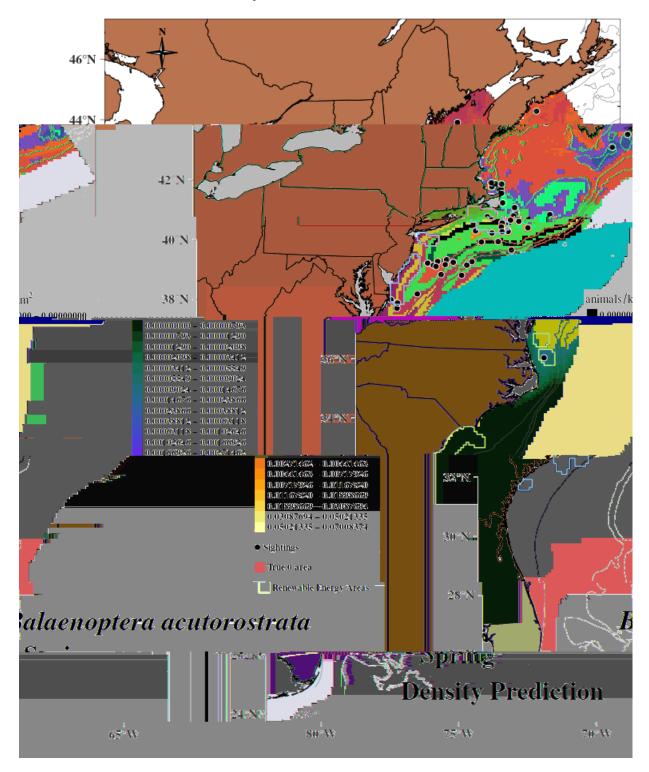
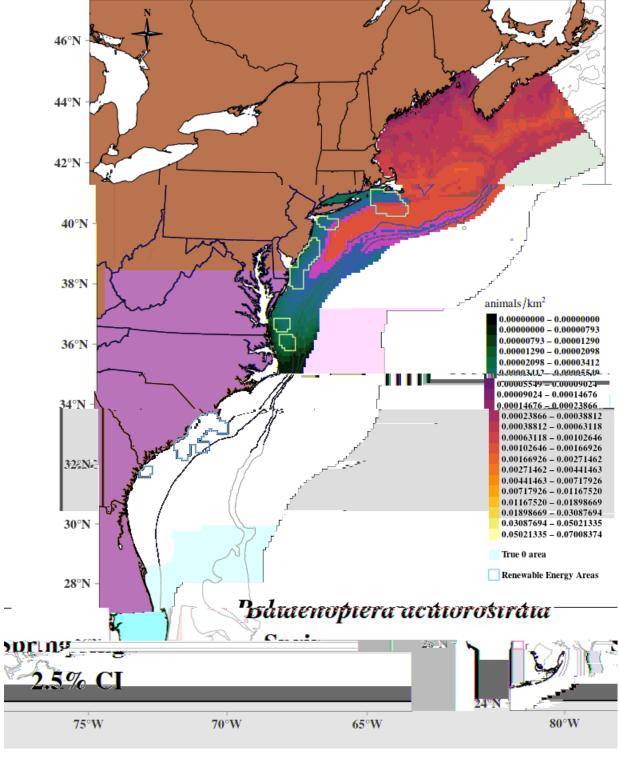
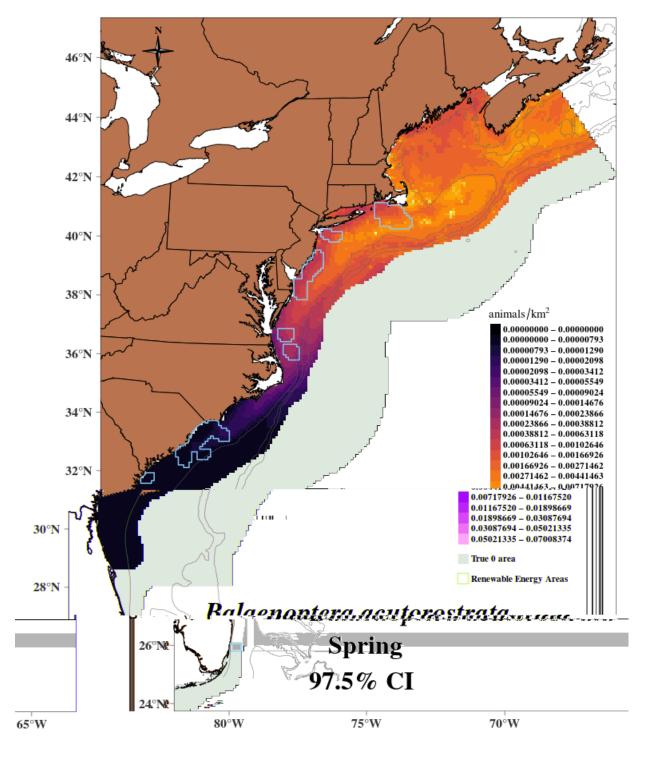




Figure 5-6 Minke whale spring average density estimates

Figure 5-7 Lower 2.5% confidence interval of the spring minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 5-8 Upper 97.5% confidence interval of the spring minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

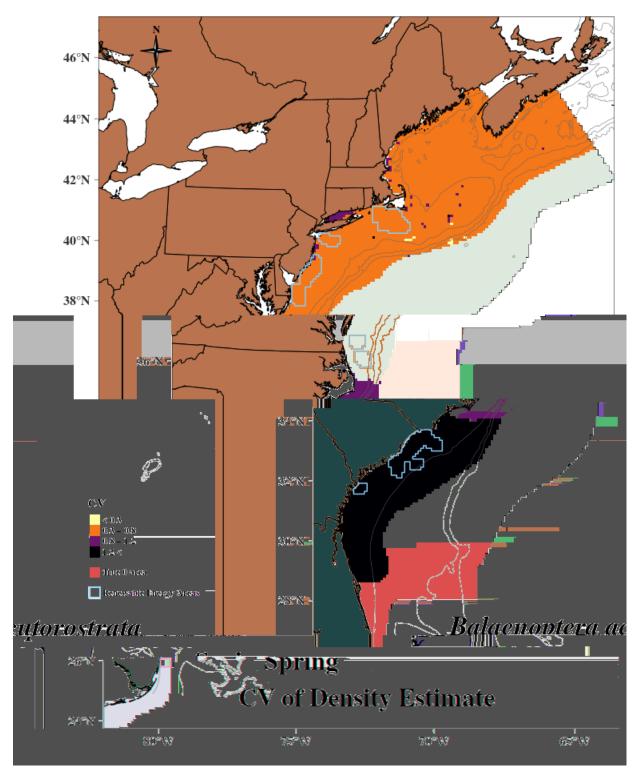


Figure 5-9 CV of spring minke whale density estimates

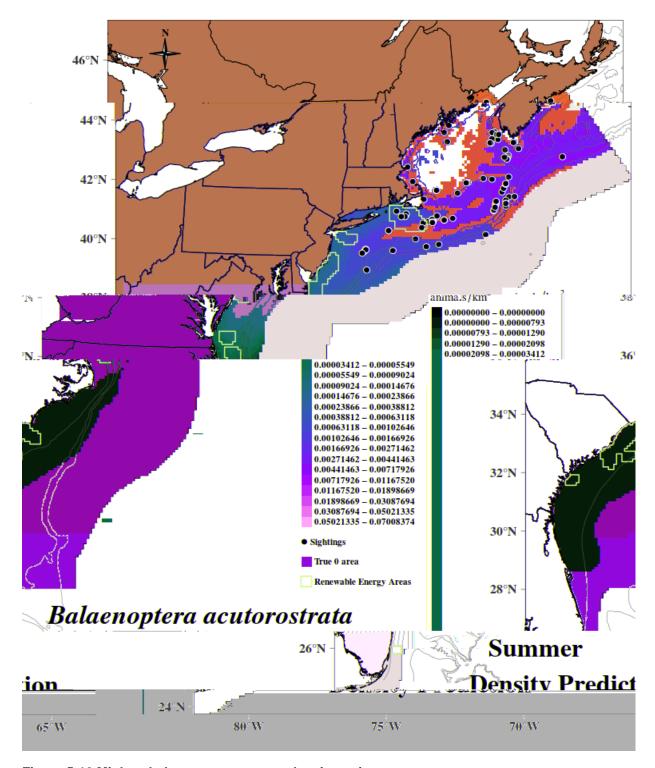
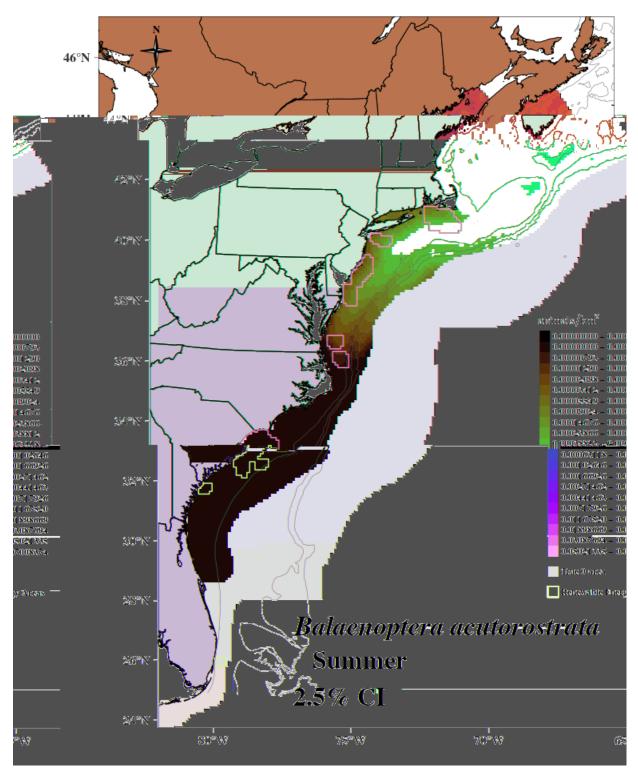
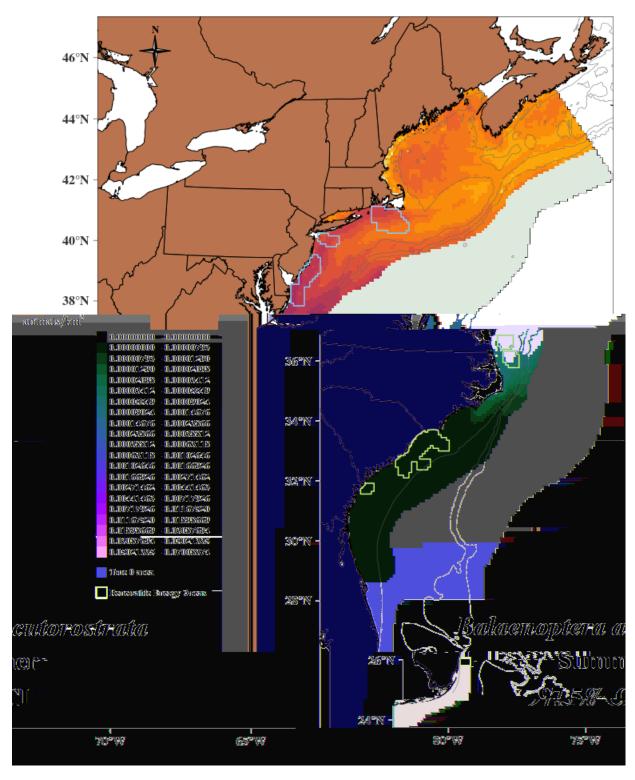




Figure 5-10 Minke whale summer average density estimates

Figure 5-11 Lower 2.5% confidence interval of the summer minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 5-12 Upper 97.5% confidence interval of the summer minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

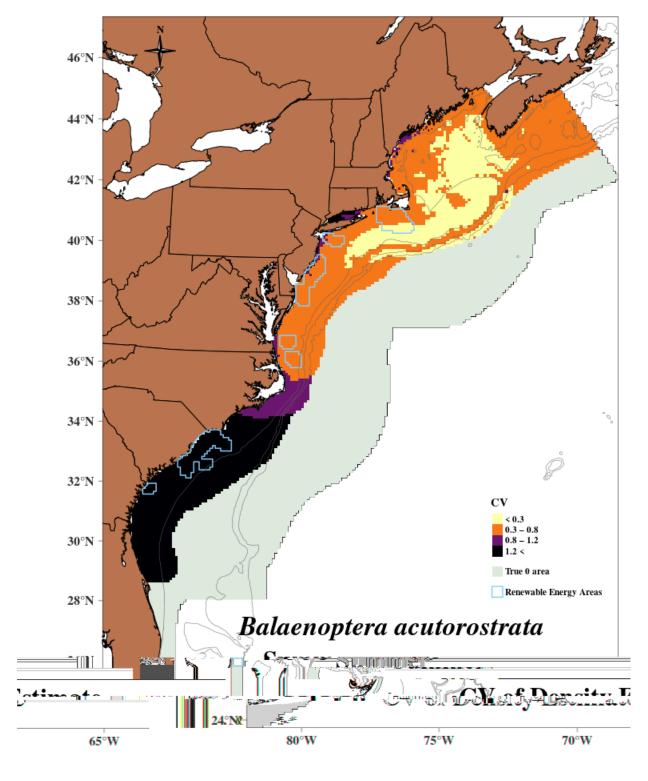


Figure 5-13 CV of summer minke whale density estimates

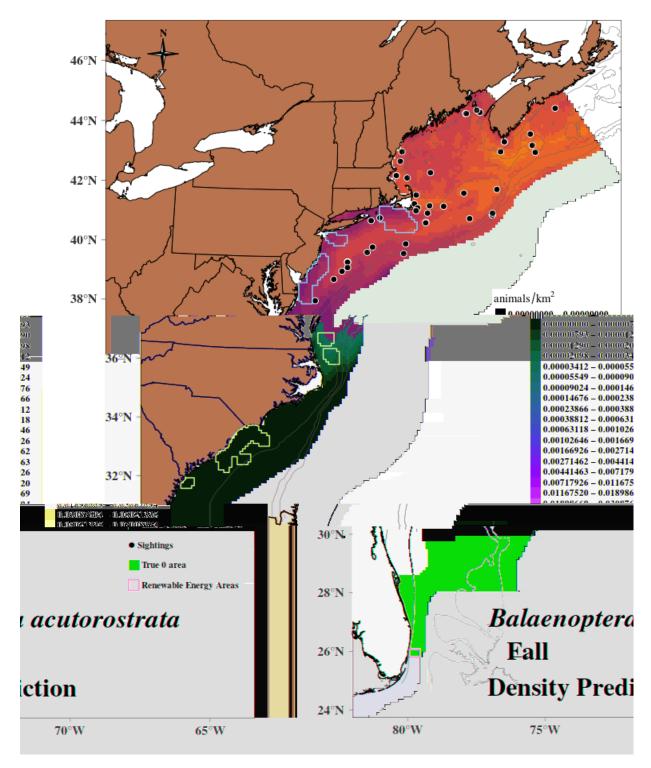
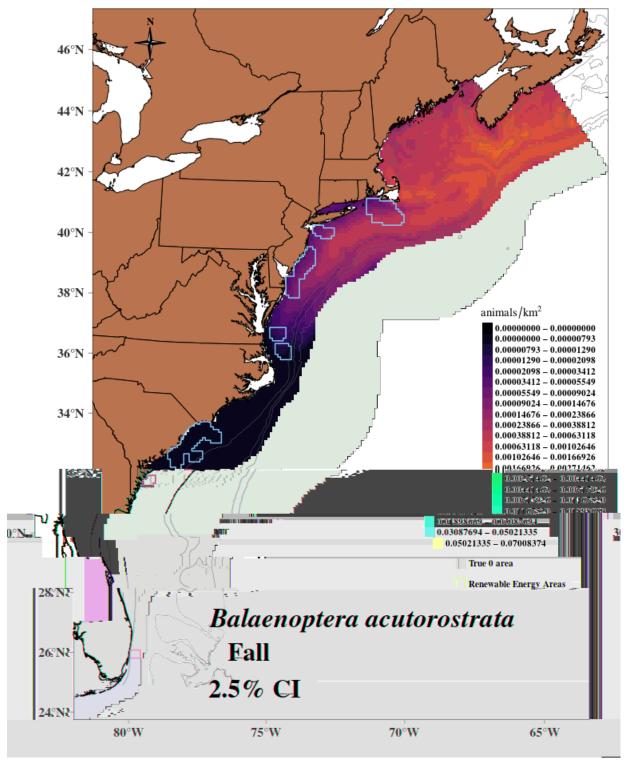
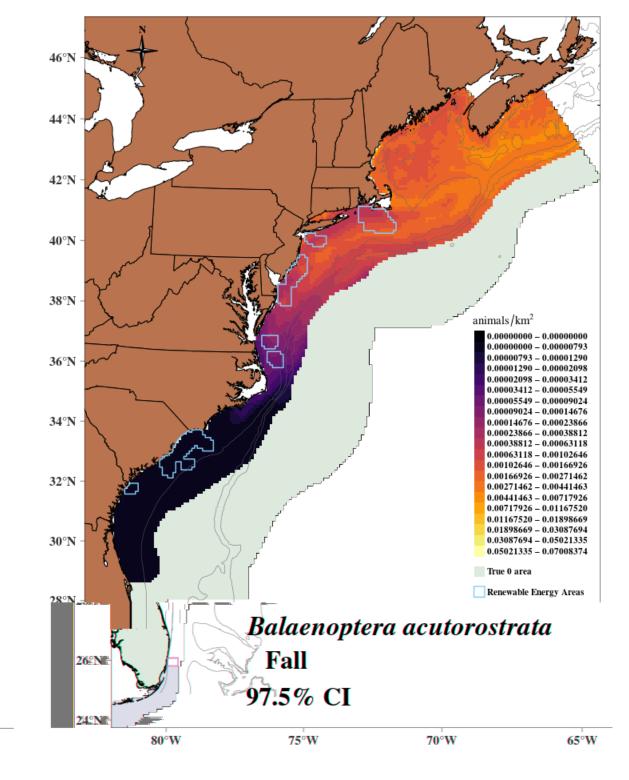




Figure 5-14 Minke whale fall average density estimates

Figure 5-15 Lower 2.5% confidence interval of the fall minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 5-16 Upper 97.5% confidence interval of the fall minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

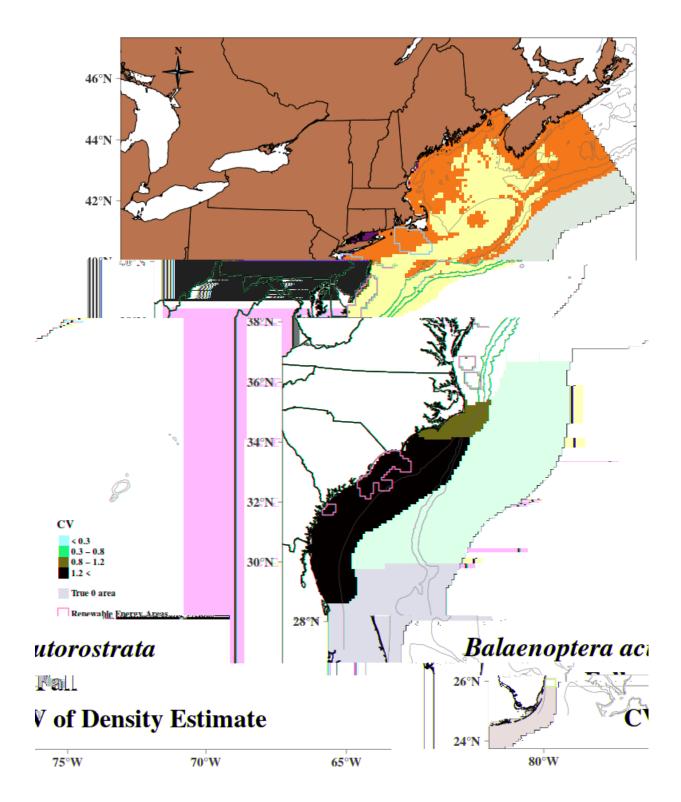


Figure 5-17 CV of fall minke whale density estimates

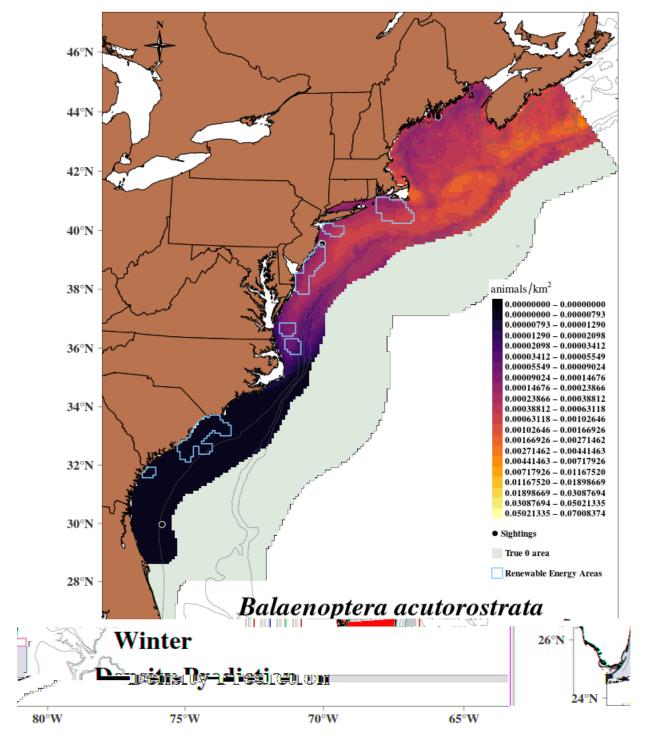
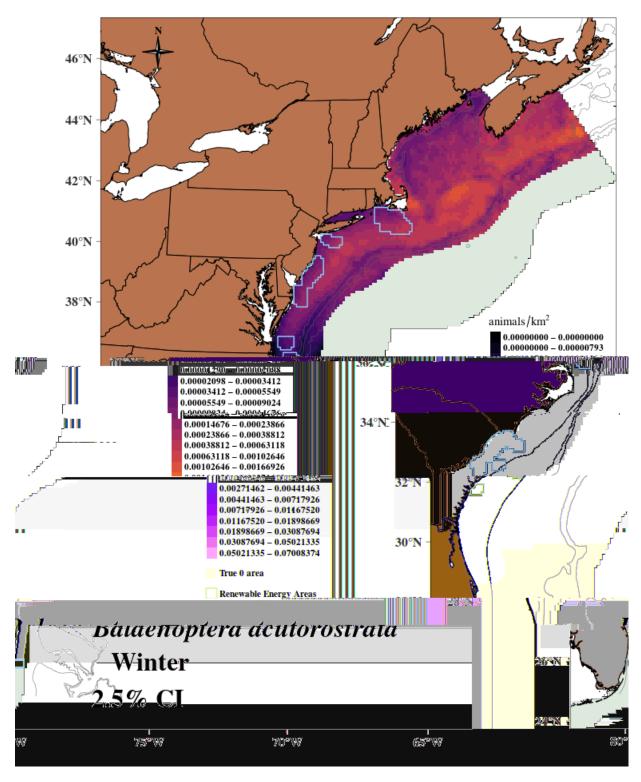
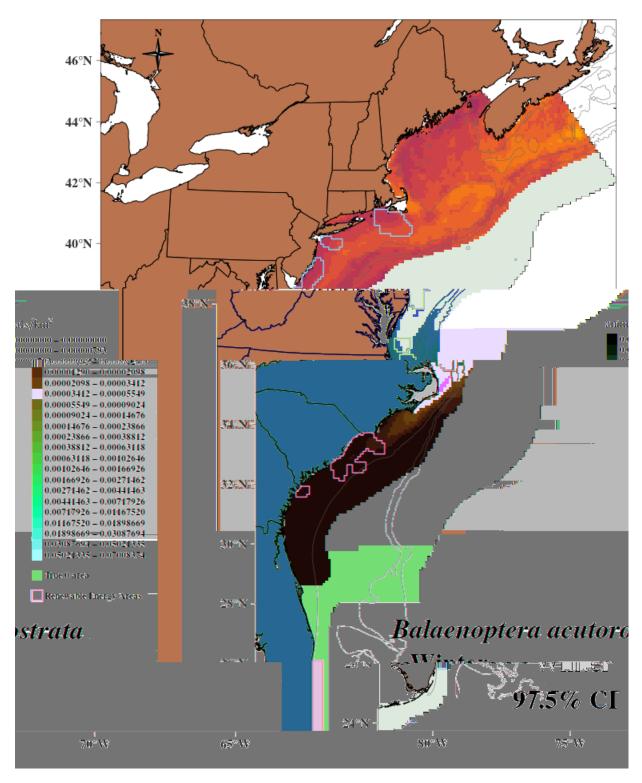




Figure 5-18 Minke whale winter average density estimates

Figure 5-19 Lower 2.5% confidence interval of the winter minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 5-20 Upper 97.5% confidence interval of the winter minke whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

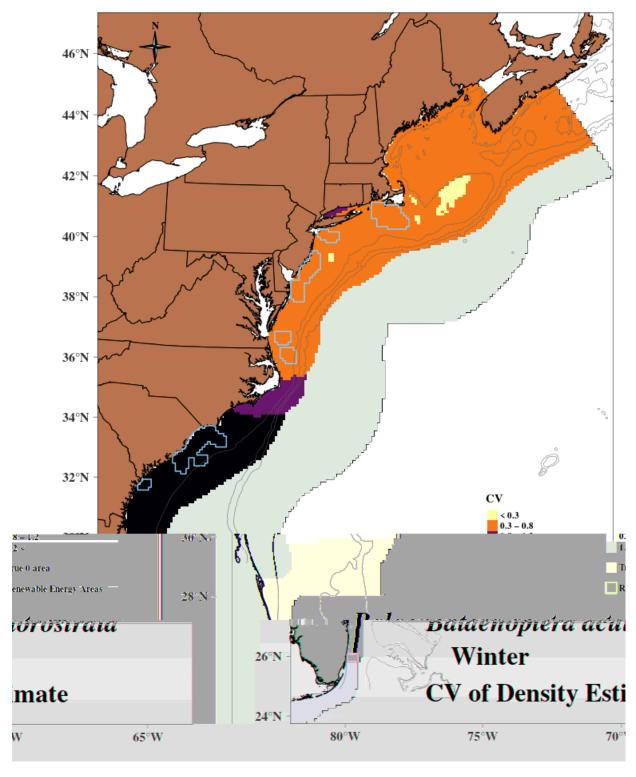


Figure 5-21 CV of winter minke whale density estimates

5.7 Offshore Energy Development Areas

Table 5-6 Minke whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	15.7	0.44	6.9–35.8
(Mar-May)	NY	1.8	0.44	0.8–4.0
	NJ	2.1	0.45	0.9–5.0
	DE/MD	1.3	0.44	0.6–3.0
	VA	0.4	0.56	0.1–1.0
	NC	0.3	0.65	0.1–0.8
	NC/SC	0.0	1.74	0.0–0.1
Summer	RI/MA	13.1	0.34	6.9–24.8
(Jun-Aug)	NY	1.3	0.50	0.5–3.2
	NJ	1.4	0.53	0.5–3.7
	DE/MD	0.7	0.46	0.3–1.6
	VA	0.1	0.56	0.0-0.4
	NC	0.1	0.64	0.0-0.3
	NC/SC	0.0	1.79	0.0-0.0
Fall	RI/MA	6.7	0.36	3.4–13.3
(Sep-Nov)	NY	1.0	0.50	0.4–2.5
	NJ	1.7	0.62	0.5–5.1
	DE/MD	0.7	0.53	0.3–2.0
	VA	0.1	0.57	0.0-0.4
	NC	0.1	0.64	0.0-0.3
	NC/SC	0.0	1.74	0.0-0.0
Winter	RI/MA	5.3	0.40	2.5-11.2
(Dec-Feb)	NY	1.0	0.42	0.4–2.1
,	NJ	1.6	0.44	0.7–3.5
	DE/MD	0.9	0.42	0.4–2.0
	VA	0.3	0.55	0.1–0.7
	NC	0.2	0.64	0.1–0.5
	NC/SC	0.0	1.72	0.0-0.1

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

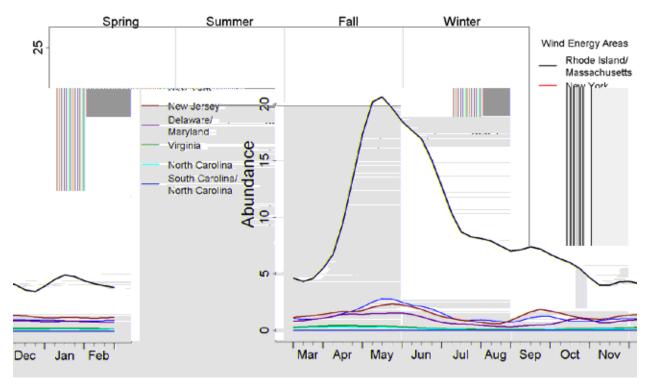


Figure 5-22 Average seasonal abundance of minke whales in the wind-energy study areas

Figure 6-1 Sperm whales Image collected under MMPA Research permit #775-1875. Credit: NOAA/NEFSC

6.1 Data Collection

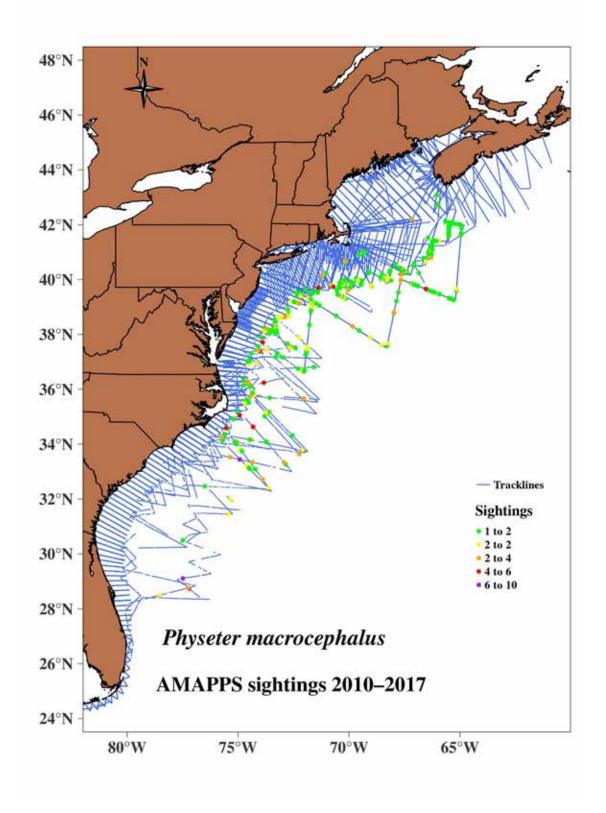


Figure 6-2 Distribution of track lines and sperm whale sightings 2010 to 2017

Table 6-1 AMAPPS research effort 2010 to 2017 and sperm whale sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	298	491
NE Shipboard	Fall	1,065	27	45
NE Aerial	Spring	13,314	3	3
NE Aerial	Summer	25,867	5	10
NE Aerial	Fall	37,850	6	9
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	38	44
SE Shipboard	Summer	12,968	70	156
SE Shipboard	Fall	3,012	12	38
SE Aerial	Spring	41,293	7	7
SE Aerial	Summer	28,236	3	3
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

6.2 Mark-Recapture Distance Sampling Analysis

Table 6-2 Intermediate parameters in sperm whale mark-recapture distance sampling models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE-aerial group 3	distance + group size	1500	Distance + sea state + quality	1500	HR	0.67	0.09	0.06	0.87	0.94
NE- shipboard group 9	distance * observer + glare + group size	4600	distance + swell	4600	HR	0.58	0.11	0.12	0.90	0.97
SE- shipboard group 5	distance * observer + group size	6000	distance + glare + time of day	6000	HR	0.57	0.11	0.24	0.61	0.65

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

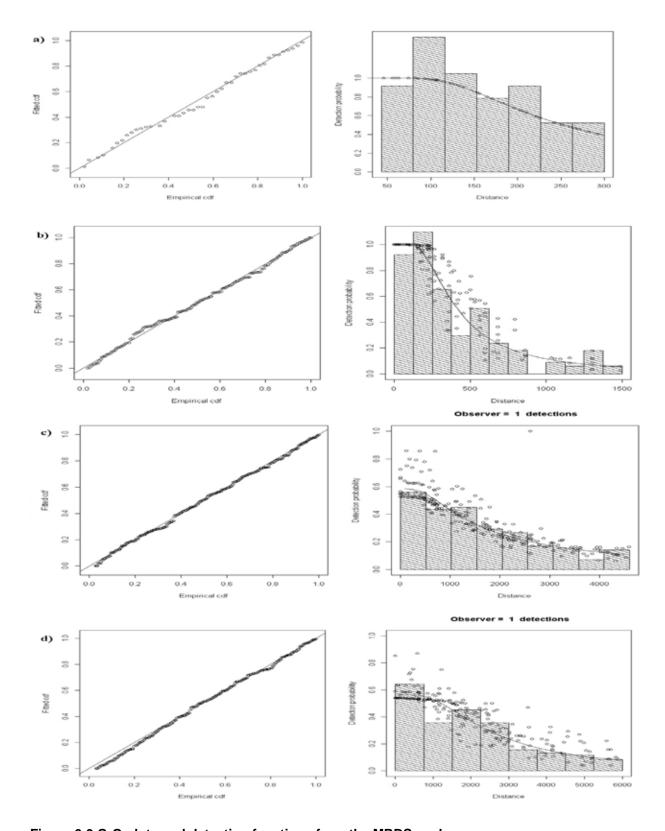


Figure 6-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 4; b) NE-aerial analysis set 3; c) NE-shipboard analysis set 9; d) SE-shipboard analysis set 5.

6.3 Generalized Additive Model Analysis

Table 6-3 2010 to 2017 density-habitat model output for sperm whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstmur)	1.18	4	7.91	10.79	< 0.0001
s(btemp)	2.90	4	8.55	2.16	< 0.0001
s(dist2GSNw)	2.64	4	2.86	0.52	0.0032
s(depth)	2.12	4	15.78	10.58	< 0.0001
s(dist1000)	2.94	4	21.94	22.17	< 0.0001
s(lat)	1.11	4	8.89	6.06	< 0.0001

Adjusted $R^2 = 0.0319$ Deviance explained = 52.3%

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

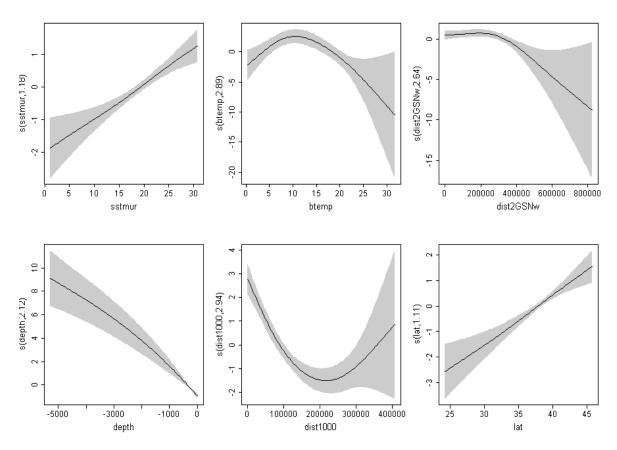


Figure 6-4 Sperm whale density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

6.4 Model Cross-Validation

Table 6-4 Diagnostic statistics from the sperm whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
	Spearman rank			
RHO	correlation	Non-zero density	0.191	Fair to good
	Mean absolute			
MAPE	percentage error	Non-zero density	86.680	Fair to good
	Spearman rank	All data divided in 25		
RHO	correlation	random samples	0.149	Fair to good
		All data divided in 25		
MAE	Mean absolute error	random samples	0.003	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

6.5 Abundance Estimates for AMAPPS Study Area

Table 6-5 Sperm whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	2,576	0.35	1,323–5,015
Summer (June-August)	5,342	0.29	3,061–9,324
Fall (September–November)	4,641	0.30	2,611–8,251
Winter (December–February)	2,580	0.34	1,349–4,934
Summer 2011 U.S. surveys ¹	39	0.64	
Summer 2016 U.S. surveys ¹	4,349	0.28	

¹Hayes et al. 2020

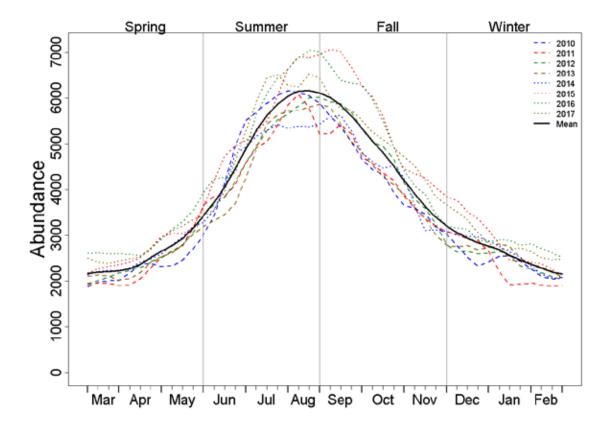


Figure 6-5 Annual abundance trends for sperm whales in the AMAPPS study area

6.6 Seasonal Prediction Maps

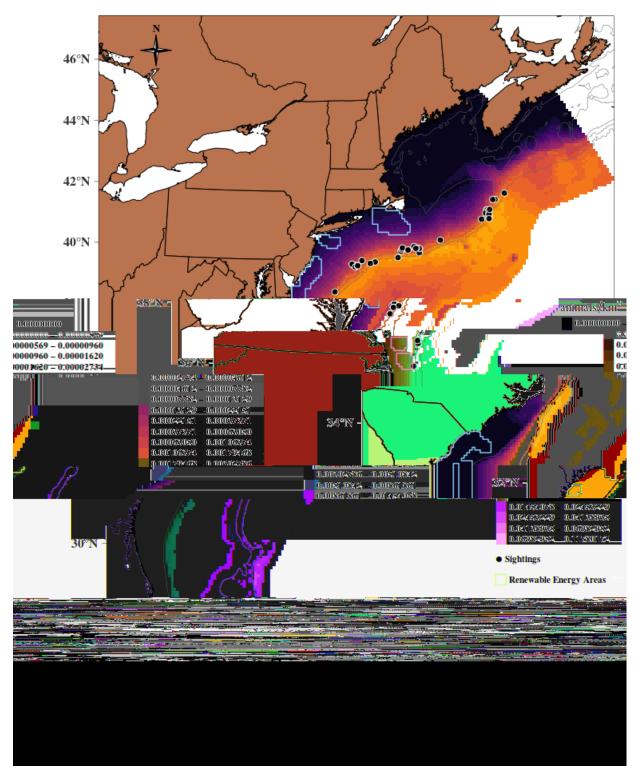
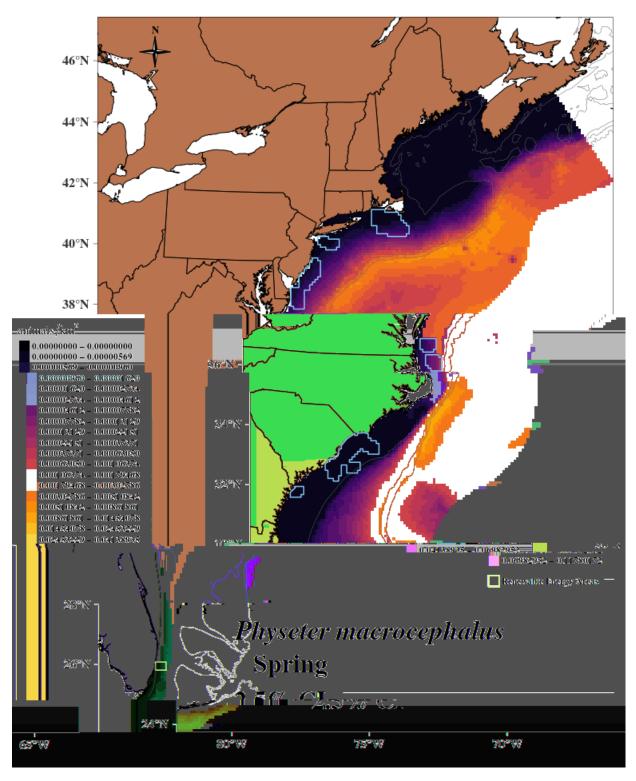
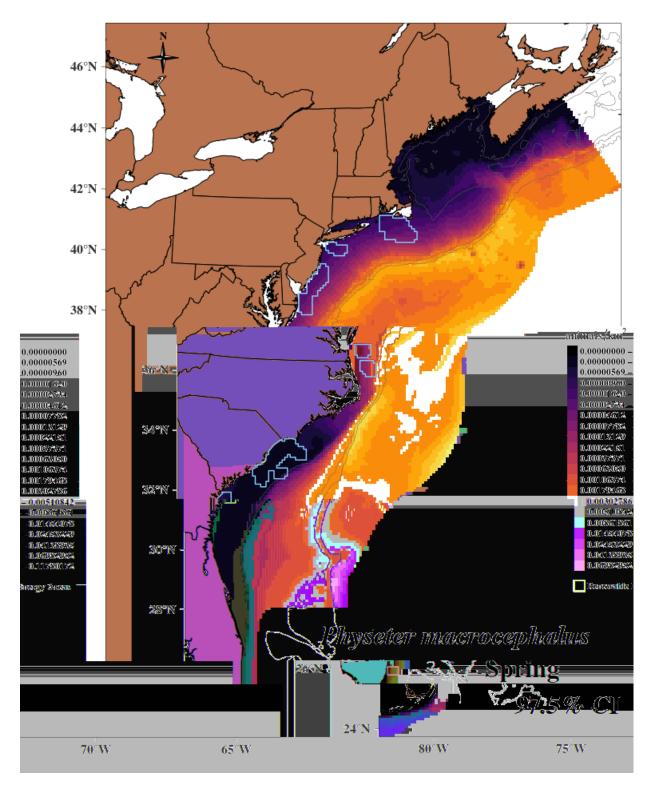




Figure 6-6 Sperm whale spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-7 Lower 2.5% confidence interval of the spring sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-8 Upper 97.5% confidence interval of the spring sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

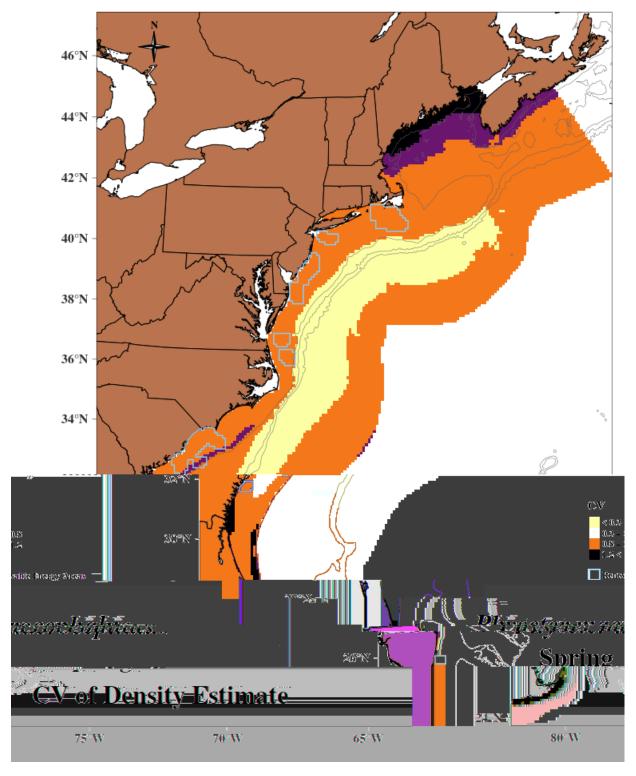


Figure 6-9 CV of spring sperm whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

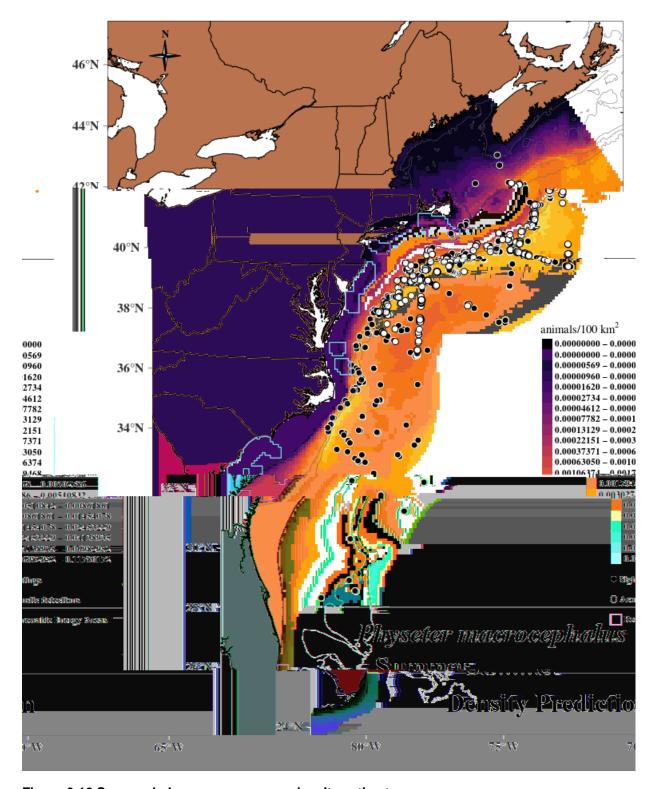
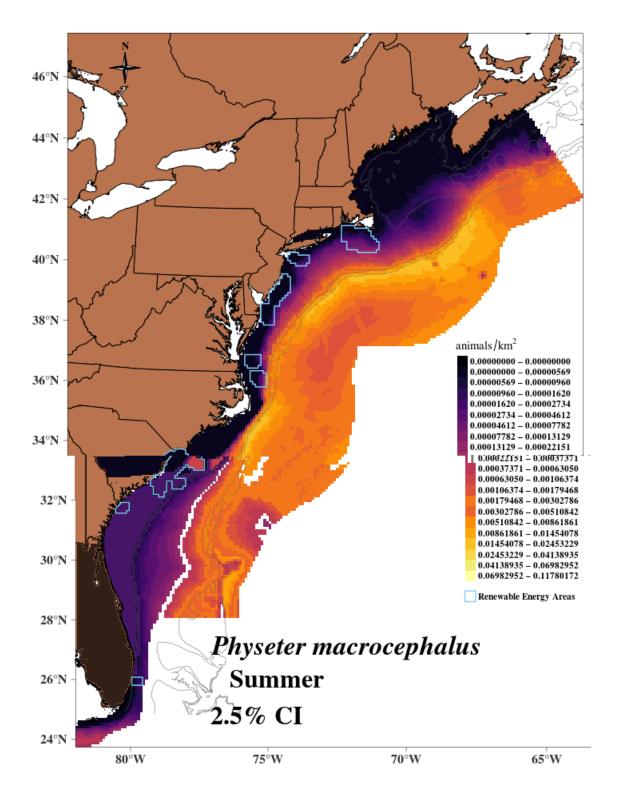
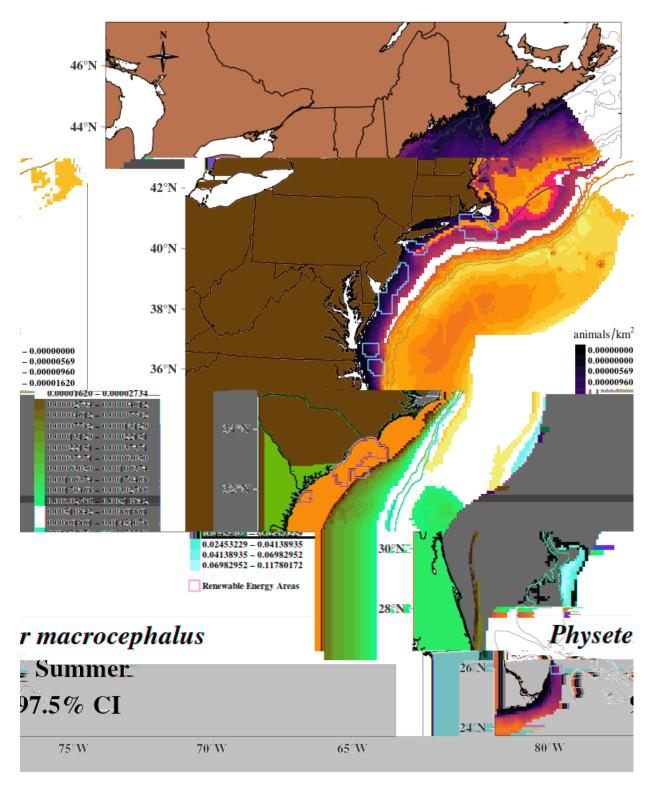




Figure 6-10 Sperm whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Black circles indicate locations of animal sightings. White circles are locations of sperm whale passive acoustic detections from the NEFSC 2011 and 2013 towed hydrophone arrays. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-11 Lower 2.5% confidence interval of the summer sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-12 Upper 97.5% confidence interval of the summer sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

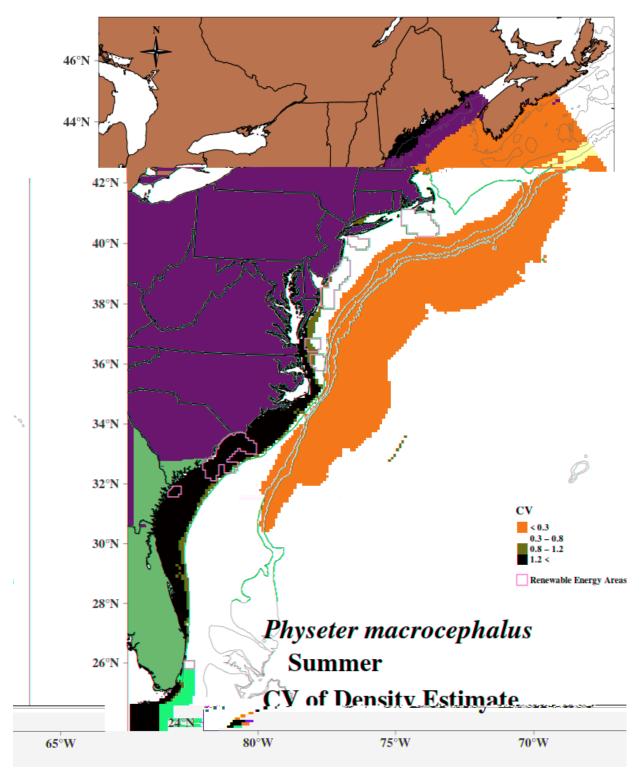


Figure 6-13 CV of summer sperm whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

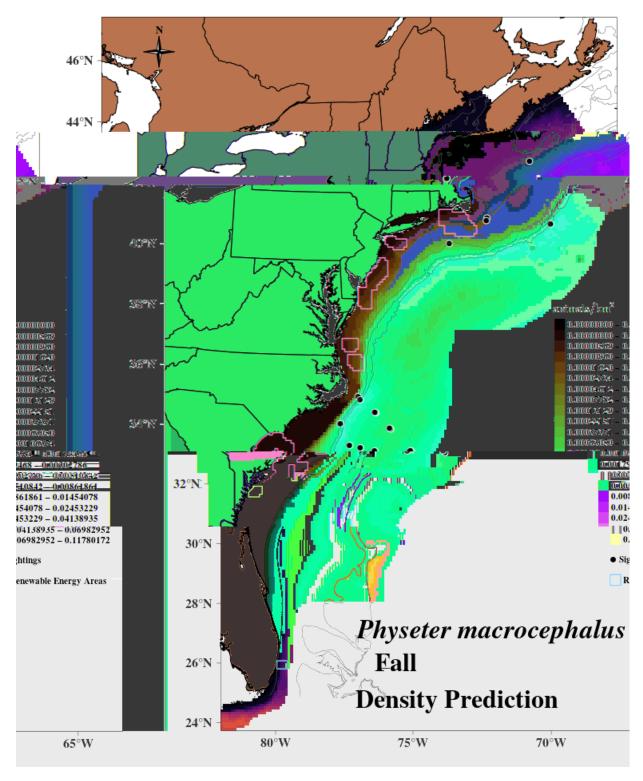
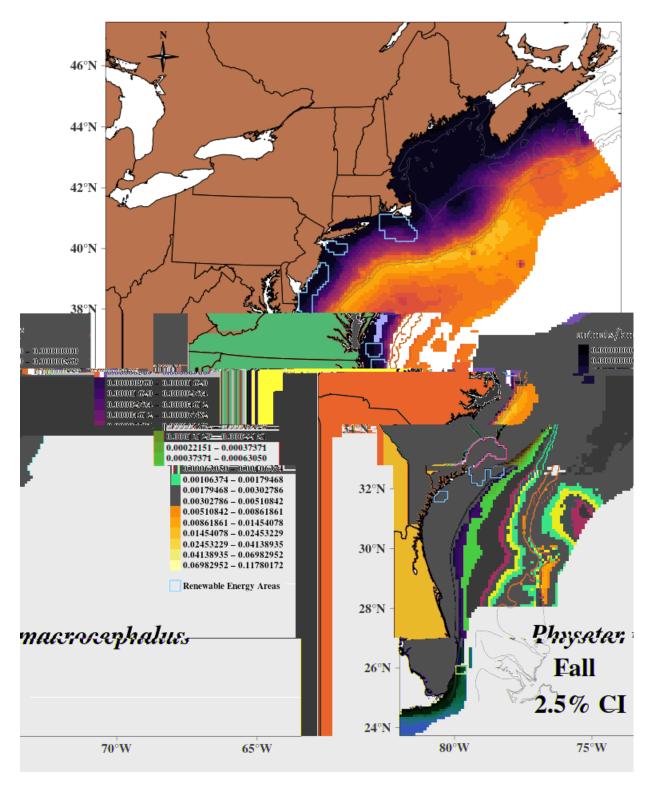
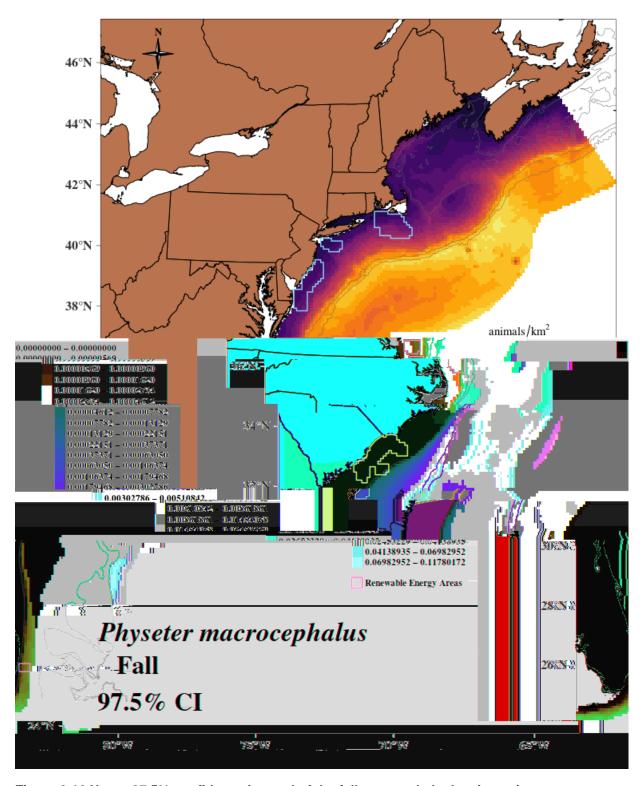




Figure 6-14 Sperm whale fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-15 Lower 2.5% confidence interval of the fall sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-16 Upper 97.5% confidence interval of the fall sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

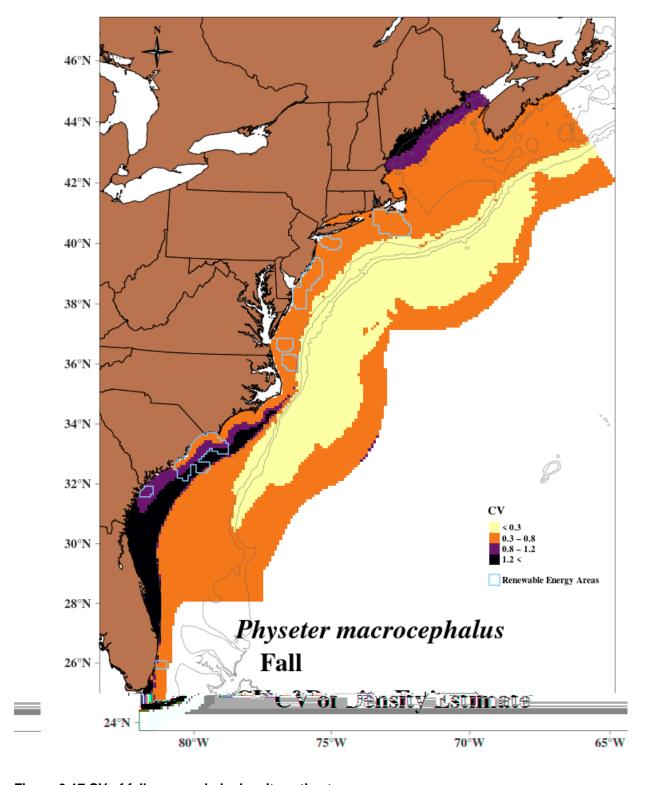


Figure 6-17 CV of fall sperm whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

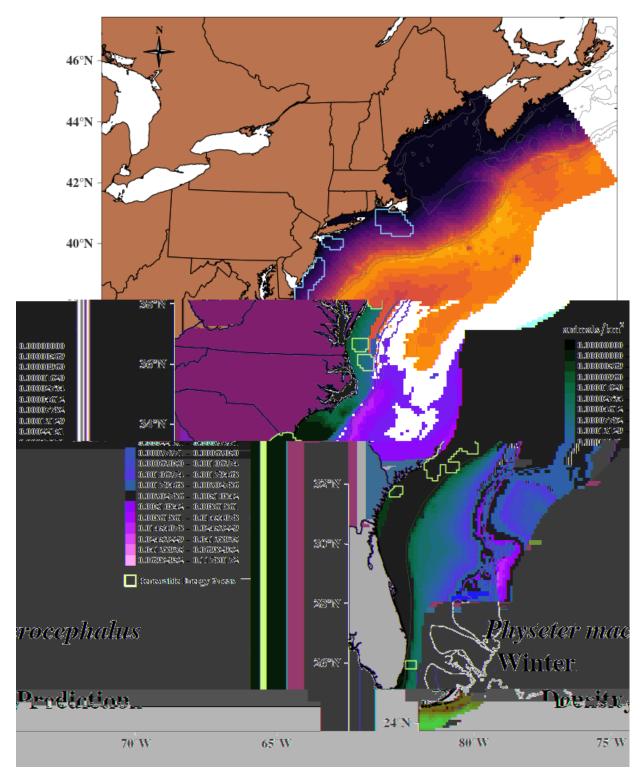
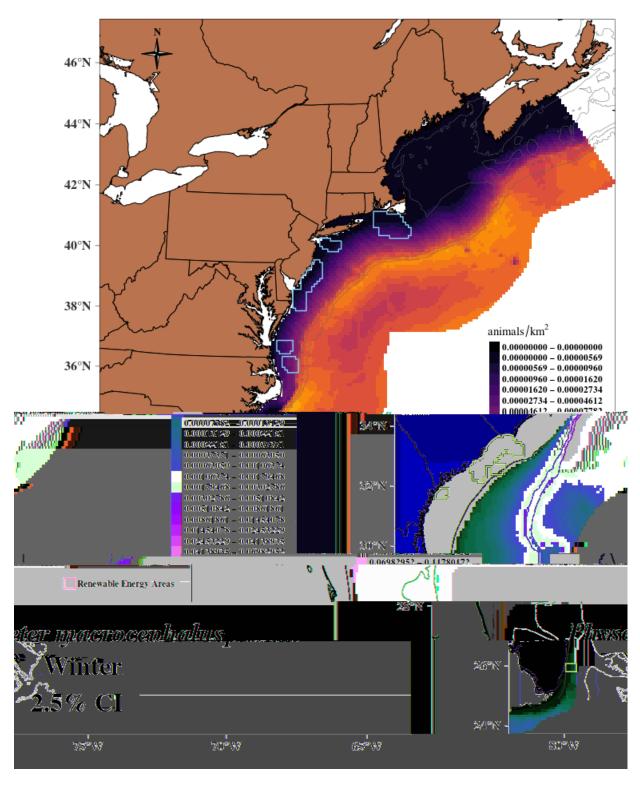
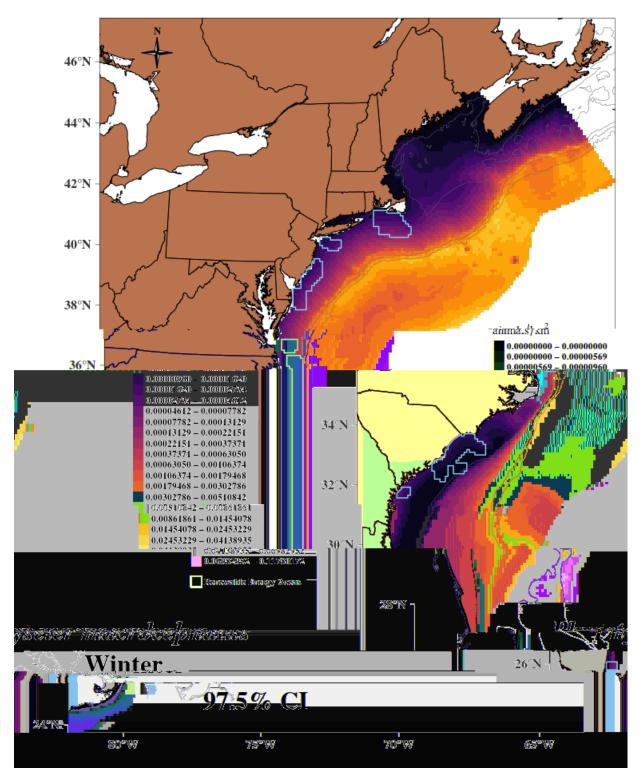




Figure 6-18 Sperm whale winter average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-19 Lower 2.5% confidence interval of the winter sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 6-20 Upper 97.5% confidence interval of the winter sperm whale density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

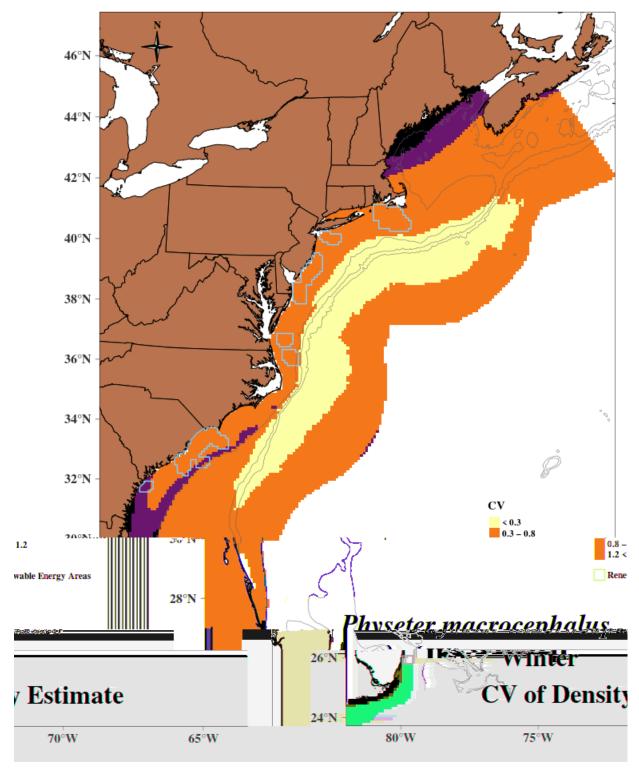


Figure 6-21 CV of winter sperm whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

6.7 Offshore Energy Development Areas

Table 6-6 Sperm whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	0.2	0.42	
(Mar–May)	NY	0.0	0.44	0.0 0.1
` • • • • • • • • • • • • • • • • • • •	NJ	0.1	0.39	
	DE/MD	0.1	0.36	
	VA	0.2	0.36	
	NC	0.6	0.33	
	NC/SC	0.0	0.61	0.0 0.1
Summer	RI/MA	1.0	0.35	.0
(Jun-Aug)	NY	0.1	0.41	0.0 0.1
, ,,	NJ	0.0	0.52	0.0 0.1
	DE/MD	0.0	0.46	0.0 0.1
	VA	0.0	0.47	0.0 0.1
	NC	0.4	0.37	
	NC/SC	0.0	0.63	0.0 0.0
Fall	RI/MA	0.5	0.37	.0
(Sep-Nov)	NY	0.0	0.46	0.0 0.1
, , ,	NJ	0.1	0.44	0.0 0.2
	DE/MD	0.1	0.43	0.0 0.1
	VA	0.0	0.48	0.0 0.1
	NC	0.2	0.43	
	NC/SC	0.0	0.74	0.0 0.0
Winter	RI/MA	0.3	0.38	
(Dec-Feb)	NY	0.0	0.43	0.0 0.1
,	NJ	0.1	0.40	
	DE/MD	0.1	0.38	
	VA	0.2	0.36	
	NC	0.5	0.36	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NC/SC	0.0	0.57	0.0 0.1

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

Figure 6-22 Average seasonal abundance of sperm whales in the wind-energy study areas

Figure 7-1 Cuvier's beaked whale Image collected under MMPA research permit #779-1633. Credit:NOAA/SEFSC.

7.1 Data Collection

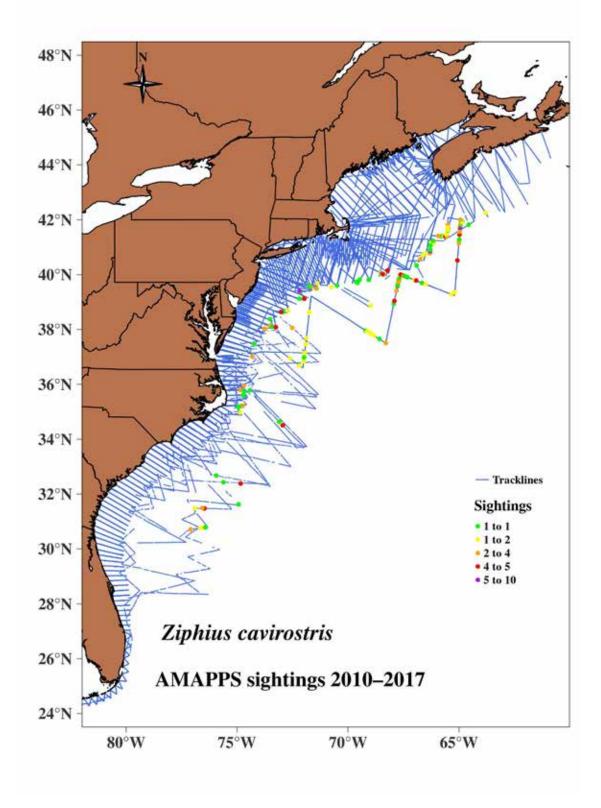
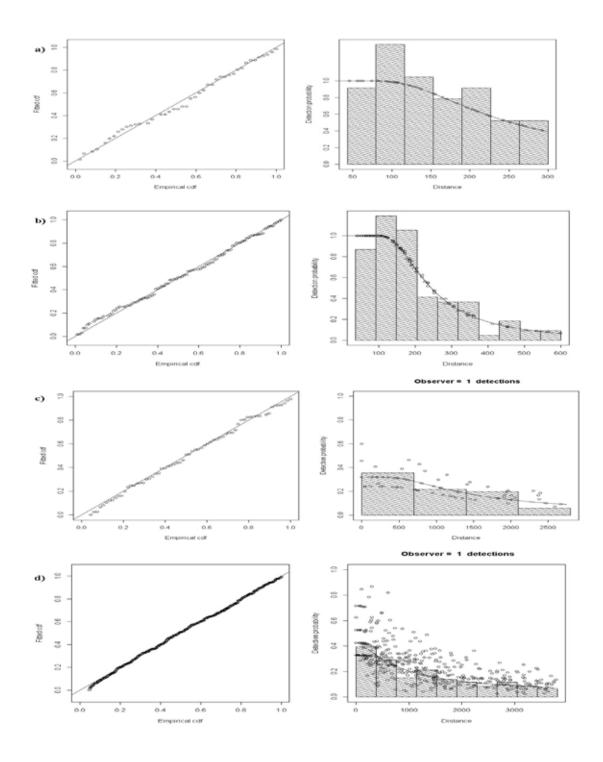


Figure 7-2 Distribution of track lines and Cuvier's beaked whale sightings 2010 to 2017

Table 7-1 AMAPPS research effort 2010 to 2017 and Cuvier's beaked whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	148	404
NE Shipboard	Fall	1,065	4	6
NE Aerial	Spring	13,314	1	4
NE Aerial	Summer	25,867	1	1
NE Aerial	Fall	37,850	0	0
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	5	6
SE Shipboard	Summer	12,968	19	45
SE Shipboard	Fall	3,012	6	10
SE Aerial	Spring	41,293	3	6
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

7.2 Mark-Recapture Distance Sampling Analysis

Table 7-2 Intermediate parameters in Cuvier's beaked whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
SE–aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE–aerial group 2	distance * observer + group size + sea state + quality	600	distance + sea state	L35-600	HR	0.62	0.19	0.86	0.89	0.91
NE- shipboard group 6	distance * observer + group size	3800	distance + sea state + swell + time of day	3800	HR	0.42	0.13	0.22	0.31	0.88
SE- shipboard group 4	distance + group size	2800	distance	2800	HR	0.32	0.40	0.52	0.99	1.00

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 7-3 Q-Q plots and detection functions from the MRDS analysesa) SE-aerial analysis set 4; b) NE-aerial analysis set 2; c) NE-shipboard analysis set 6; d) SE-shipboard analysis set 4.

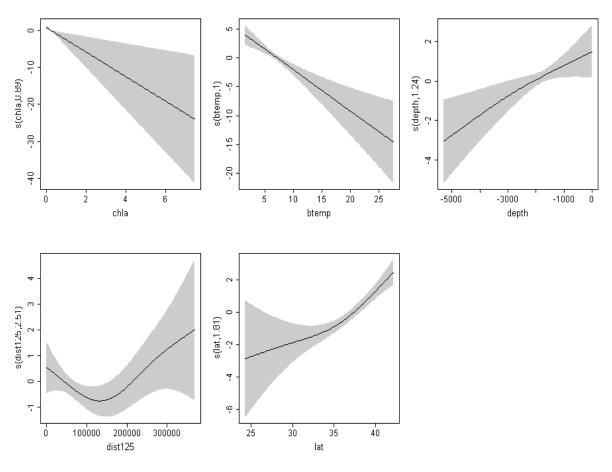

7.3 Generalized Additive Model Analysis

Table 7-3 2010 to 2017 density-habitat model output for Cuvier's beaked whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chla)	0.89	4	1.95	2.96	0.0030
s(btemp)	1.00	4	5.76	6.25	<0.0001
s(depth)	1.24	4	2.21	1.66	0.0010
s(dist125)	2.52	4	3.28	2.70	<0.0001
s(lat)	1.81	4	10.58	18.4	<0.0001

Adjusted $R^2 = 0.0396$. Deviance explained = 32%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 7-4 Cuvier's beaked whale density relative to significant habitat covariatesPlots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

7.4 Model Cross-Validation

Table 7-4 Diagnostic statistics from the Cuvier's beaked whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
	Spearman rank			
RHO	correlation	Non-zero density	0.188	Fair to good
	Mean absolute			
MAPE	percentage error	Non-zero density	85.386	Fair to good
	Spearman rank	All data divided in 25		
RHO	correlation	random samples	0.110	Fair to good
		All data divided in 25		_
MAE	Mean absolute error	random samples	0.003	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

7.5 Abundance Estimates for AMAPPS Study Area

Table 7-5 Cuvier's beaked whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Summer (June-August)	4,688	0.36	2,365-9,293
Summer 2011 U.S. surveys ¹	6,532	0.32	
Summer 2016 U.S. surveys ¹	5,744	0.36	

¹Hayes et al. 2020

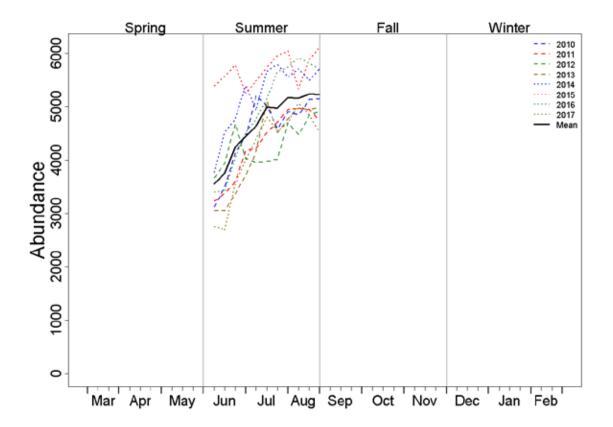


Figure 7-5 Annual abundance trends for Cuvier's beaked whales in the AMAPPS study area

7.6 Seasonal Prediction Maps

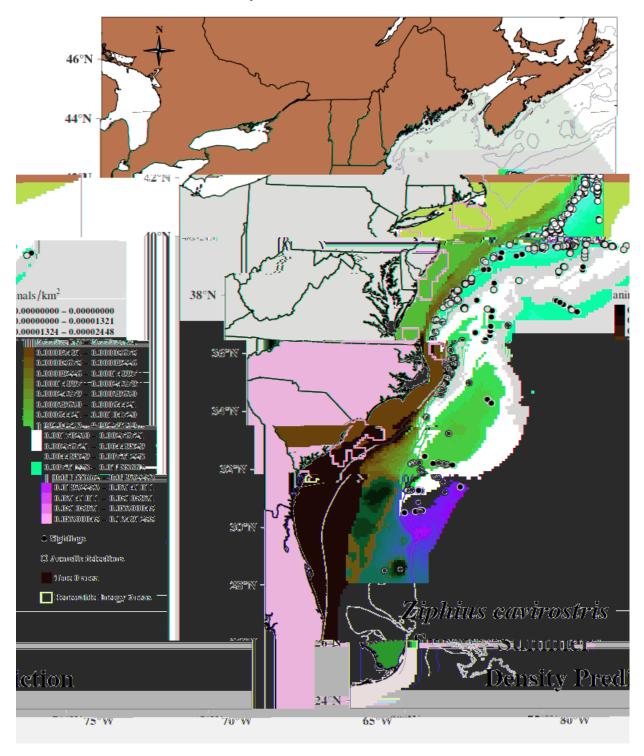
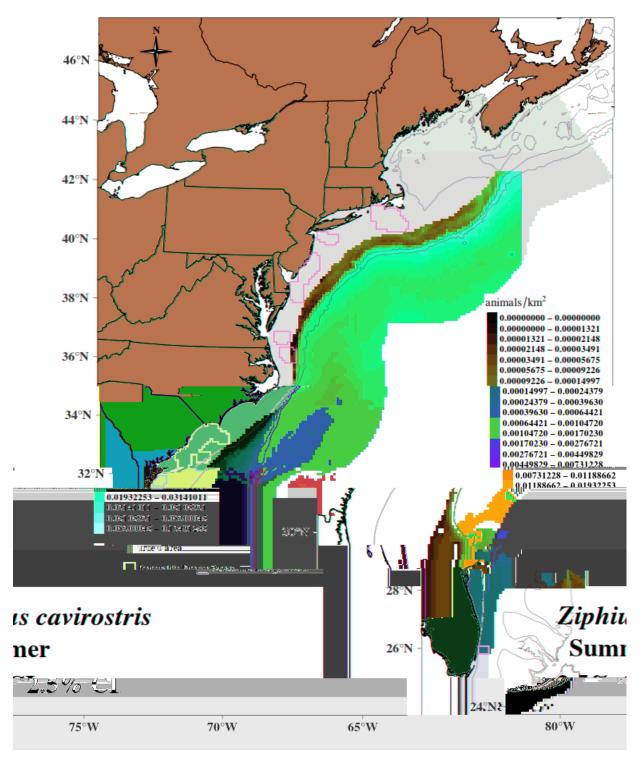



Figure 7-6 Cuvier's beaked whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Black circles indicate locations of animal sightings. White circles indicate locations of passive acoustic detections of Cuvier's beaked whales from the NEFSC and SEFSC 2013 and 2016 towed hydrophone arrays. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 7-7 Lower 2.5% confidence interval of the summer Cuvier's beaked whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

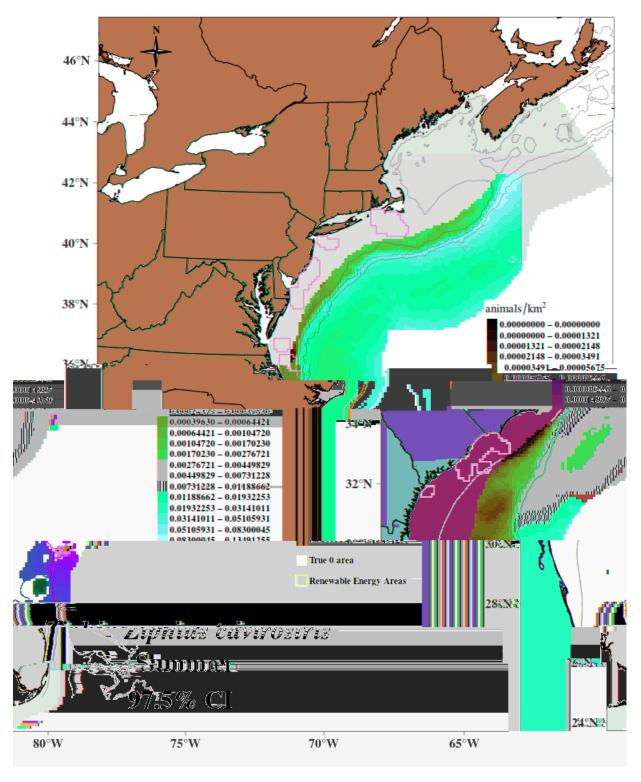


Figure 7-8 Upper 97.5% confidence interval of the summer Cuvier's beaked whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

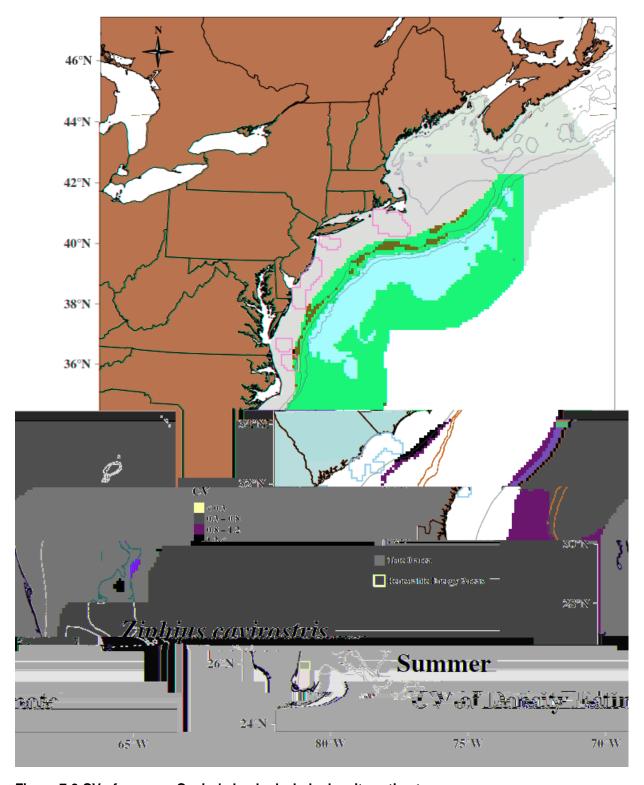


Figure 7-9 CV of summer Cuvier's beaked whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

7.7 Offshore Energy Development Areas

Table 7-6 Cuvier's beaked whale abundance estimates for wind energy areas

Season	Area of interest	Abundance*	CV	95% Confidence Interval*
Summer (Jun-Aug)	NC	0.1	0.74	0.0-0.3

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

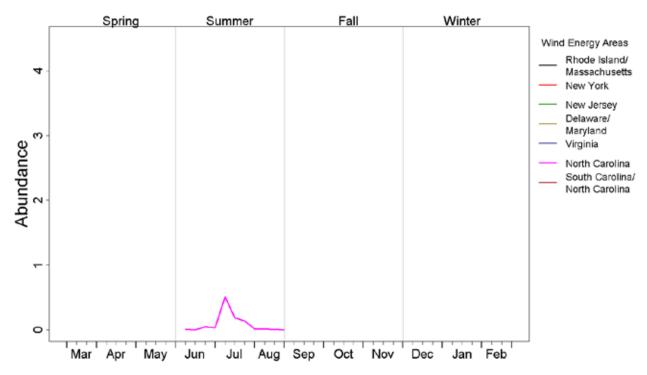


Figure 7-10 Average seasonal abundance of Cuvier's beaked whales in the wind-energy study areas

Figure 8-1 Sowerby's beaked whale Image collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Desray Reeb

8.1 Data Collection

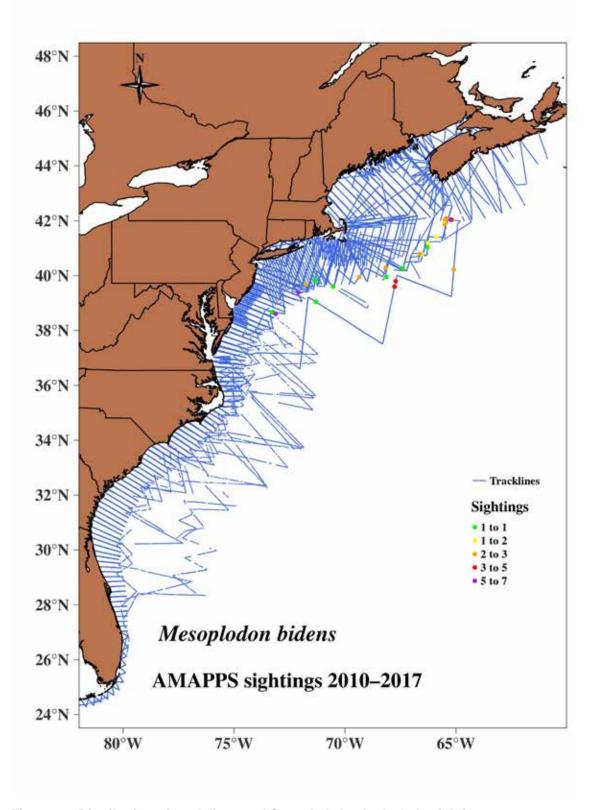
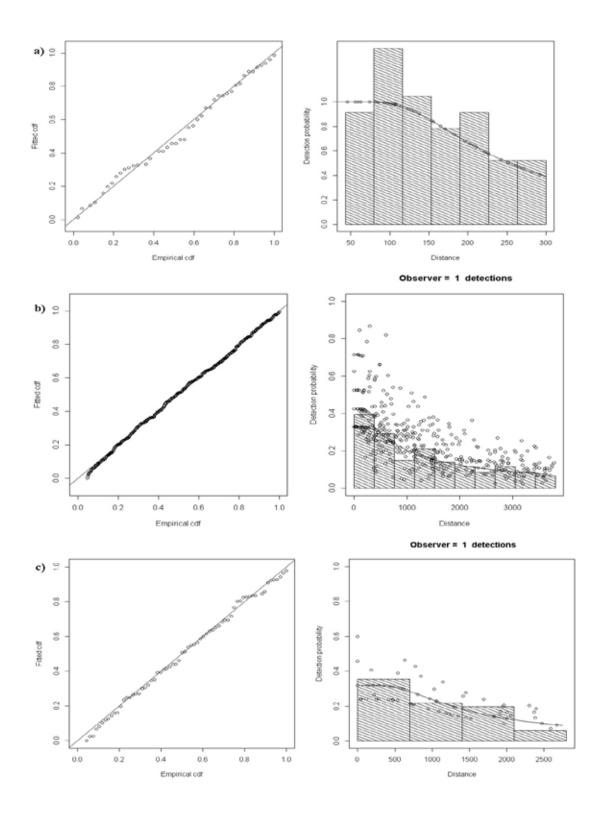


Figure 8-2 Distribution of track lines and Sowerby's beaked whale sightings 2010 to 2017

Table 8-1 AMAPPS research effort 2010 to 2017 and Sowerby's beaked whale sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	28	29
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	0	0
NE Aerial	Summer	25,867	0	0
NE Aerial	Fall	37,850	0	0
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	0	0
SE Shipboard	Summer	12,968	1	1
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	1	1
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

8.2 Mark-Recapture Distance Sampling Analysis

Table 8-2 Intermediate parameters in Sowerby's beaked whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
SE-aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	HR	0.86	0.18	0.98	0.96	0.95
NE- shipboard group 6	distance * observer + group size	3800	distance + sea state + swell + time of day	3800	HR	0.42	0.13	0.22	0.31	0.88
SE- shipboard group 4	distance + group size	2800	distance	2800	HR	0.32	0.40	0.52	0.99	1.00

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 8-3 Q-Q plots and detection functions from the MRDS analyses a) SE-aerial analysis set 4; b) NE-shipboard analysis set 6; c) SE-shipboard analysis set 4.

8.3 Generalized Additive Model Analysis

Table 8-3 2010 to 2017 density-habitat model output for Sowerby's beaked whales

Covariates					
s(sla)	0.80	4	0.92	1.94	0.0292
s(sstfmt)	0.86	4	1.10	3.72	0.0220
s(btemp)	0.93	4	2.50	7.83	0.0009
s(dist1000)	1.01	4	3.47	11.41	0.0001
s(lat)	0.99	4	3.51	16.31	0.0001

Adjusted $R^2 = 0.042$. Deviance explained = 41.2%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

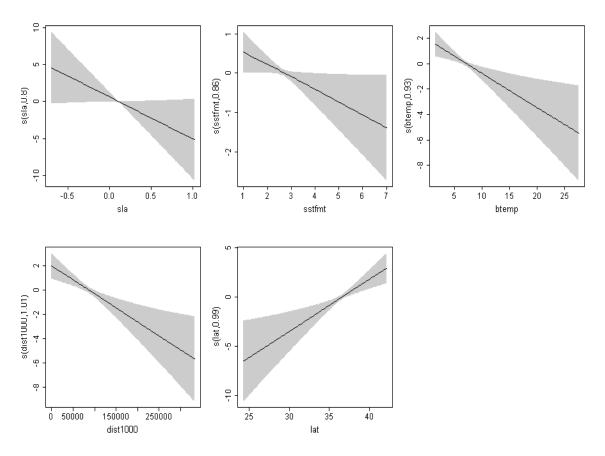


Figure 8-4 Sowerby's beaked whale density relative to significant habitat covariates
Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

8.4 Model Cross-Validation

Table 8-4 Diagnostic statistics from the Sowerby's beaked whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.185	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	91.290	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.142	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.006	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

8.5 Abundance Estimates for AMAPPS Study Area

Table 8-5 Sowerby's beaked whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Summer (June-August)	1,001	0.49	403–2,485
Summer 2011 U.S. surveys ¹	3,653	0.69	
Summer 2016 U.S. surveys ²	209	0.56	

¹Palka 2012; ²Palka 2020

Figure 8-5 Annual abundance trends for Sowerby's beaked whales in the AMAPPS study area

8.6 Seasonal Prediction Maps

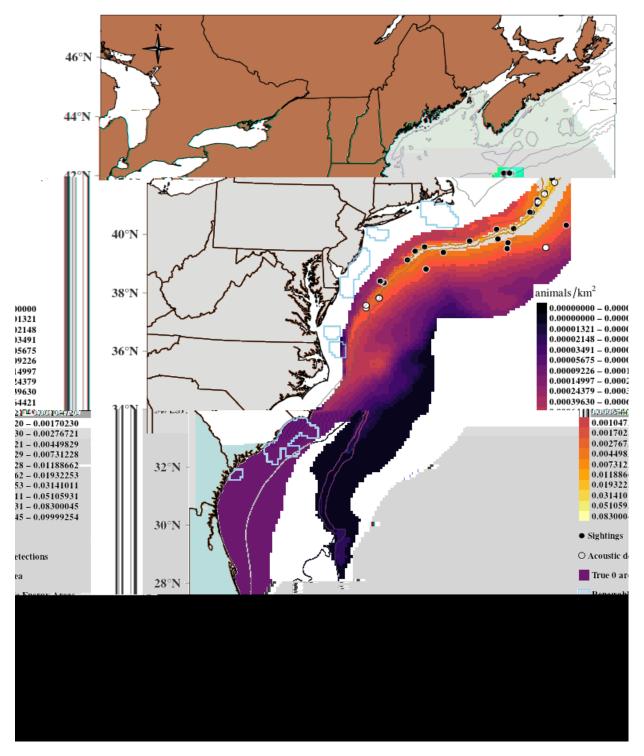


Figure 8-6 Sowerby's beaked whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Black circles indicate locations of animal sightings. White circles indicate locations of passive acoustic detections of Sowerby's beaked whales from the NEFSC and SEFSC 2013 and 2016 towed hydrophone arrays. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

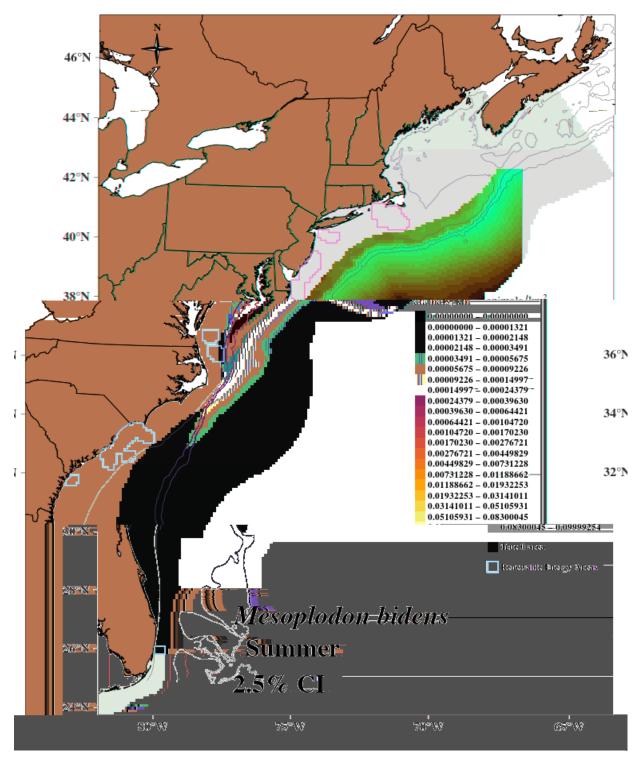


Figure 8-7 Lower 2.5% confidence interval of the summer Sowerby's beaked whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

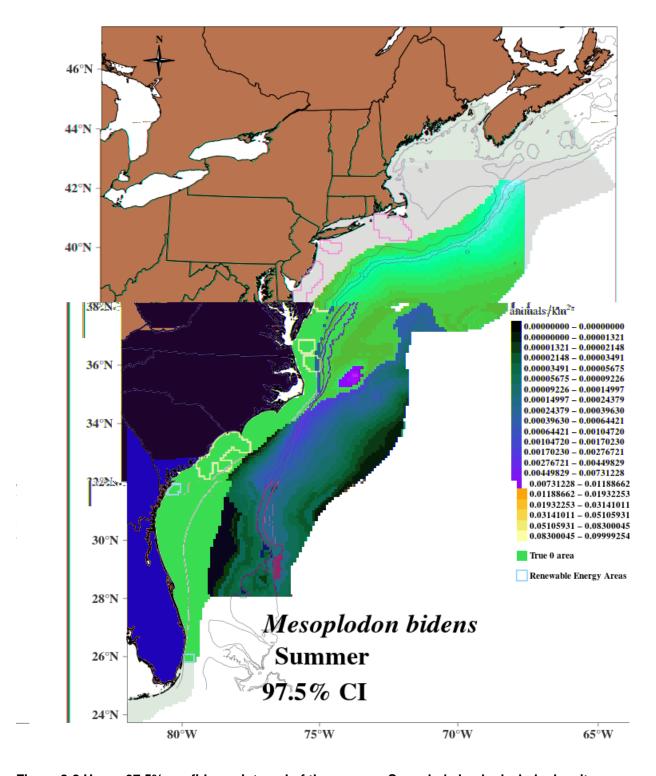


Figure 8-8 Upper 97.5% confidence interval of the summer Sowerby's beaked whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

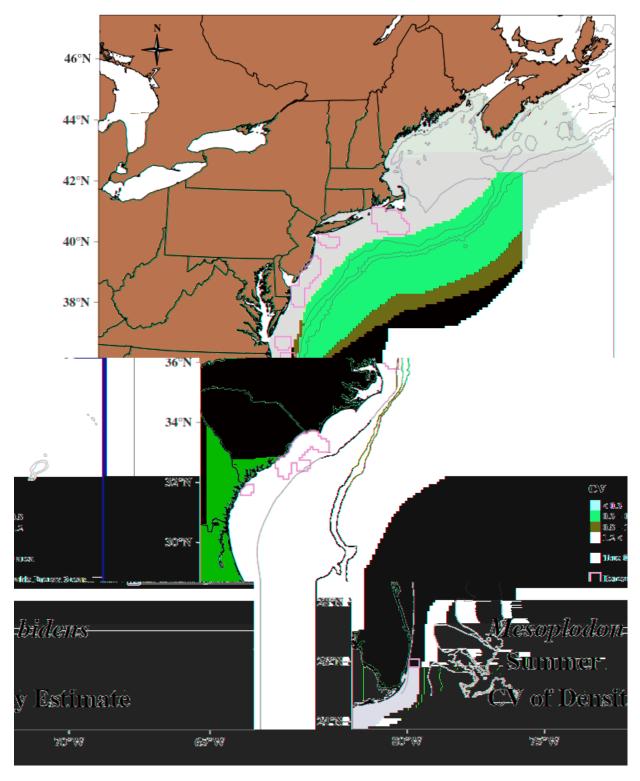


Figure 8-9 CV of summer Sowerby's beaked whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

8.7 Offshore Energy Development Areas

Table 8-6 Sowerby's beaked whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Summer (Jun-Aug)	NC	0.1	0.93	0.0-0.4

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

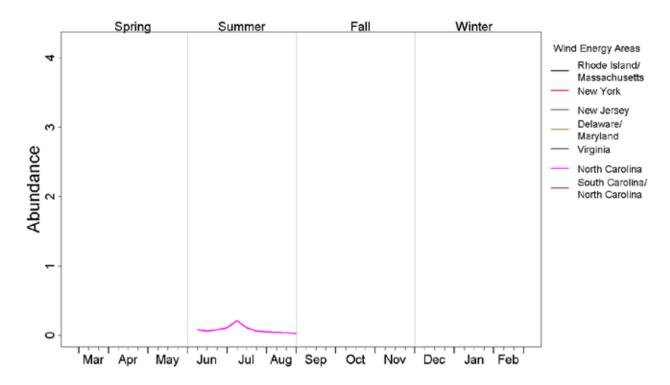


Figure 8-10 Average seasonal abundance of Sowerby's beaked whales in the wind-energy study areas

Figure 9-1 Unidentified beaked whales Image collected under MMPA Research permit #775-1875. Credit: NOAA/NEFSC/Robert DiGiovanni

9.1 Data Collection

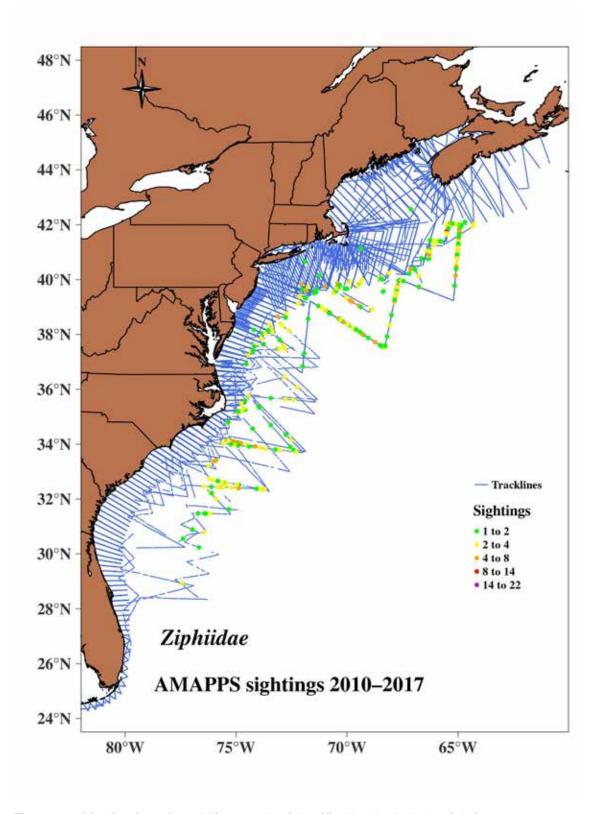


Figure 9-2 Distribution of track lines and unidentified beaked whale sightings 2010 to 2017

Table 9-1 AMAPPS research effort 2010 to 2017 and unidentified beaked whale sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	194	493
NE Shipboard	Fall	1,065	3	8
NE Aerial	Spring	13,314	4	8
NE Aerial	Summer	25,867	5	14
NE Aerial	Fall	37,850	4	7
NE Aerial	Winter	12,179	1	3
SE Shipboard	Spring	8,853	15	15
SE Shipboard	Summer	12,968	54	112
SE Shipboard	Fall	3,012	9	16
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	2	2

9.2 Mark-Recapture Distance Sampling Analysis

Table 9-2 Intermediate parameters in unidentified beaked whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE–aerial group 4	distance * observer + sea state + glare	300	distance	LT43- 300	0.86	0.18	0.98	0.97	0.95
NE-aerial group 2	distance * observer + group size + sea state + quality	600	distance + sea state	L35-600	0.62	0.19	0.86	0.89	0.91
NE-shipboard group 6	distance * observer + group size	3800	distance + sea state + swell + time of day	3800	0.42	0.13	0.22	0.31	0.88
SE-shipboard group 4	distance + group size	2800	distance	2800	0.32	0.40	0.52	0.99	1.00

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chi-square, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

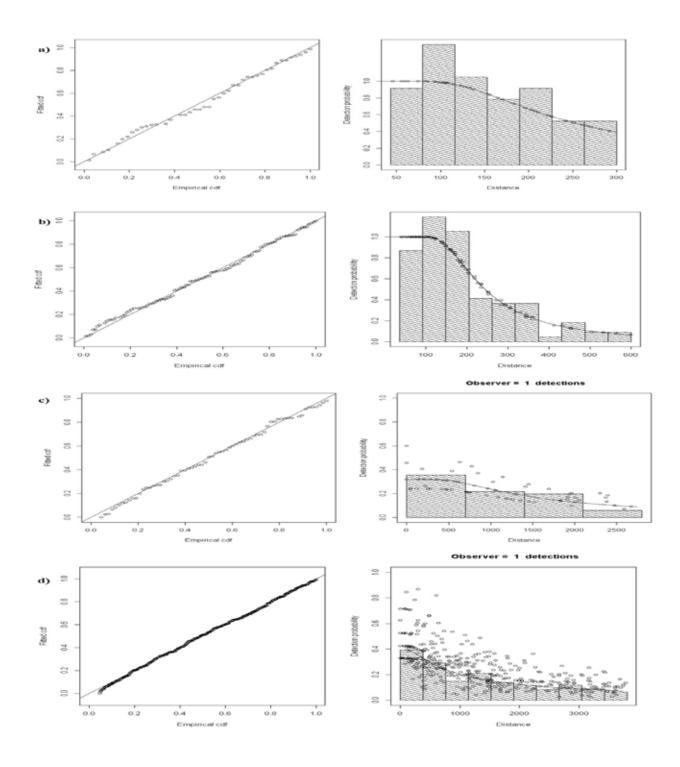


Figure 9-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 4; b) NE-aerial analysis set 2; c) SE-shipboard analysis set 4; d) NE-shipboard analysis set 6.

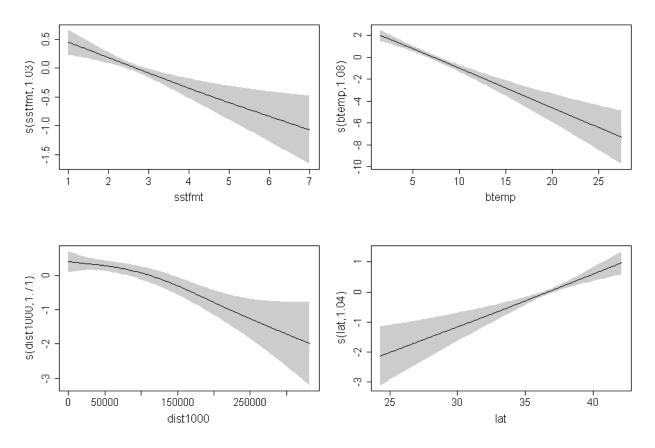

9.3 Generalized Additive Model Analysis

Table 9-3 2010 to 2017 density-habitat model output for unidentified beaked whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstfmt)	1.03	4	4.36	3.63	< 0.0001
s(btemp)	1.08	4	16.25	13.27	< 0.0001
s(dist1000)	1.71	4	5.10	2.58	< 0.0001
s(lat)	1.04	4	6.76	4.76	<0.0001

Adjusted $R^2 = 0.0156$. Deviance explained = 24.2%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 9-4 Unidentified beaked whale density relative to significant habitat covariatesPlots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

9.4 Model Cross-Validation

Table 9-4 Diagnostic statistics from the unidentified beaked whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.140	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	80.328	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.210	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.025	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

9.5 Abundance Estimates for AMAPPS Study Area

Table 9-5 Unidentified beaked whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Summer (June-August)	9,592	0.2	6,506 14,141
Summer 2011 U.S. surveys ¹	7,092	0.54	
Summer 2016 U.S. surveys ¹	10,107	0.27	

¹Hayes et al. 2020

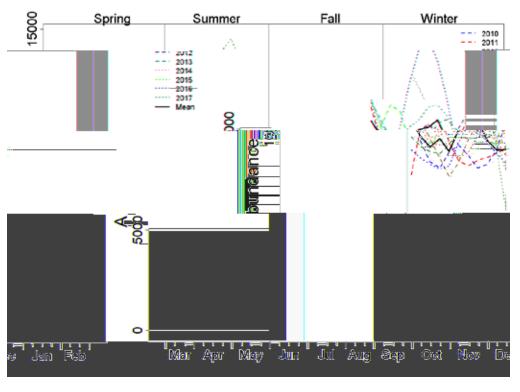


Figure 9-5 Annual abundance trends for unidentified beaked whales in the AMAPPS study area

9.6 Seasonal Prediction Maps

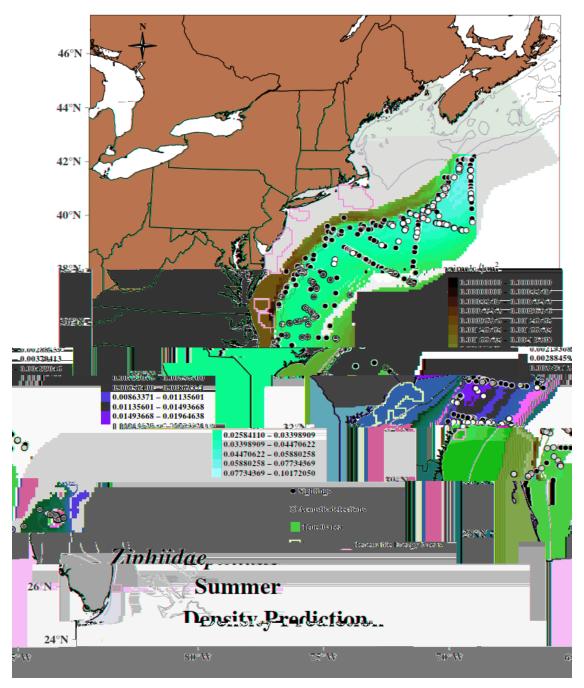


Figure 9-6 Unidentified beaked whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Black circles indicate locations of animal sightings. White circles indicate locations of passive acoustic detections of unidentified beaked whales and whales identified as Blainsville's, Gervais' or True's beaked whales from the NEFSC and SEFSC 2013 and 2016 towed hydrophone arrays. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

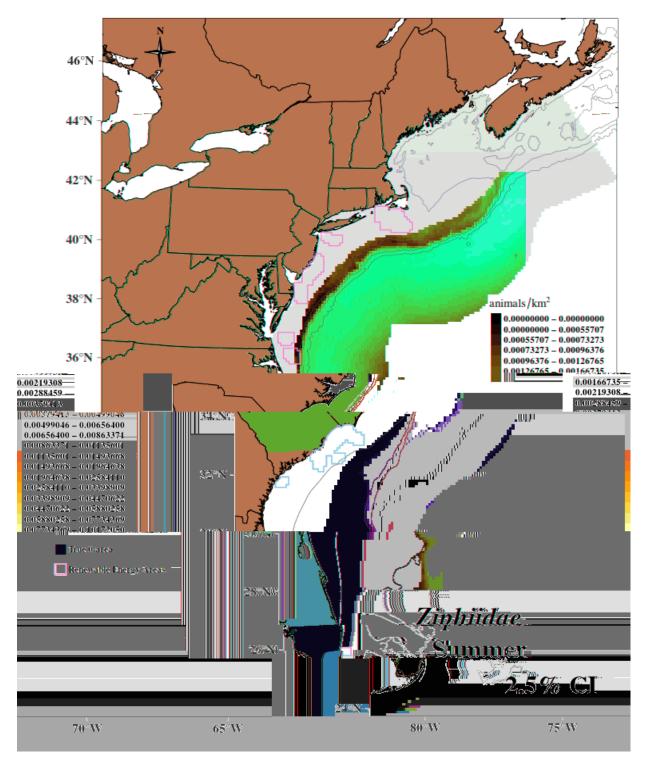


Figure 9-7 Lower 2.5% confidence interval of the summer unidentified beaked whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

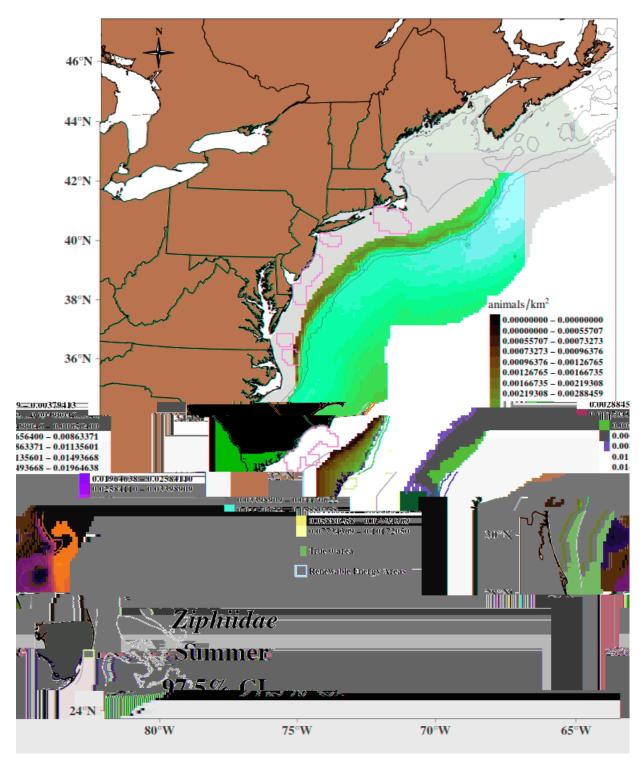


Figure 9-8 Upper 97.5% confidence interval of the summer unidentified beaked whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

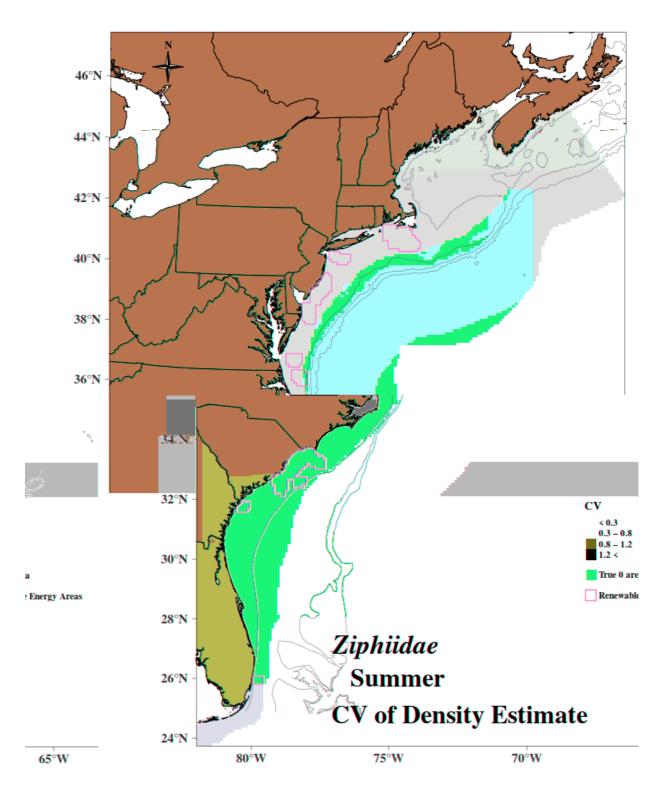


Figure 9-9 CV of summer unidentified beaked whale density estimates 100, 1,000 and 2,000 m depth contours shown.

9.7 Offshore Energy Development Areas

Table 9-6 Unidentified beaked whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Summer (Jun-Aug)	NC	0.9	0.29	0.5–1.6

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

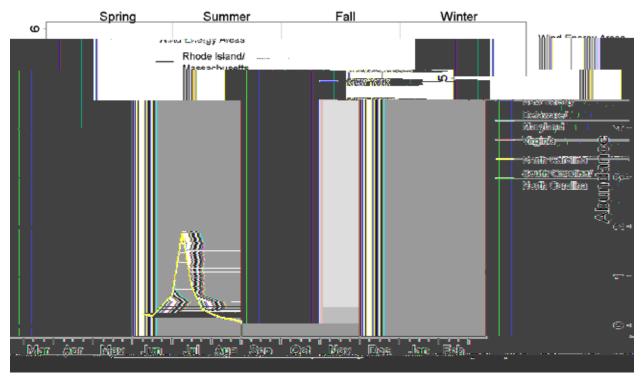


Figure 9-10 Average seasonal abundance of unidentified beaked whales in the wind-energy study areas

Figure 10-1 Pygmy sperm whale or dwarf sperm whale Image collected under MMPA research permit #779-1638. Credit: NOAA/SEFSC.

10.1 Data Collection

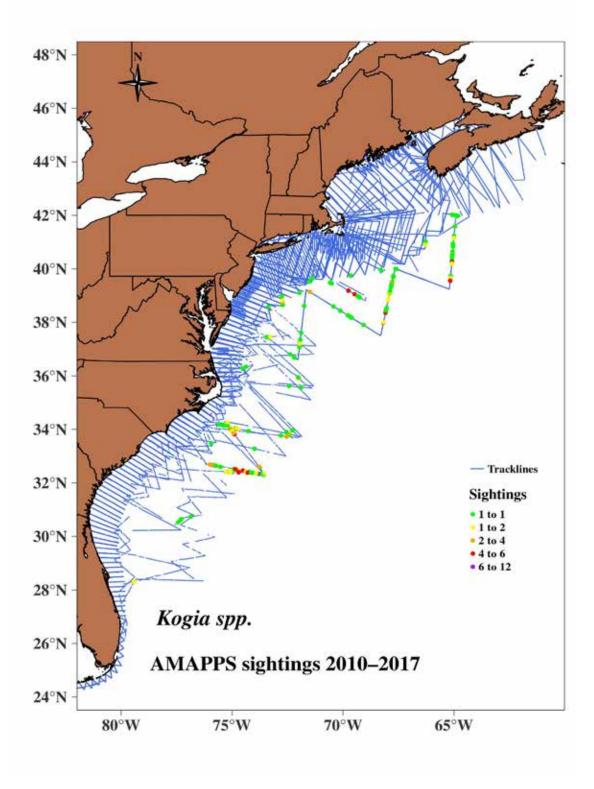
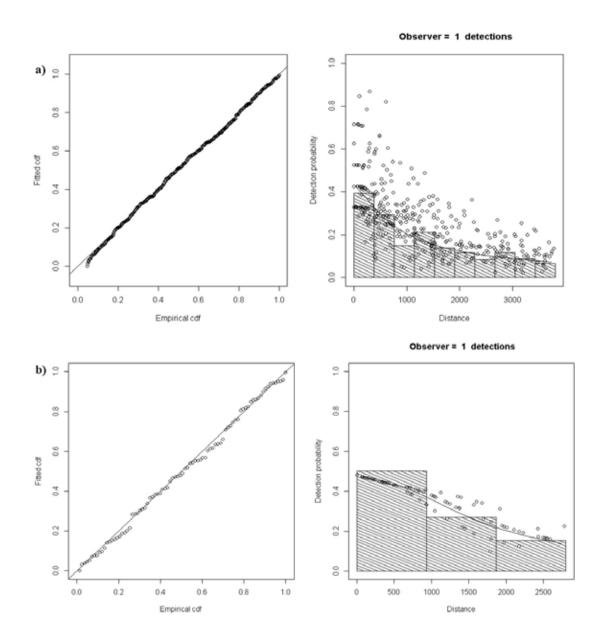


Figure 10-2 Distribution of track lines and Kogia spp. sightings 2010 to 2017

Table 10-1 AMAPPS research effort 2010 to 2017 and Kogia spp. sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	100	155
NE Shipboard	Fall	1,065	3	4
NE Aerial	Spring	13,314	0	0
NE Aerial	Summer	25,867	0	0
NE Aerial	Fall	37,850	0	0
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	0	0
SE Shipboard	Summer	12,968	81	151
SE Shipboard	Fall	3,012	16	30
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

10.2 Mark-Recapture Distance Sampling Analysis

Table 10-2 Intermediate parameters in Kogia spp. mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
NE- shipboard group 6	distance * observer + group size	3800	distance + sea state + swell + time of day	3800	HR	0.42	0.13	0.22	0.31	0.88
SE- shipboard group 6	distance	2800	distance + sea	2800	HR	0.48	0.26	0.74	0.99	0.99

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 10-3 Q-Q plots and detection functions from the MRDS analyses a) NE-shipboard analysis set 6; b) SE-shipboard analysis set 6.

10.3 Generalized Additive Model Analysis

Table 10-3 2010 to 2017 density-habitat model output for Kogia spp.

Covariates	Edf	Ref.df	F	C.dev	p-value
s(btemp)	1.84	4	13.27	20.95	<0.0001
s(mlp)	0.89	4	1.66	1.85	0.0050
s(pocma)	0.88	4	1.76	1.62	0.0037
s(dist2GSSw)	1.99	4	5.13	3.21	<0.0001

Adjusted $R^2 = 0.0376$. Deviance explained = 27.6%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

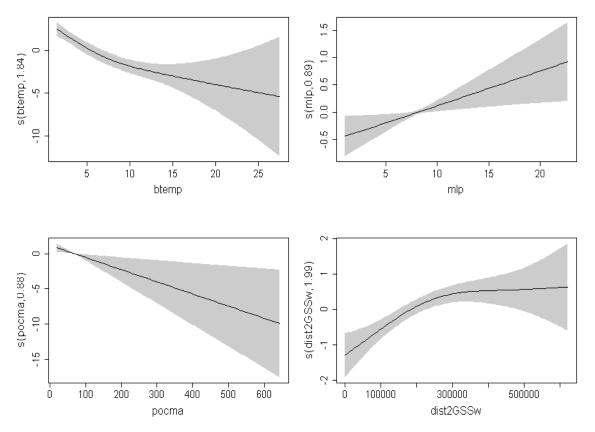


Figure 10-4 Kogia spp. density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

10.4 Model Cross-Validation

Table 10-4 Diagnostic statistics from the Kogia spp. density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.336	Excellent
MAPE	Mean absolute percentage error	Non-zero density	88.450	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.152	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.0143	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

10.5 Abundance Estimates for AMAPPS Study Area

Table 10-5 Kogia spp. average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Summer (June-August)	8,132	0.24	5,114 12,931
Summer 2011 U.S. surveys ¹	3,785	0.47	
Summer 2016 U.S. surveys ¹	7,750	0.38	

¹Hayes et al. 2020

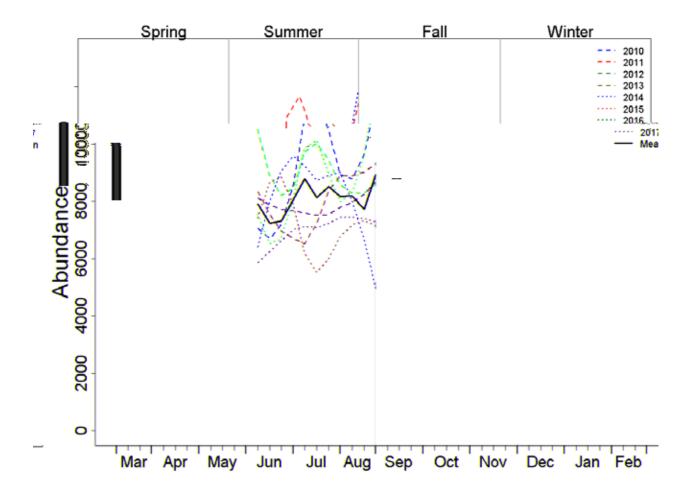


Figure 10-5 Annual abundance trends for Kogia spp. in the AMAPPS study area

10.6 Seasonal Prediction Maps

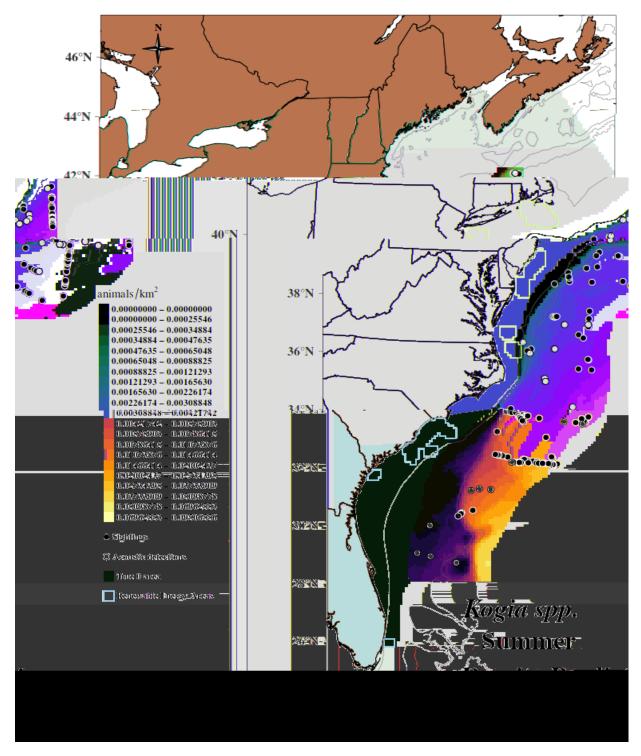
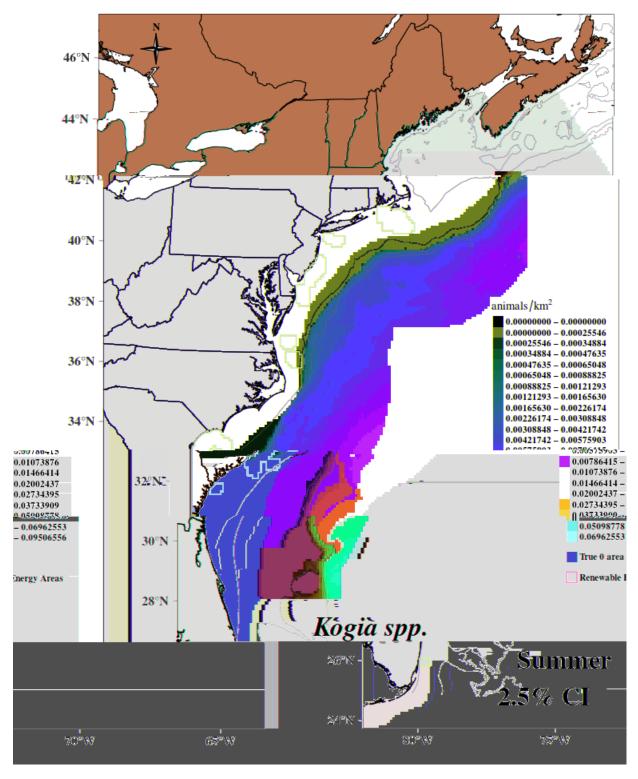
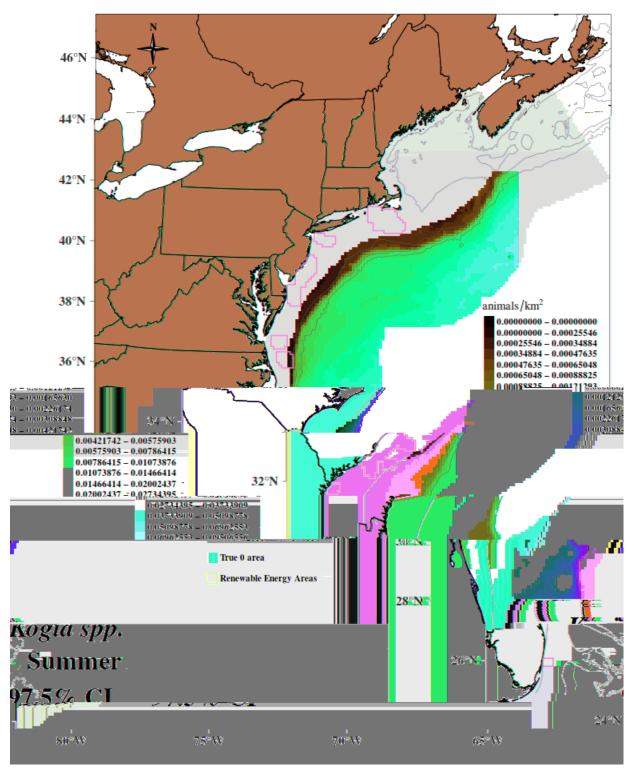




Figure 10-6 Kogia spp. summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Black circles indicate locations of animal sightings. White circles indicate locations of passive acoustic detections of *Kogia* spp. from the NEFSC and SEFSC 2016 and 2018 towed hydrophone arrays. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 10-7 Lower 2.5% confidence interval of the summer *Kogia* **spp. density estimates**Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 10-8 Upper 97.5% confidence interval of the summer *Kogia* **spp. density estimates**Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

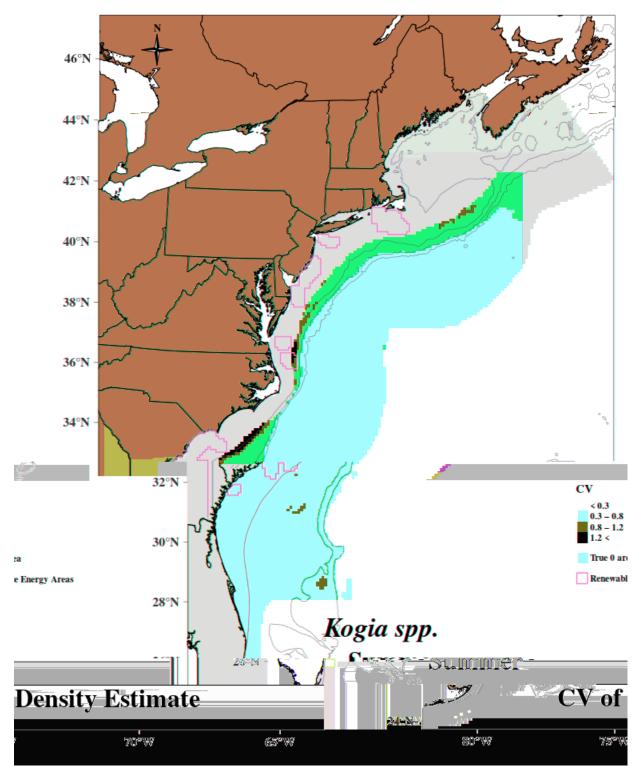


Figure 10-9 CV of summer Kogia spp. density estimates

CVs are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

10.7 Offshore Energy Development Areas

Table 10-6 Kogia spp. abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Summer (Jun – Aug)	NC	0.0	1.06	0.0-0.2

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

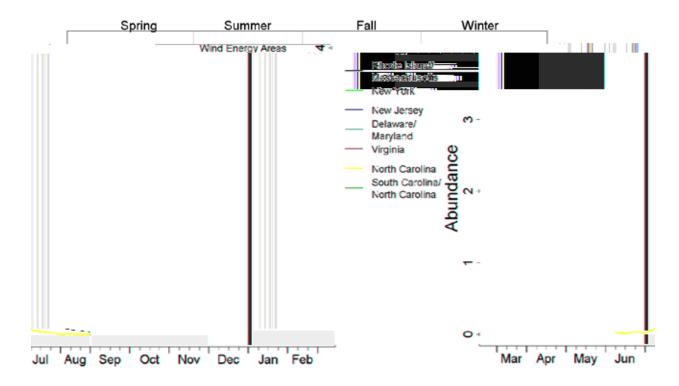


Figure 10-10 Average seasonal abundance of Kogia spp. in the wind-energy study areas

Figure 11-1 Short-finned pilot whales Image collected under MMPA research permit #779-1633. Credit: NOAA/SEFSC

11.1 Data Collection

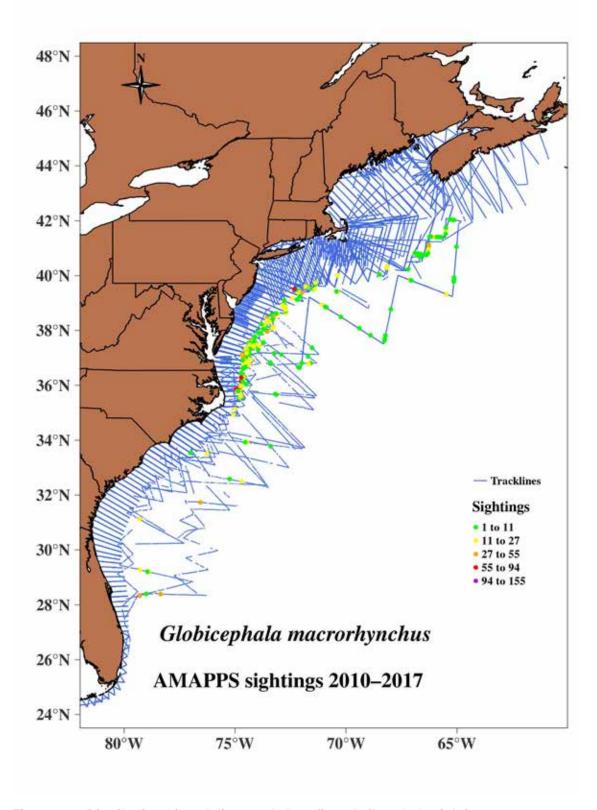


Figure 11-2 Distribution of track lines and short-finned pilot whale sightings 2010 to 2017

Table 11-1 AMAPPS research effort 2010 to 2017 and short-finned pilot whale sightings

Survey Region			Number of	Number of
and Platform	Season	Effort (km)	Groups	Animals
NE Shipboard	Summer	37,529	230	2,050
NE Shipboard	Fall	1,065	2	32
NE Aerial	Spring	13,314	0	0
NE Aerial	Summer	25,867	21	156
NE Aerial	Fall	37,850	15	82
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	4	32
SE Shipboard	Summer	12,968	85	1,461
SE Shipboard	Fall	3,012	18	495
SE Aerial	Spring	41,293	10	269
SE Aerial	Summer	28,236	26	712
SE Aerial	Fall	18,974	31	485
SE Aerial	Winter	8,950	4	25

11.2 Mark-Recapture Distance Sampling Analysis

Table 11-2 Intermediate parameters in short-finned pilot whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE–aerial group 5	distance * observer + glare	320	distance + sea state + group size	LT50-360	HR	0.74	0.15	0.23	0.99	0.98
NE-aerial group 7	distance * observer	400	distance	400	HN	0.54	0.30	0.77	1.00	1.00
NE- shipboard group 7	distance * observer + group size + glare	3500	distance + glare + swell + time of day	3500	HR	0.66	0.10	0.09	0.86	0.91
SE- shipboard group 3	distance * observer + group size	2700	distance	2700	HR	0.71	0.08	0.37	0.91	0.81

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

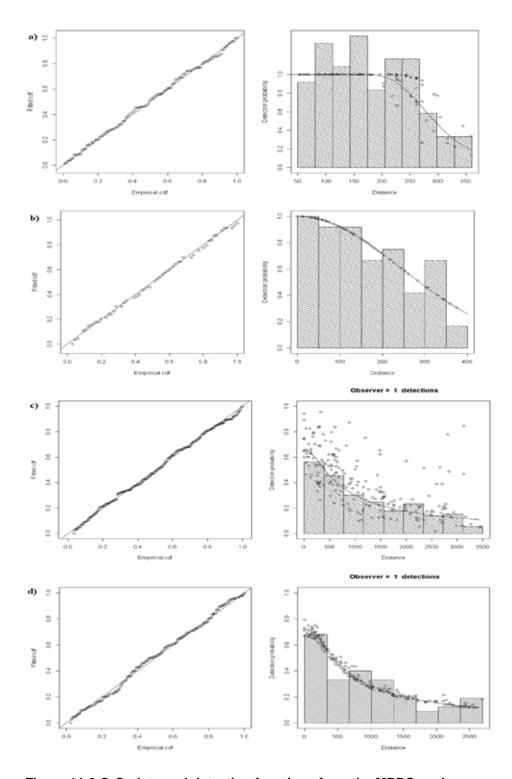


Figure 11-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 5; b) NE-aerial analysis set 7; c) NE-shipboard analysis set 7; d) SE-shipboard analysis set 3.

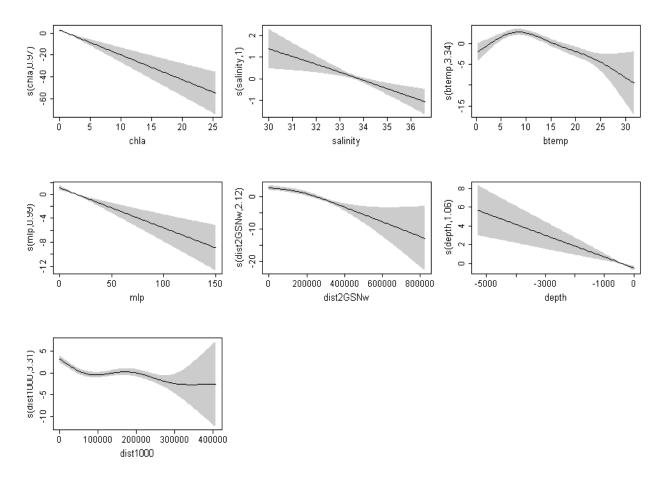

11.3 Generalized Additive Model Analysis

Table 11-3 2010 to 2017 density-habitat model output for short-finned pilot whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chla)	0.97	4	8.90	6.12	< 0.0001
s(salinity)	1.00	4	3.36	5.26	0.0001
s(btemp)	3.34	4	19.55	15.15	< 0.0001
s(mlp)	0.99	4	7.07	5.33	< 0.0001
s(dist2GSNw)	2.18	4	18.70	17.68	< 0.0001
s(depth)	1.06	4	4.52	1.65	< 0.0001
s(dist1000)	3.31	4	23.38	14.60	< 0.0001

Adjusted $R^2 = 0.0358$. Deviance explained = 58.3%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 11-4 Short-finned pilot whale density relative to significant habitat covariatesPlots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

11.4 Model Cross-Validation

Table 11-4 Diagnostic statistics from the short-finned pilot whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.284	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	85.550	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.136	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.018	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

11.5 Abundance Estimates for AMAPPS Study Area

Table 11-5 Short-finned pilot whale average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	8,497	0.34	4,444 16,248
Summer (June-August)	29,091	0.31	16,066 52,675
Fall (September–November)	11,654	0.32	6,320 21,491
Winter (December–February)	1,961	0.44	860 4,473
Summer 2011 U.S. surveys ¹	21,515	0.37	
Summer 2016 U.S. surveys ¹	28,924	0.24	

¹Hayes et al. 2020

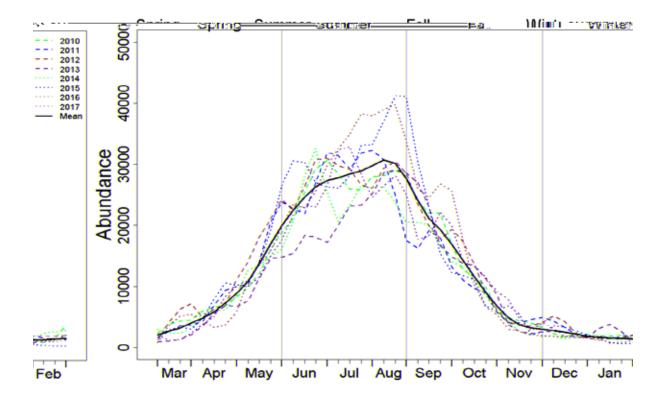


Figure 11-5 Annual abundance trends for short-finned pilot whales in the AMAPPS study area

11.6 Seasonal Prediction Maps

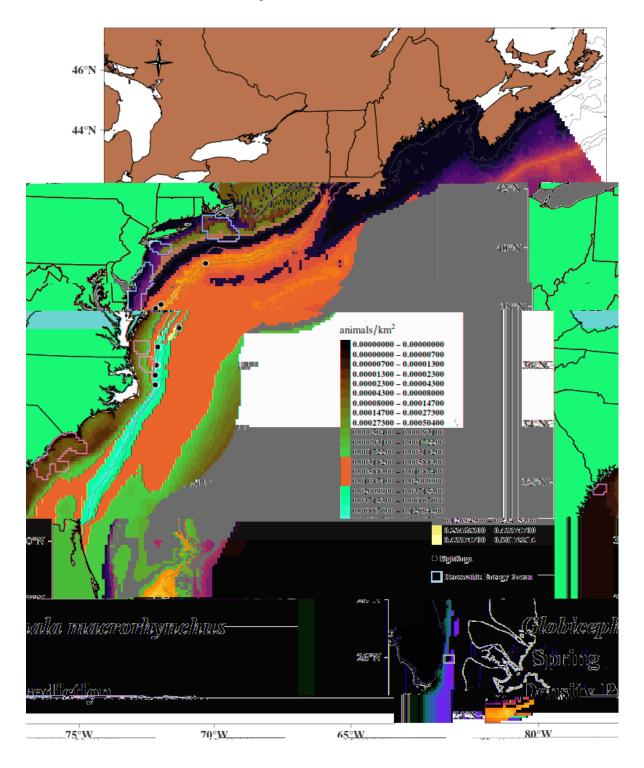


Figure 11-6 Long-finned pilot whale spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

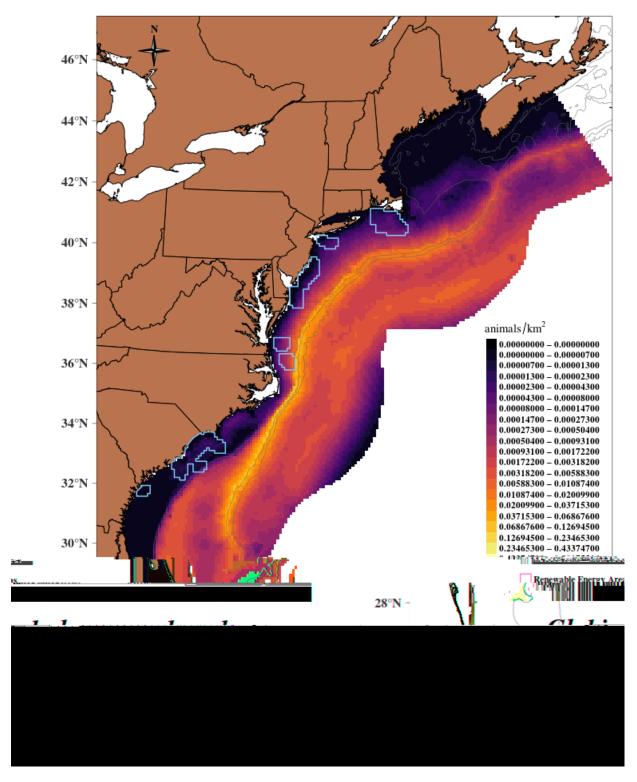


Figure 11-7 Lower 2.5% confidence interval of the spring short-finned pilot whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

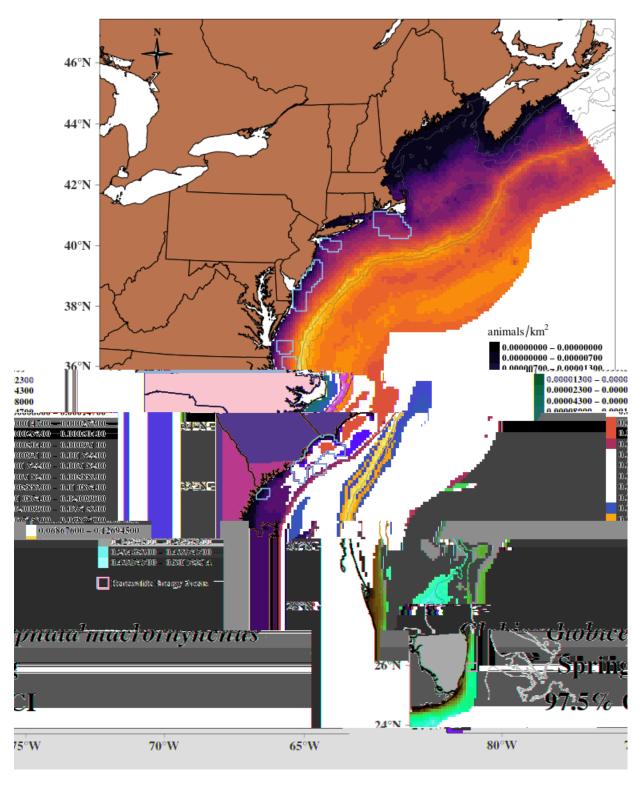


Figure 11-8 Upper 97.5% confidence interval of the spring short-finned pilot whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

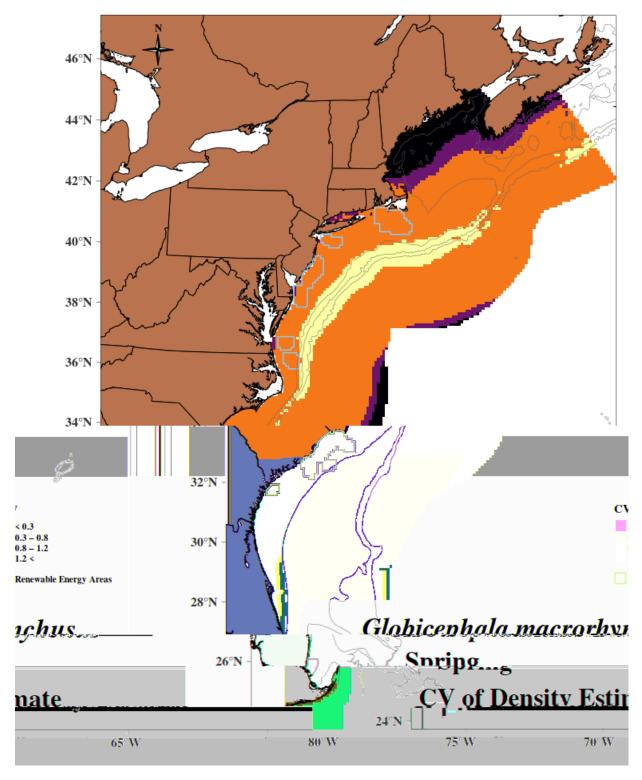


Figure 11-9 CV of spring short-finned pilot whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

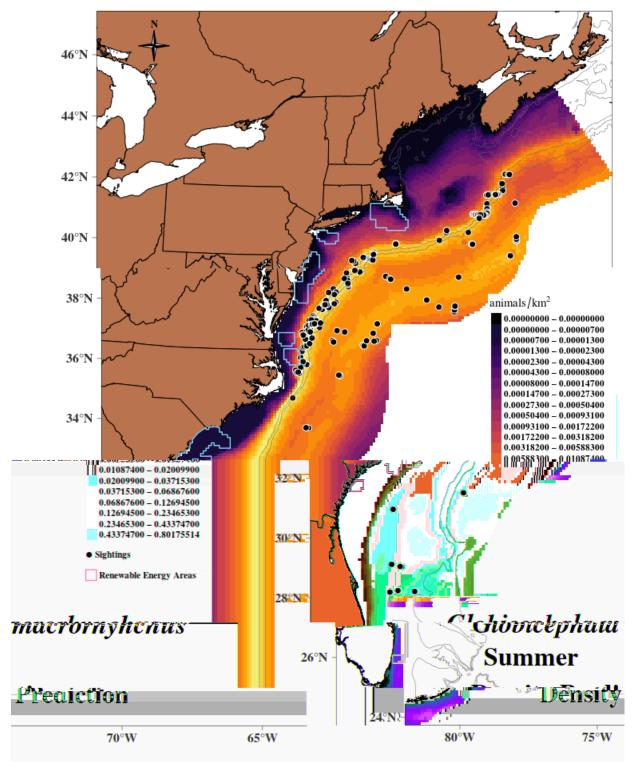


Figure 11-10 Short-finned pilot whale summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

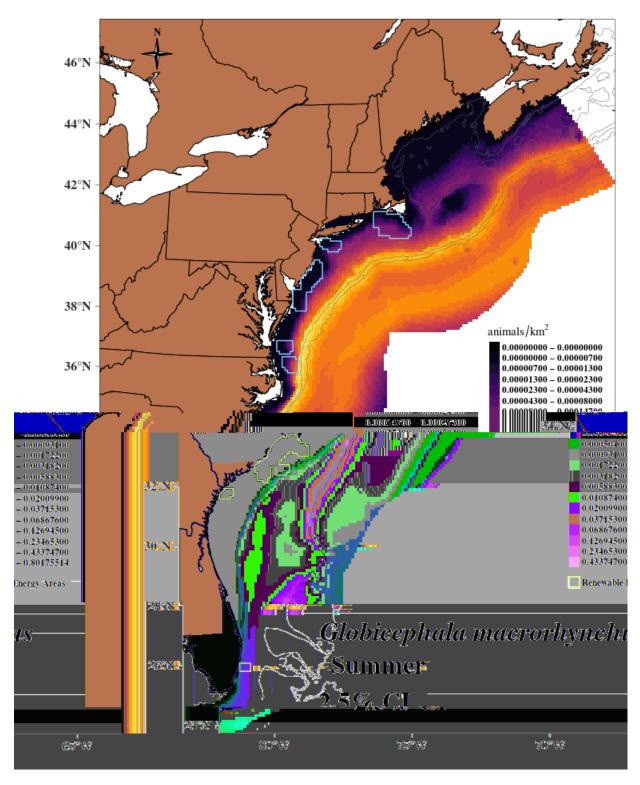


Figure 11-11 Lower 2.5% confidence interval of the summer short-finned pilot whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

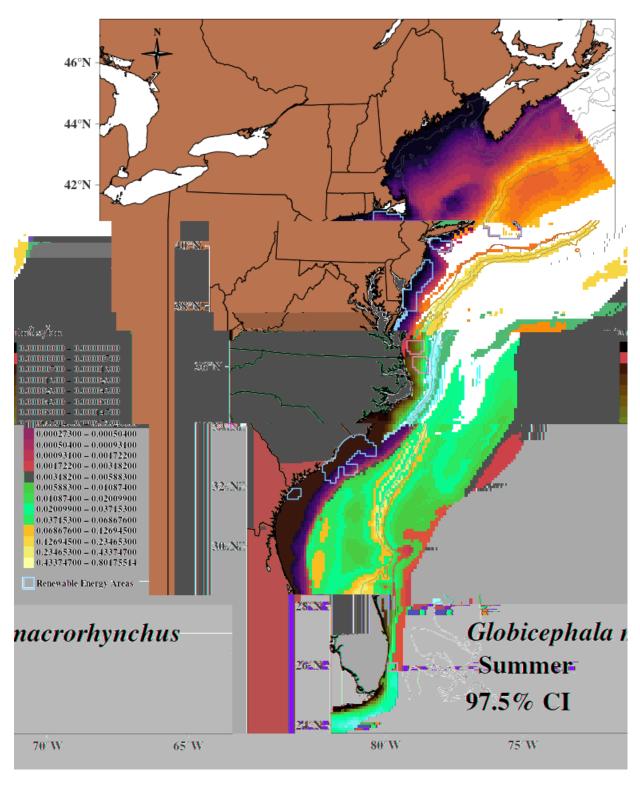


Figure 11-12 Upper 97.5% confidence interval of the summer short-finned pilot whale density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

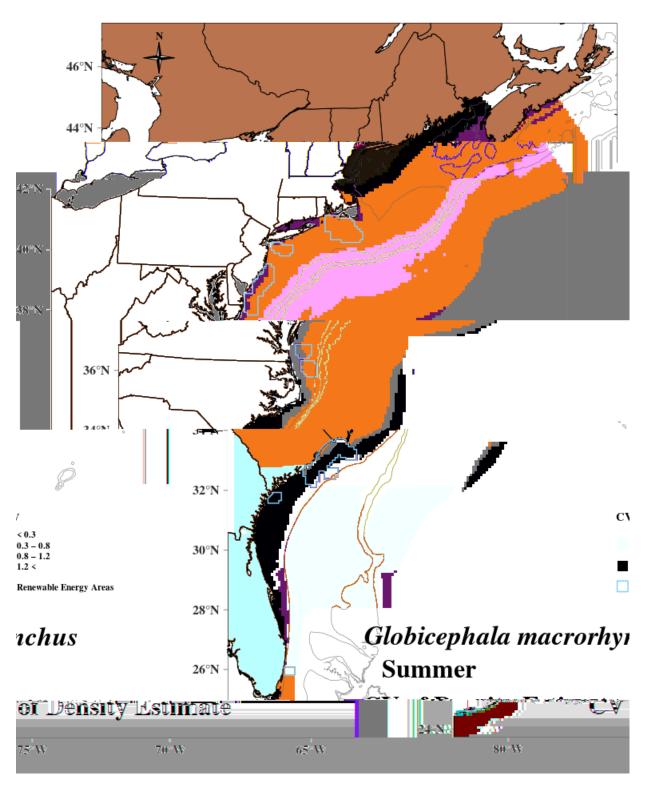


Figure 11-13 CV of summer short-finned pilot whale density estimates

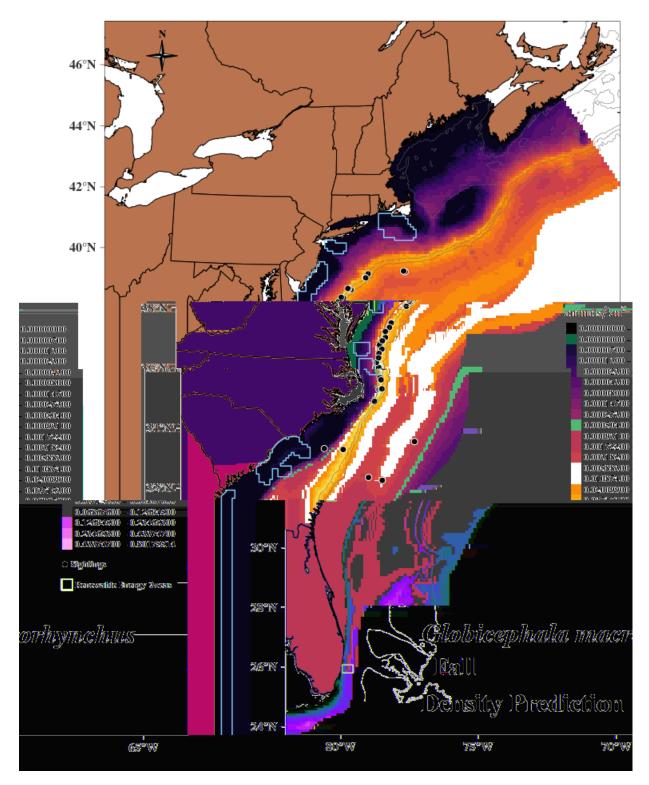
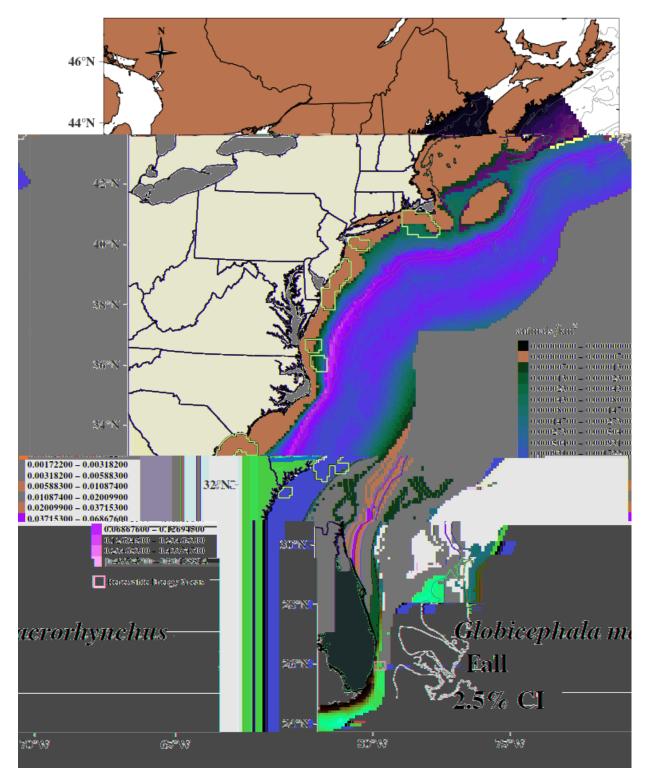
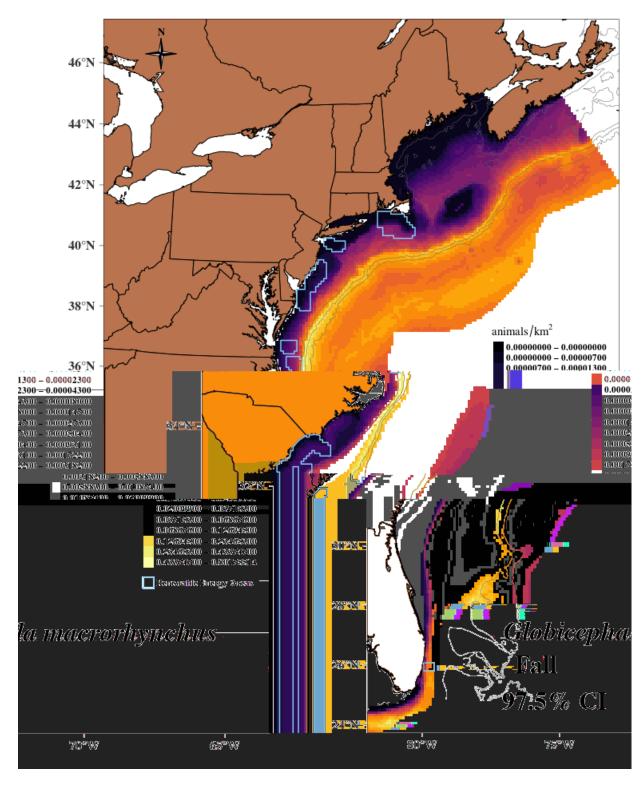




Figure 11-14 Short-finned pilot whale fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 11-15 Lower 2.5% confidence interval of the fall short-finned pilot whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 11-16 Upper 97.5% confidence interval of the fall short-finned pilot whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

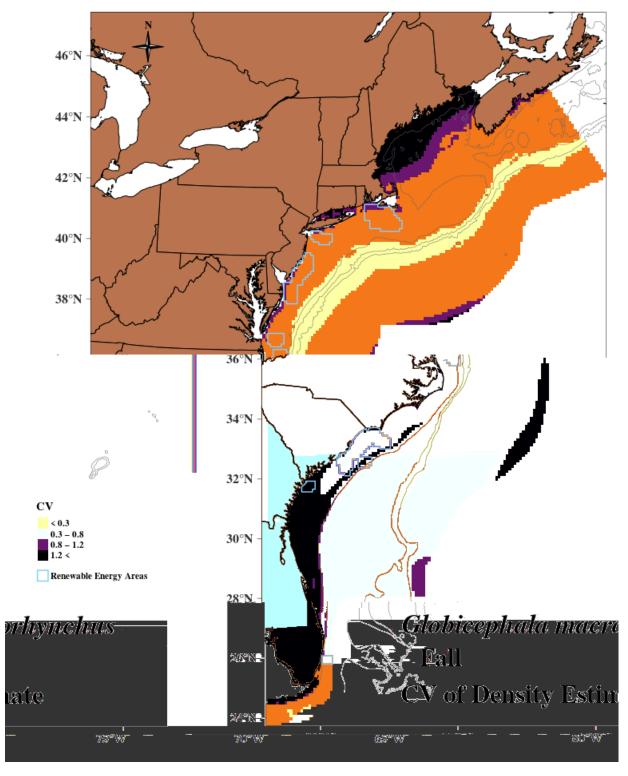


Figure 11-17 CV of fall short-finned pilot whale density estimates

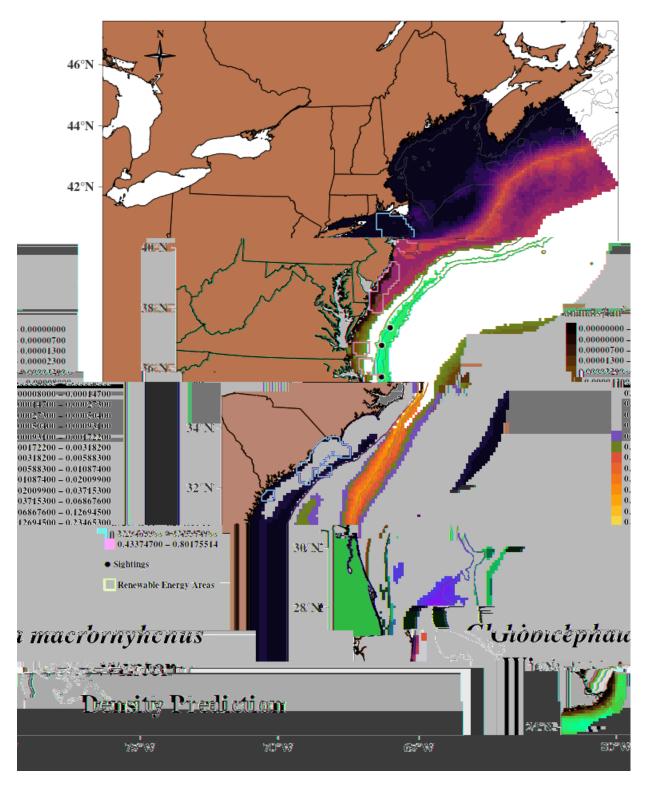


Figure 11-18 Short-finned pilot whale winter average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

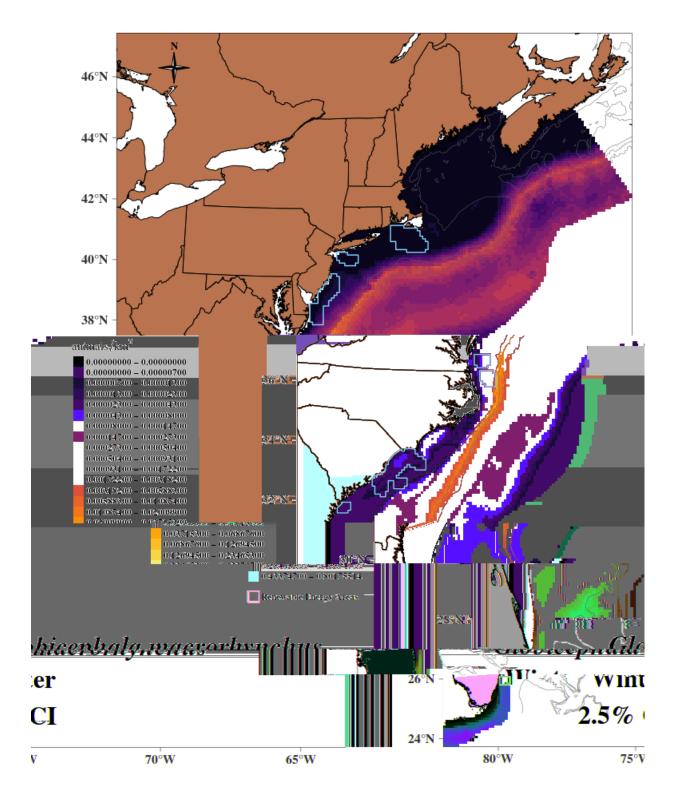


Figure 11-19 Lower 2.5% confidence interval of the winter short-finned pilot whale density estimates

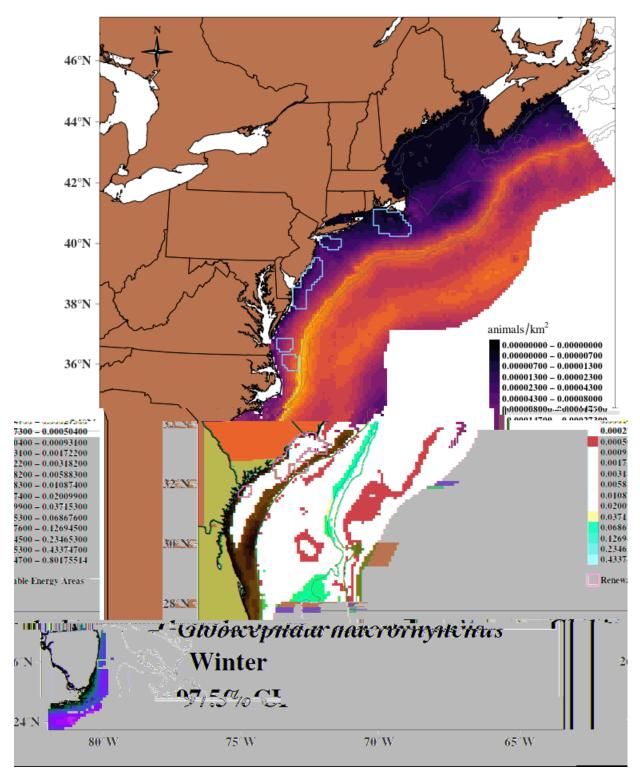


Figure 11-20 Upper 97.5% confidence interval of the winter short-finned pilot whale density estimates

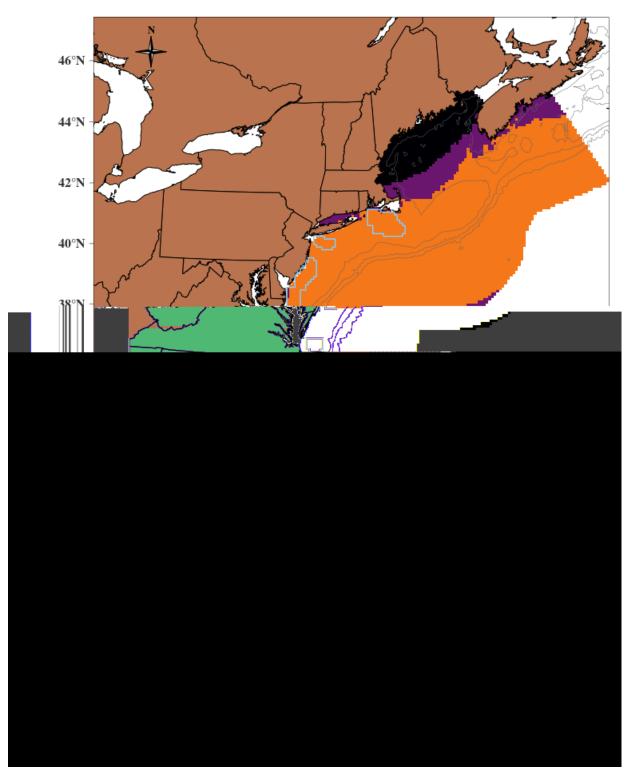


Figure 11-21 CV of winter short-finned pilot whale density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

11.7 Offshore Energy Development Areas

Table 11-6 Short-finned pilot whale abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval
Spring (Mar–May)	RI/MA	1.7	0.47	
	NY	0.2	0.49	
,	NJ	0.3	0.47	
	DE/MD	0.4	0.43	
	VA	1.7	0.41	
	NC	18.6	0.33	
	NC/SC	0.6	0.61	
Summer	RI/MA	3.2	0.43	
(Jun-Aug)	NY	0.3	0.45	
	NJ	0.0	0.58	0.0 0.1
	DE/MD	0.2	0.44	
	VA	0.4	0.45	
	NC	24.1	0.34	
	NC/SC	0.2	0.62	
Fall	RI/MA	0.6	0.42	
(Sep-Nov)	NY	0.0	0.61	0.0 0.0
	NJ	0.0	0.58	0.0 0.1
	DE/MD	0.0	0.59	0.0 0.1
	VA	0.1	0.60	0.0 0.2
	NC	5.3	0.40	
	NC/SC	0.1	0.69	0.0 0.4
Winter (Dec-Feb)	RI/MA	0.1	0.63	0.0 0.2
	NY	0.0	0.62	0.0 0.1
	NJ	0.1	0.52	0.0 0.3
	DE/MD	0.1	0.50	
	VA	0.7	0.47	
	NC	6.5	0.40	
	NC/SC	0.9	0.58	

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

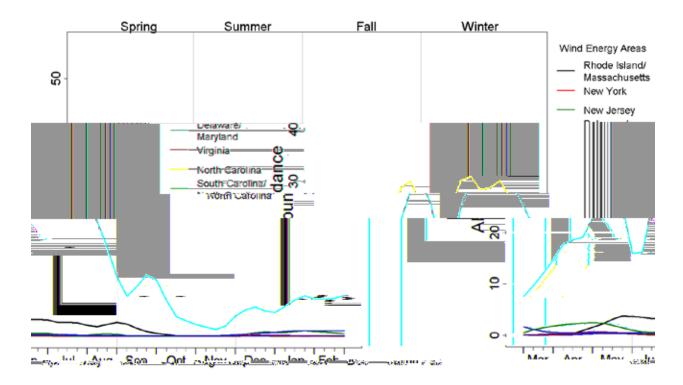


Figure 11-22 Average seasonal abundance of short-finned pilot whales in the wind-energy study areas

12 Long-finned Pilot Whale (Globicephala melas)

Figure 12-1 Long-finned pilot whales Image collected under MMPA Research permit #21371. Credit: NOAA/NEFSC/Jennifer Gatzke

12.1 Data Collection

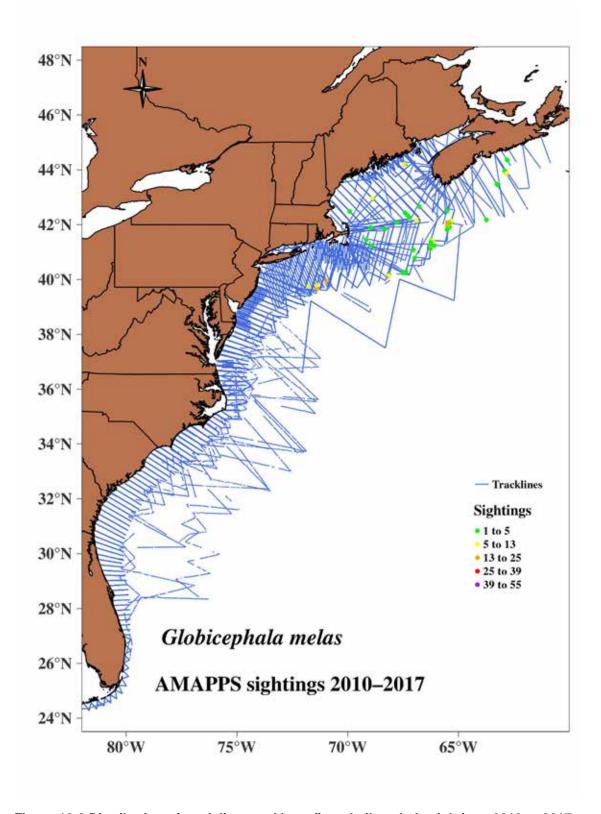


Figure 12-2 Distribution of track lines and long-finned pilot whale sightings 2010 to 2017

Table 12-1 AMAPPS research effort 2010 to 2017 and long-finned pilot whale sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	41	666
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	6	7
NE Aerial	Summer	25,867	18	86
NE Aerial	Fall	37,850	19	78
NE Aerial	Winter	12,179	2	3
SE Shipboard	Spring	8,853	44	312
SE Shipboard	Summer	12,968	0	0
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

12.2 Mark-Recapture Distance Sampling Analysis

Table 12-2 Intermediate parameters in long-finned pilot whale mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 5	distance * observer + glare	320	distance + sea state + group size	LT50-360	HR	0.74	0.15	0.23	0.99	0.98
NE-aerial group 7	distance * observer	400	distance	400	HN	0.54	0.30	0.77	1.00	1.00
NE- shipboard group 7	distance * observer + group size + glare	3500	distance + glare + swell + time of day	3500	HR	0.66	0.10	0.09	0.86	0.91
SE- shipboard group 3	distance * observer + group size	2700	distance	2700	HR	0.71	0.08	0.37	0.91	0.81

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chi-square, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

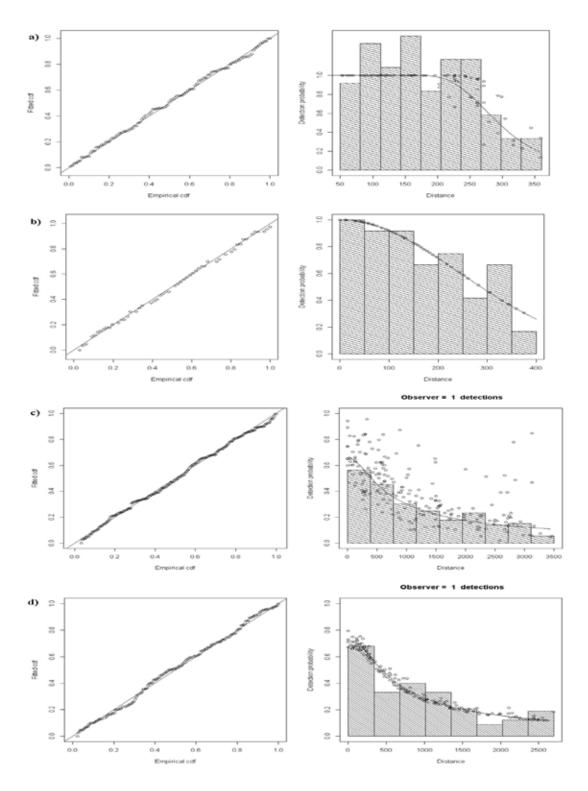


Figure 12-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 5; b) NE-aerial analysis set 7; c) NE-shipboard analysis set 7; d) SE-shipboard analysis set 3.

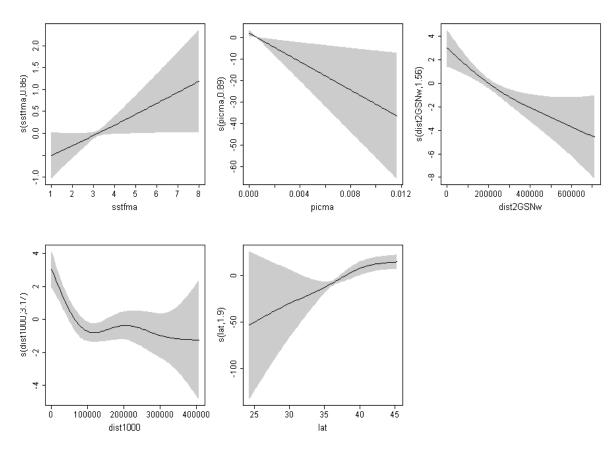

12.3 Generalized Additive Model Analysis

Table 12-3 2015-2017 density-habitat model output for long-finned pilot whales

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstfma)	0.86	4	1.03	0.49	0.0257
s(picma)	0.89	4	1.63	1.42	0.0065
s(dist2GSNw)	1.56	4	3.81	5.95	<0.0001
s(dist1000)	3.17	4	7.81	11.32	<0.0001
s(lat)	1.90	4	19.59	44.31	<0.0001

Adjusted $R^2 = 0.0542$. Deviance explained = 63.5%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 12-4 Long-finned pilot whale density relative to significant habitat covariatesPlots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2. Data from 2015 to 2017.

12.4 Model Cross-Validation

Table 12-4 Diagnostic statistics from the long-finned pilot whale density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.374	Excellent
MAPE	Mean absolute percentage error	Non-zero density	87.760	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.189	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.005	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

12.5 Abundance Estimates for AMAPPS Study Area

Table 12-5 Long-finned pilot whale average abundance estimates for the AMAPPS study area

Abundance estimates averaged over 2015 to 2017.

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	6,765	0.56	2,431–18,829
Summer (June-August)	9,901	0.59	3,392–28,900
Fall (September-November)	12,888	0.58	4,485–37,031
Winter (December-February)	4,909	0.56	1,764–13,664
Summer 2011 U.S. surveys ¹	5,636	0.63	
Summer 2016 U.S. surveys ¹	9,972	0.55	

¹Hayes et al. 2020

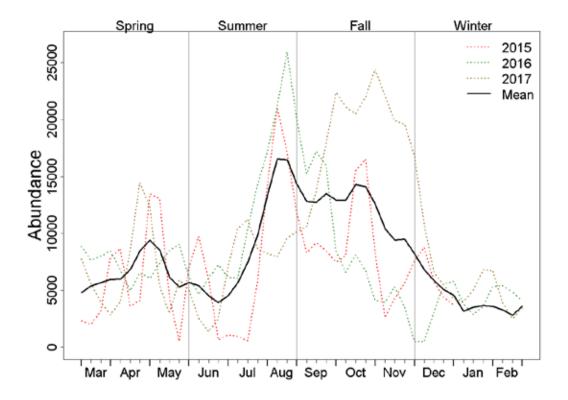


Figure 12-5 Annual abundance trends for long-finned pilot whales in the AMAPPS study area Abundance trends from only 2015 to 2017.

12.6 Seasonal Prediction Maps

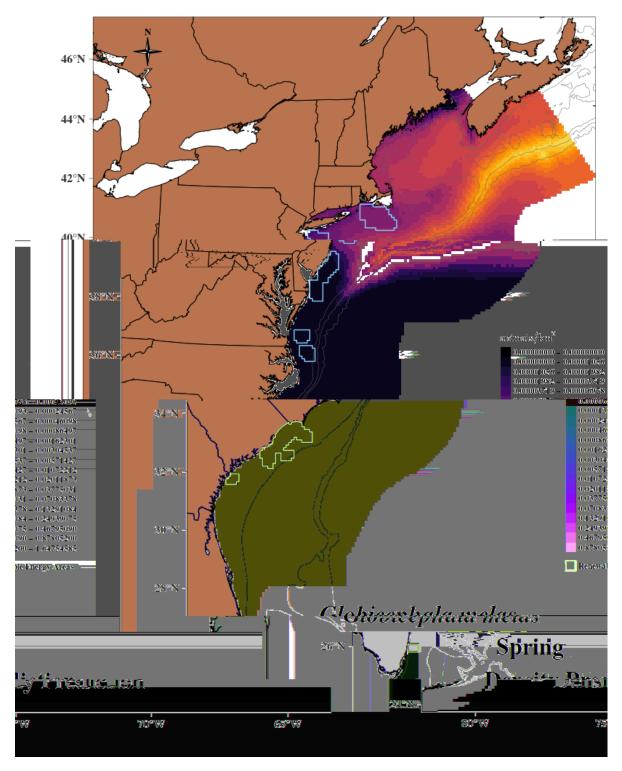
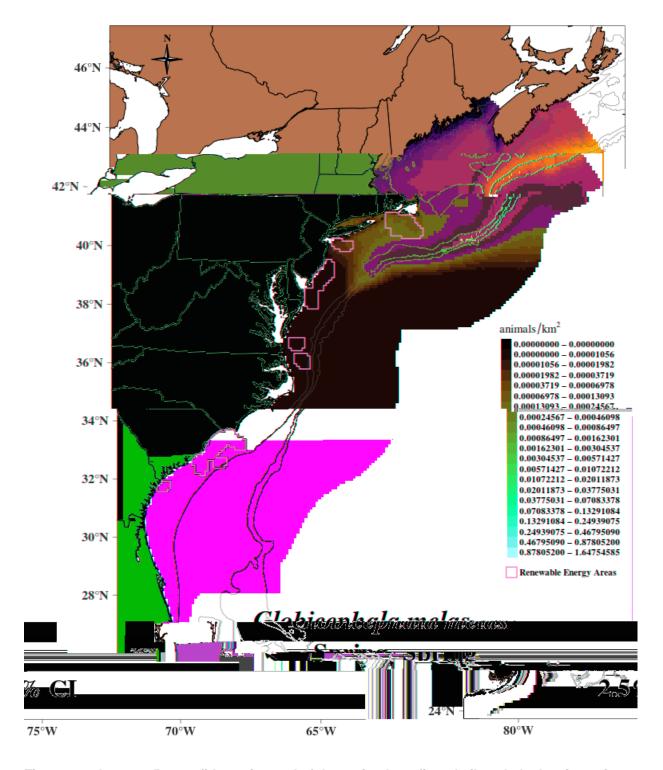



Figure 12-6 Long-finned pilot whale spring average density estimates

Figure 12-7 Lower 2.5% confidence interval of the spring long-finned pilot whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Data are from 2015 to 2017 only.

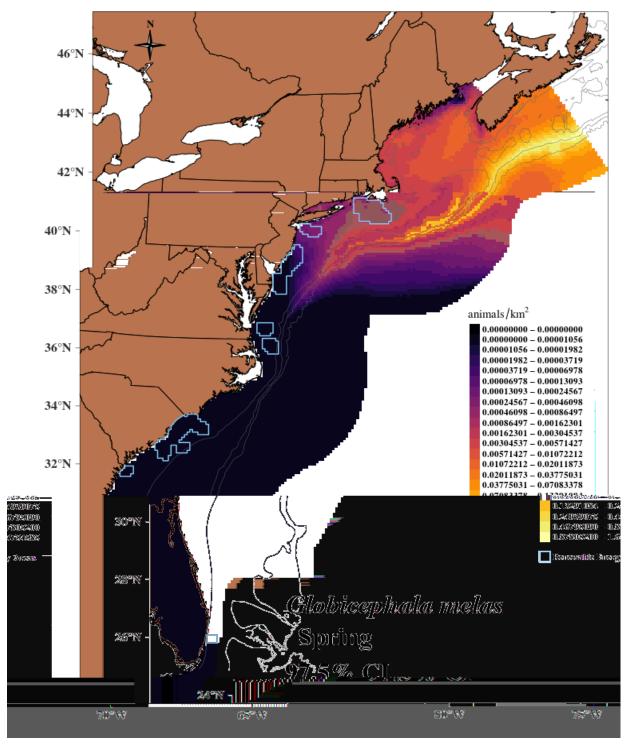


Figure 12-8 Upper 97.5% confidence interval of the spring long-finned pilot whale density estimates

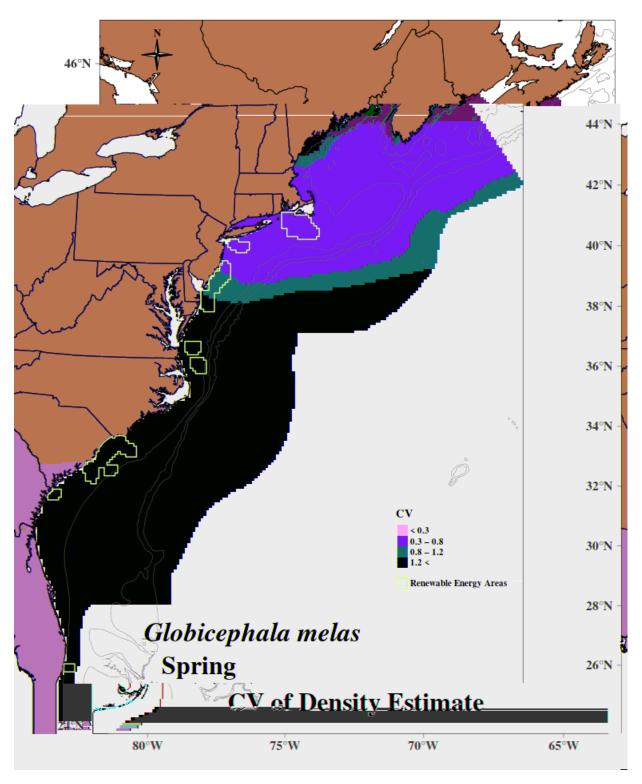


Figure 12-9 CV of spring long-finned pilot whale density estimates

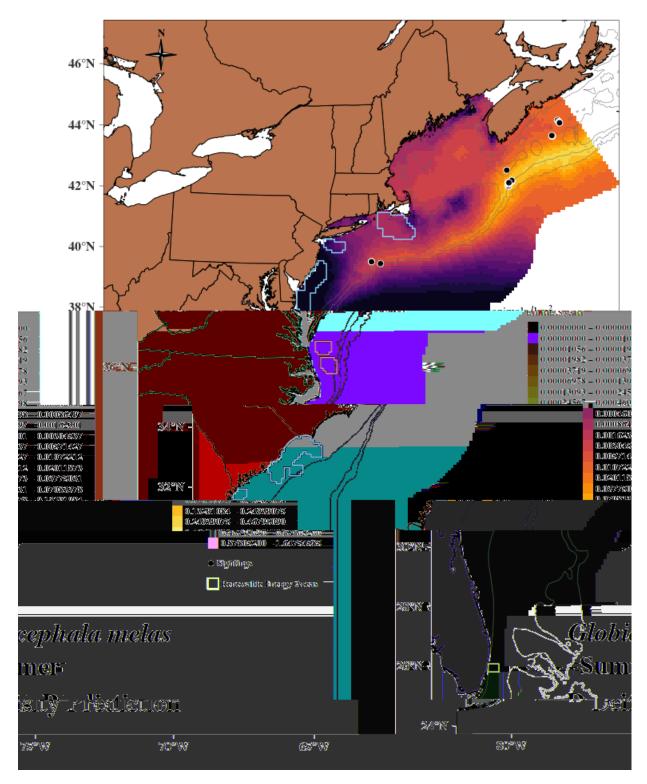


Figure 12-10 Long-finned pilot whale summer average density estimates

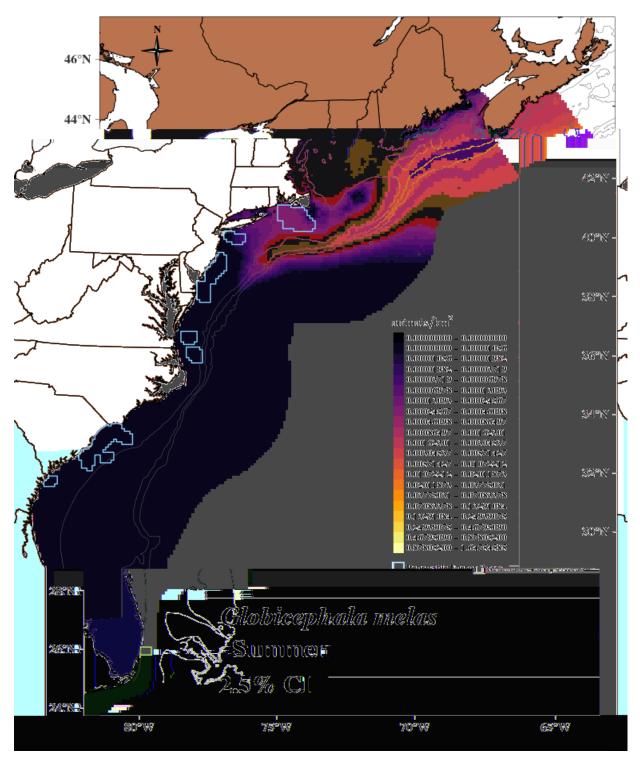


Figure 12-11 Lower 2.5% confidence interval of the summer long-finned pilot whale density estimates

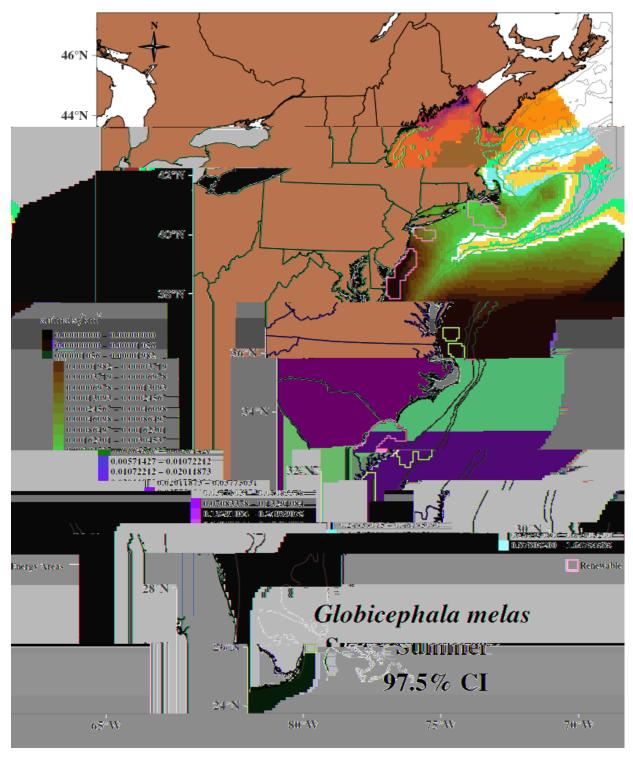


Figure 12-12 Upper 97.5% confidence interval of the summer long-finned pilot whale density estimates

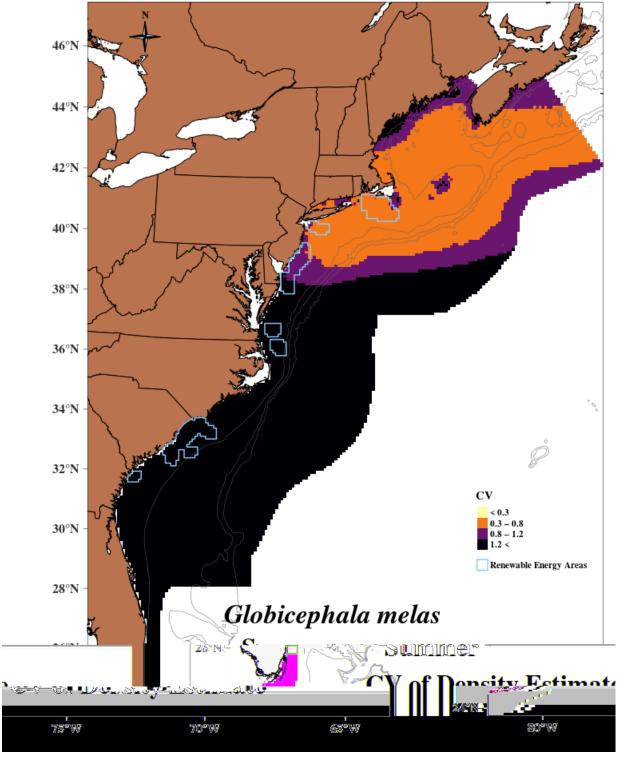


Figure 12-13 CV of summer long-finned pilot whale density estimates

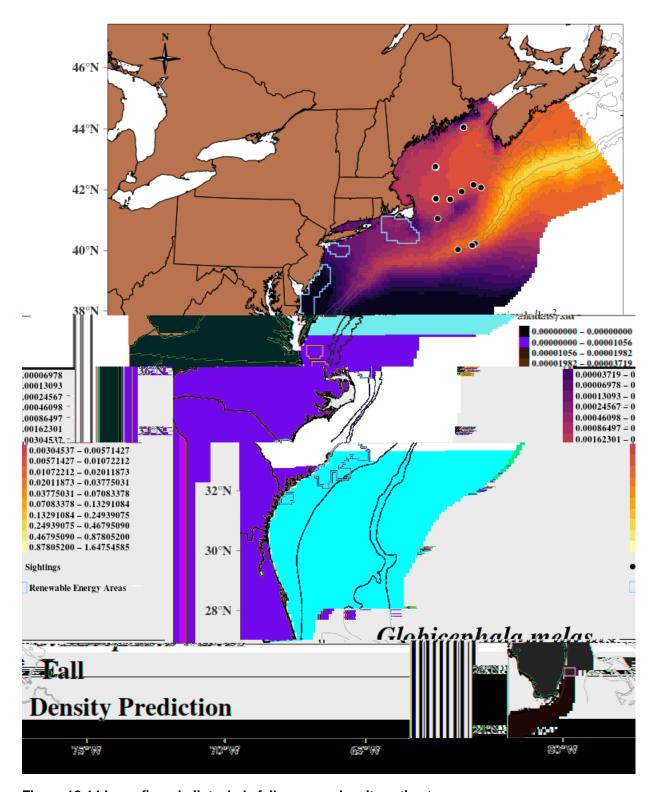
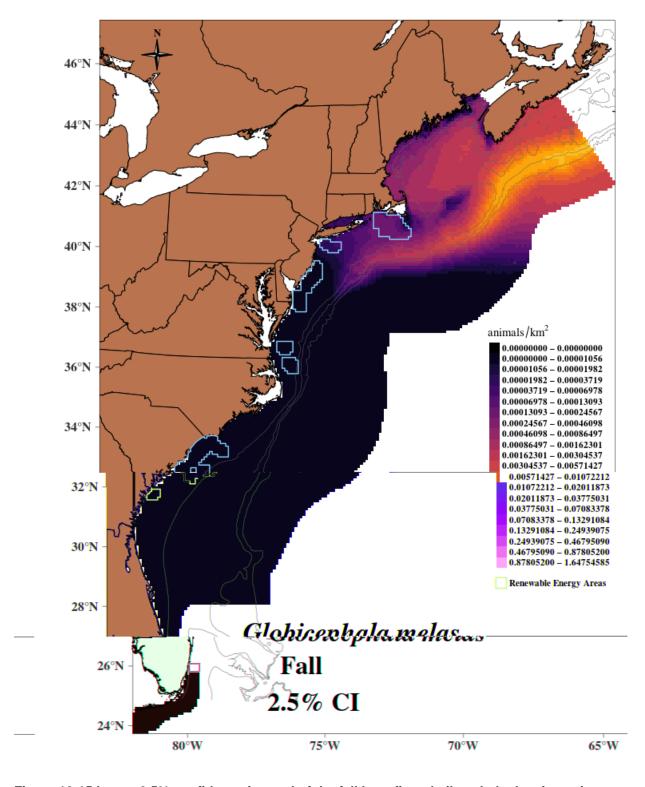
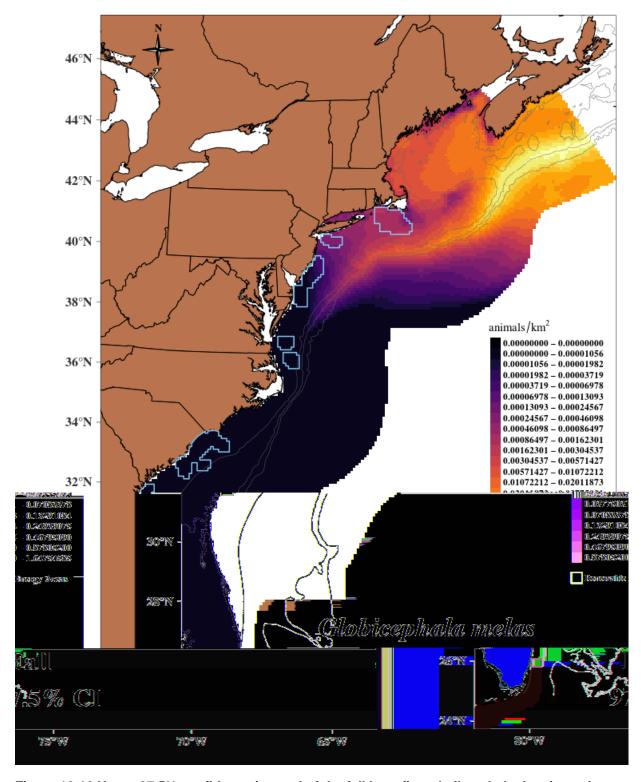




Figure 12-14 Long-finned pilot whale fall average density estimates

Figure 12-15 Lower 2.5% confidence interval of the fall long-finned pilot whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Data are from 2015 to 2017 only.

Figure 12-16 Upper 97.5% confidence interval of the fall long-finned pilot whale density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Data are from 2015 to 2017 only.

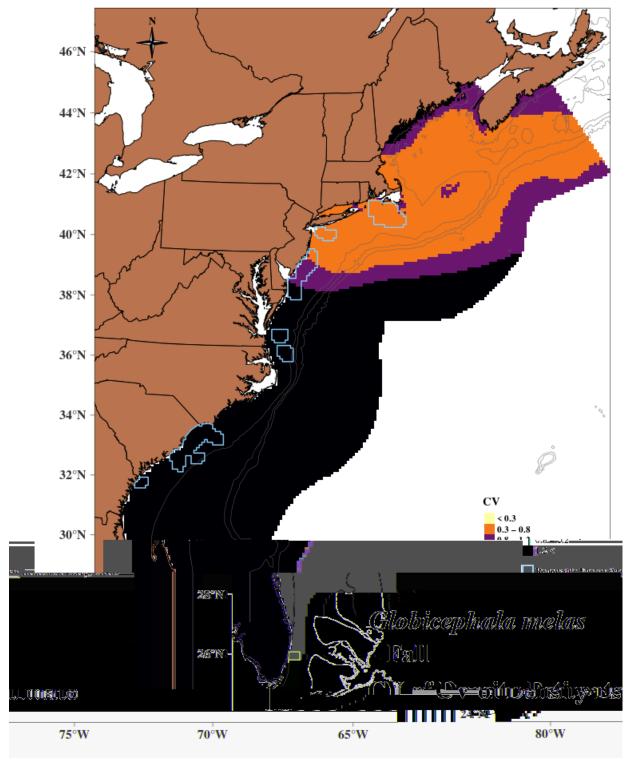


Figure 12-17 CV of fall long-finned pilot whale density estimates

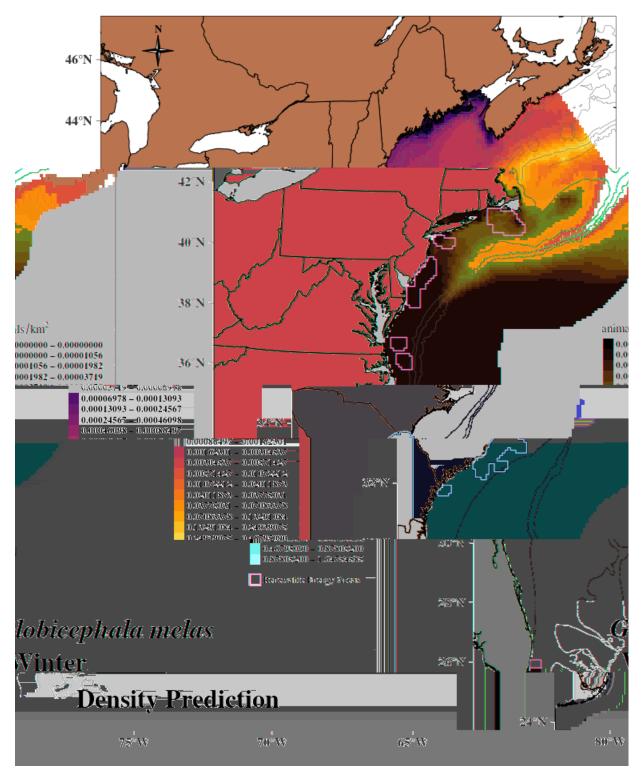


Figure 12-18 Long-finned pilot whale winter average density estimates

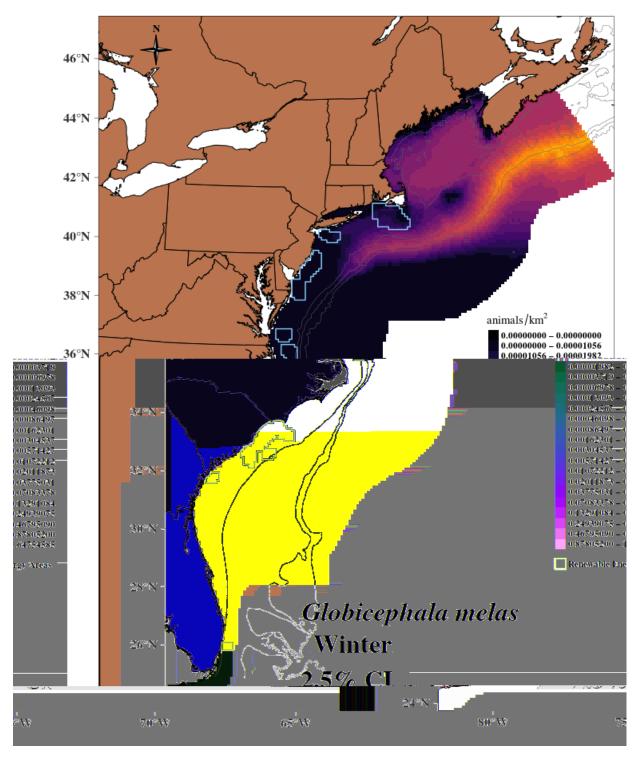


Figure 12-19 Lower 2.5% confidence interval of the winter long-finned pilot whale density estimates

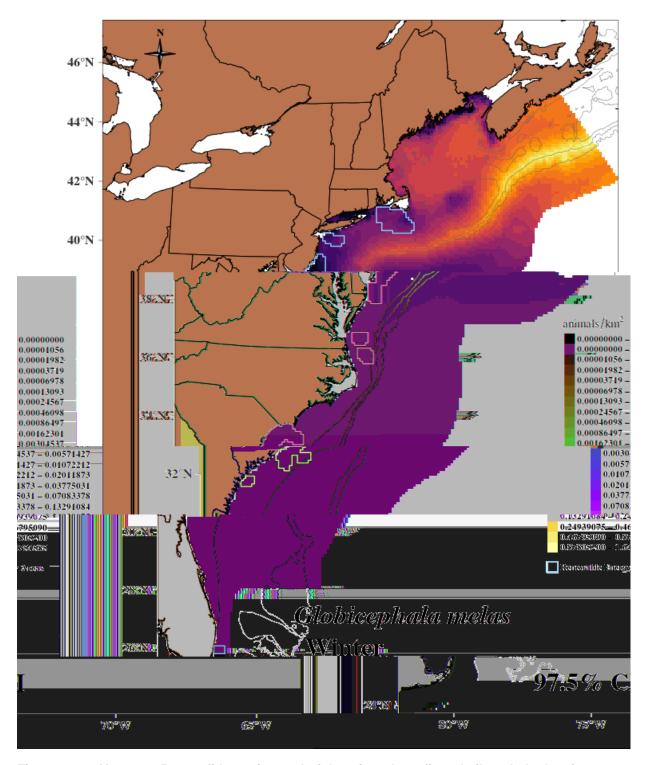


Figure 12-20 Upper 97.5% confidence interval of the winter long-finned pilot whale density estimates

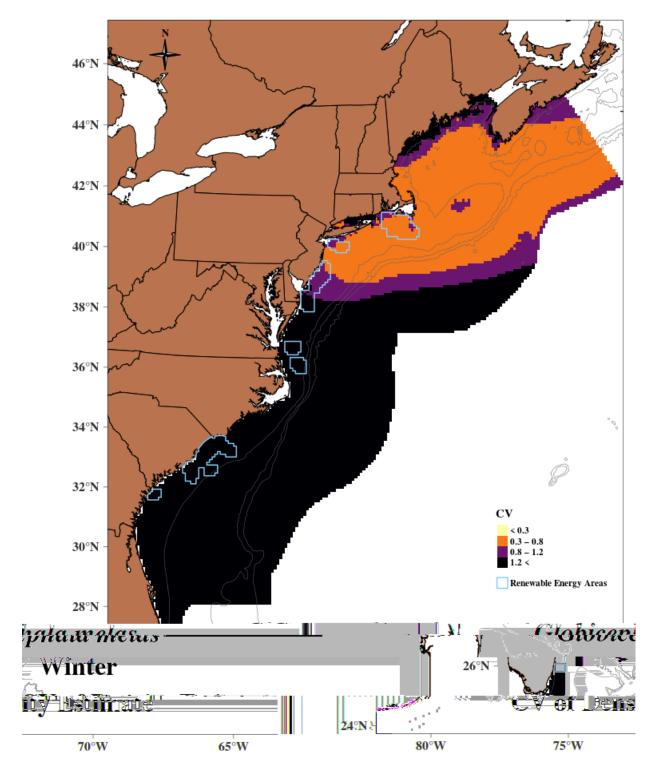


Figure 12-21 CV of winter long-finned pilot whale density estimates

12.7 Offshore Energy Development Areas

Table 12-6 Long-finned pilot whale abundance estimates for wind-energy study areas

Abundance estimates averaged over 2015 to 2017.

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval
Spring	RI/MA	4.7	0.58	1.7–13.5
(Mar-May)	NY	0.3	0.62	0.1–0.9
	NJ	0.0	0.81	0.0–0.1
	DE/MD	0.0	1.26	0.0–0.0
	VA	0.0	2.84	0.0–0.0
	NC	0.0	3.76	0.0–0.0
	NC/SC	0.0	10.74	0.0-0.0
Summer	RI/MA	11.1	0.63	3.6–34.6
(Jun-Aug)	NY	0.2	0.66	0.1–0.8
	NJ	0.0	0.89	0.0–0.1
	DE/MD	0.0	1.24	0.0-0.0
	VA	0.0	2.84	0.0-0.0
	NC	0.0	3.75	0.0-0.0
	NC/SC	0.0	10.85	0.0-0.0
Fall	RI/MA	5.3	0.59	1.8–15.2
(Sep-Nov)	NY	0.3	0.65	0.1–0.9
	NJ	0.0	0.81	0.0-0.2
	DE/MD	0.0	1.24	0.0-0.0
	VA	0.0	2.83	0.0-0.0
	NC	0.0	3.74	0.0-0.0
	NC/SC	0.0	10.73	0.0-0.0
Winter	RI/MA	0.8	0.67	0.2–2.6
(Dec-Feb)	NY	0.1	0.68	0.0-0.2
	NJ	0.0	0.84	0.0–0.1
	DE/MD	0.0	1.28	0.0-0.0
	VA	0.0	2.83	0.0-0.0
	NC	0.0	3.76	0.0-0.0
	NC/SC	0.0	10.88	0.0-0.0

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

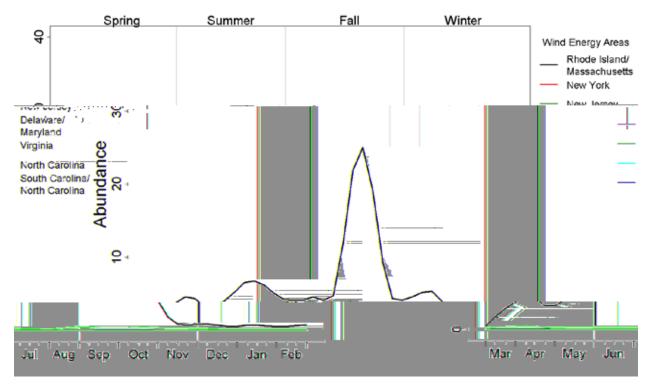


Figure 12-22 Average seasonal abundance of long-finned pilot whales in wind-energy study areas Data from 2015 to 2017 only.

13 Risso's Dolphin (*Grampus griseus*)

Figure 13-1 Risso's dolphin Image collected under MMPA Research permit #132-1362. Credit: NOAA/NEFSC/Peter Duley

13.1 Data Collection

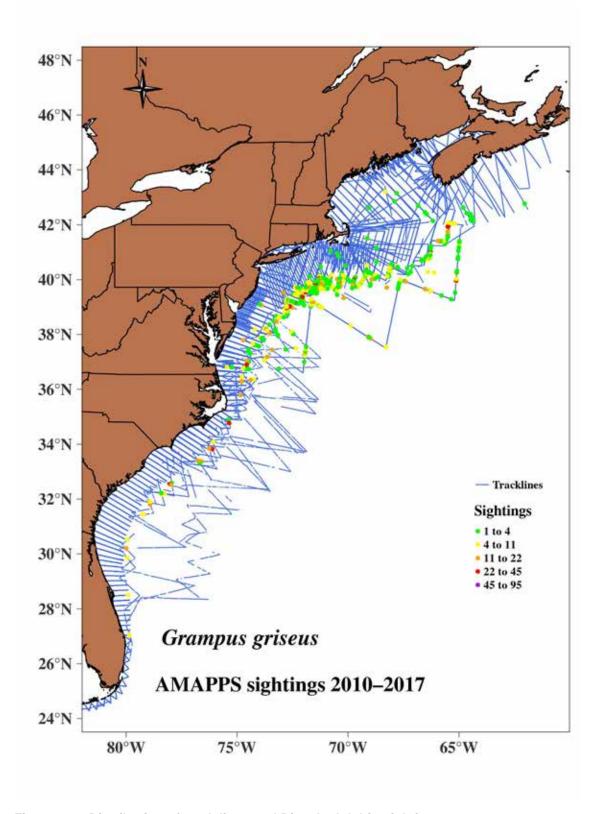
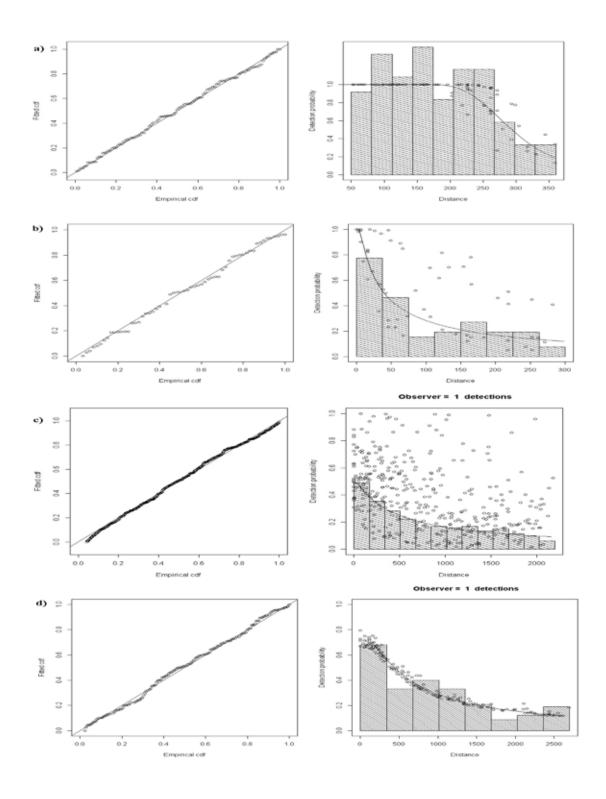


Figure 13-2 Distribution of track lines and Risso's dolphin sightings 2010 to 2017

Table 13-1 AMAPPS research effort 2010 to 2017 and Risso's dolphin sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	486	3,131
NE Shipboard	Fall	1,065	23	218
NE Aerial	Spring	13,314	14	34
NE Aerial	Summer	25,867	22	249
NE Aerial	Fall	37,850	55	481
NE Aerial	Winter	12,179	24	61
SE Shipboard	Spring	8,853	18	91
SE Shipboard	Summer	12,968	26	292
SE Shipboard	Fall	3,012	12	120
SE Aerial	Spring	41,293	36	207
SE Aerial	Summer	28,236	14	227
SE Aerial	Fall	18,974	2	10
SE Aerial	Winter	8,950	8	105

13.2 Mark-Recapture Distance Sampling Analysis

Table 13-2 Intermediate parameters in Risso's dolphin mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE-aerial group 5	distance * observer + glare	320	distance + sea state + group size	LT50-360	HR	0.74	0.15	0.23	0.99	0.98
NE-aerial group 6	distance * observer + group size	300	distance + time of day	300	HR	0.62	0.16	0.4	0.99	0.98
NE-shipboard group 4	sea state + group size	2200	distance + sea state + swell + group size	2200	HR	0.5	0.11	0.66	0.47	0.62
SE–shipboard group 3	distance * observer + group size	2700	distance	2700	HR	0.71	0.08	0.37	0.91	0.81

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 13-3 Q-Q plots and detection functions from the MRDS analyses a) SE-aerial analysis set 5; b) NE-aerial analysis set 6; c) NE-shipboard analysis set 4; d) SE-shipboard analysis set 3.

13.3 Generalized Additive Model Analysis

Table 13-3 2010 to 2017 density-habitat model output for Risso's dolphins

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chla)	0.97	4	7.11	6.06	< 0.0001
s(sstfmt)	0.99	4	3.53	4.64	0.0001
s(btemp)	3.22	4	16.34	7.95	<0.0001
s(mlp)	0.97	4	4.94	4.27	<0.0001
s(dist2GSSw)	2.86	4	12.77	5.58	<0.0001
s(depth)	3.78	4	12.39	4.96	<0.0001
s(dist2shore)	3.66	4	15.00	9.95	<0.0001
s(dist200)	1.10	4	13.36	8.10	<0.0001
s(lat)	0.99	4	3.35	0.74	0.0001

Adjusted $R^2 = 0.0199$. Deviance explained = 52.3%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

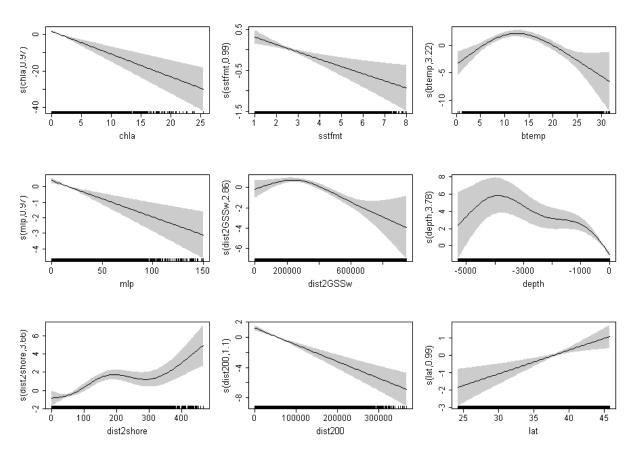


Figure 13-4 Annual abundance trends for Risso's dolphins in the AMAPPS study area
Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

13.4 Model Cross-Validation

Table 13-4 Diagnostic statistics from the Risso's dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.251	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	84.200	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.165	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.023	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

13.5 Abundance Estimates for AMAPPS Study Area

Table 13-5 Risso's dolphin average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March–May)	11,221	0.34	5,868 – 21,457
Summer (June-August)	23,884	0.32	12,952 – 44,044
Fall (September–November)	17,939	0.32	9,728 – 33,081
Winter (December–February)	8,971	0.37	4,446 – 18,103
Summer 2011 U.S. surveys ¹	18,250	0.46	
Summer 2016 U.S. surveys ¹	29,142	0.20	

¹Hayes et al. 2020

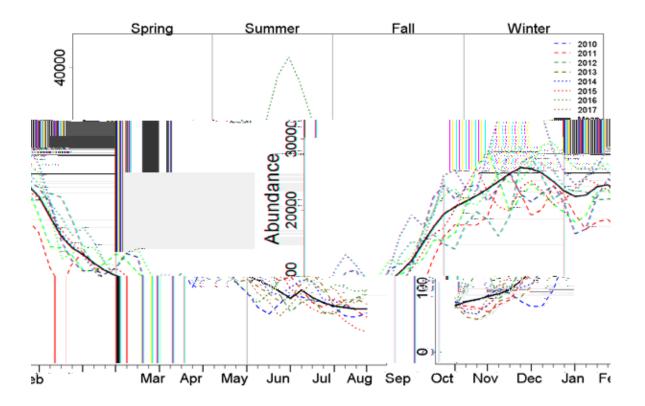


Figure 13-5 Annual abundance trends for Risso's dolphins in the AMAPPS study area

13.6 Seasonal Prediction Maps

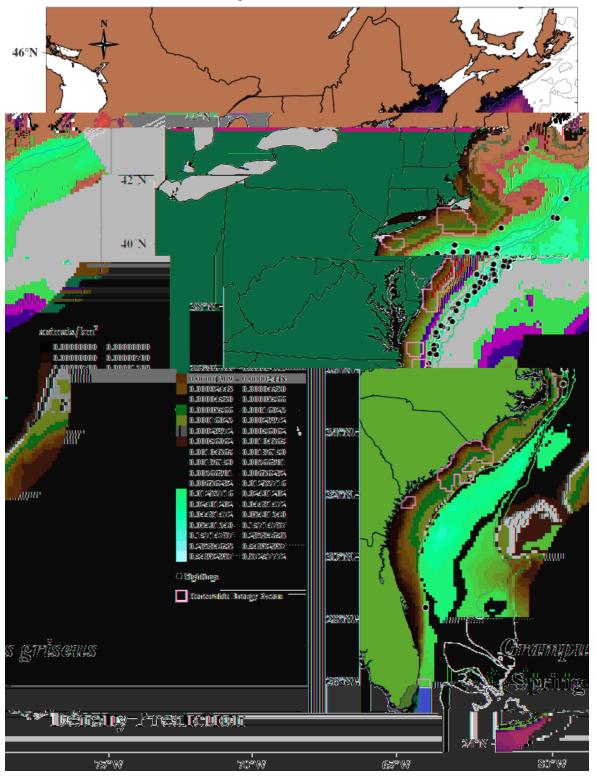
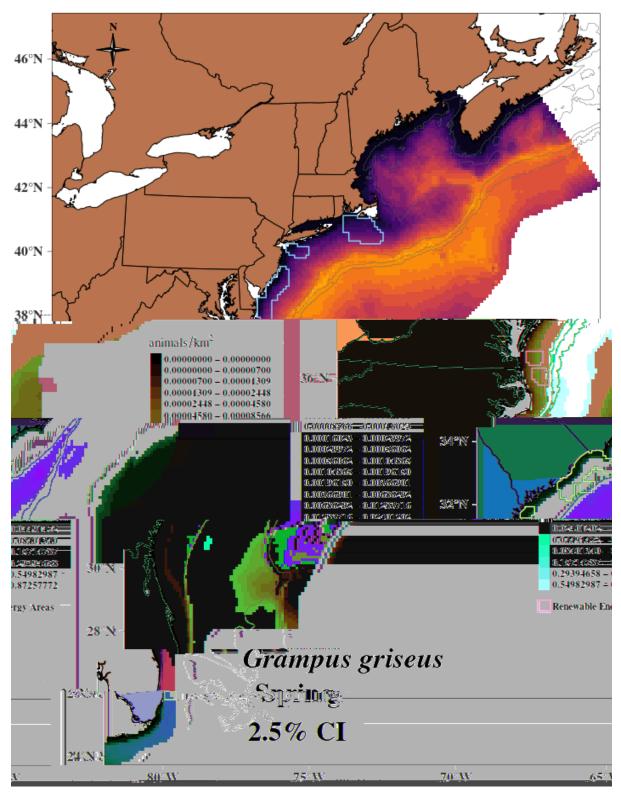
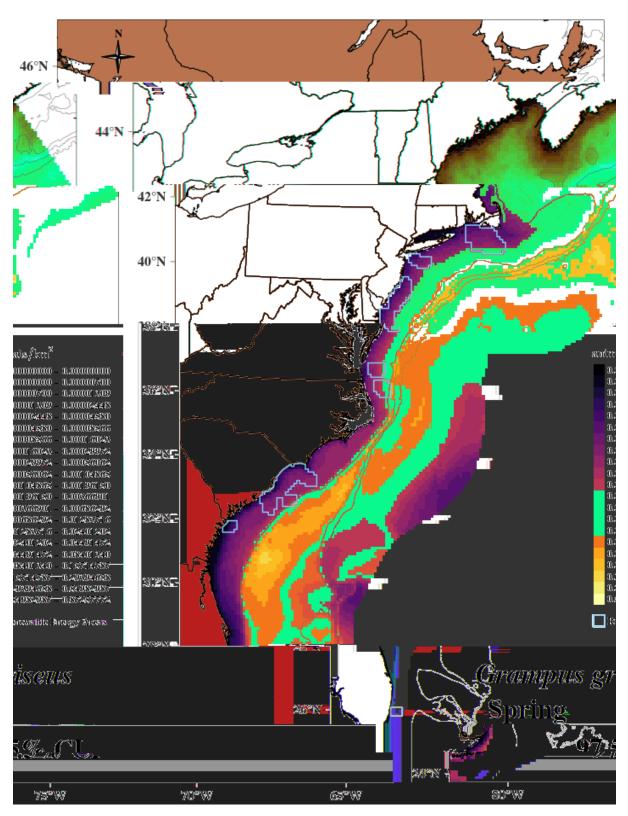




Figure 13-6 Risso's dolphin spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-7 Lower 2.5% confidence interval of the spring Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-8 Upper 97.5% confidence interval of the spring Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

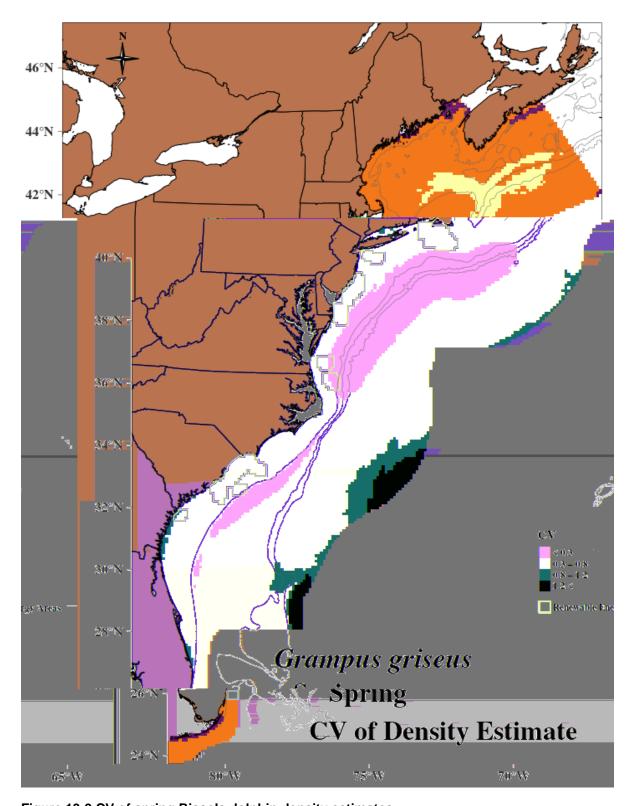


Figure 13-9 CV of spring Risso's dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

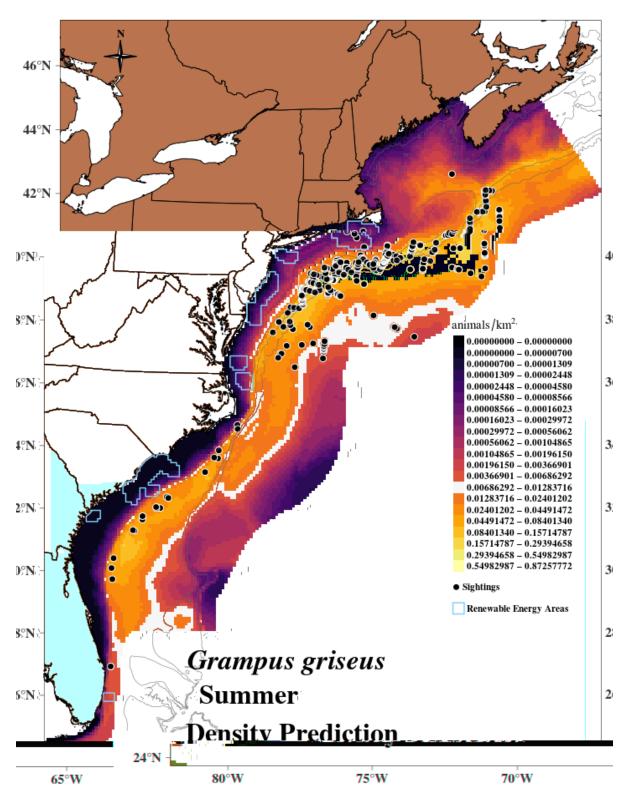
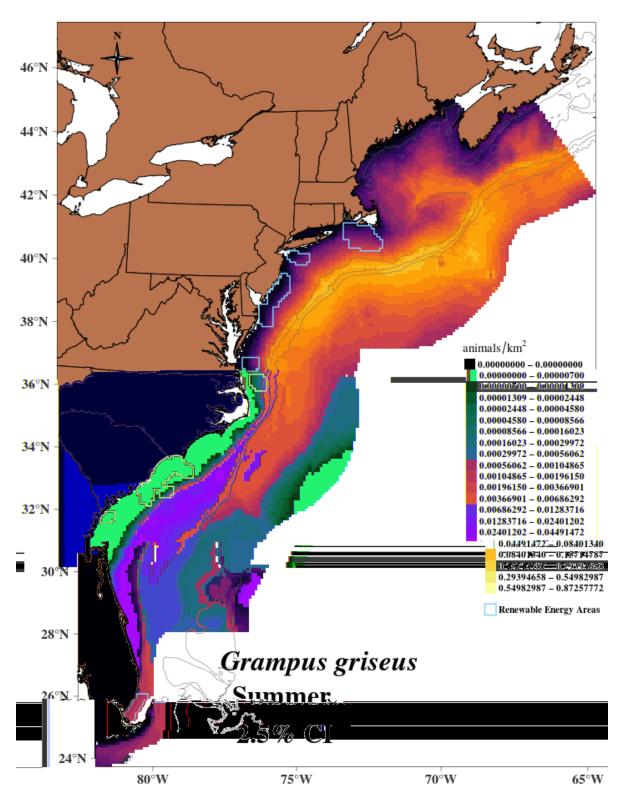
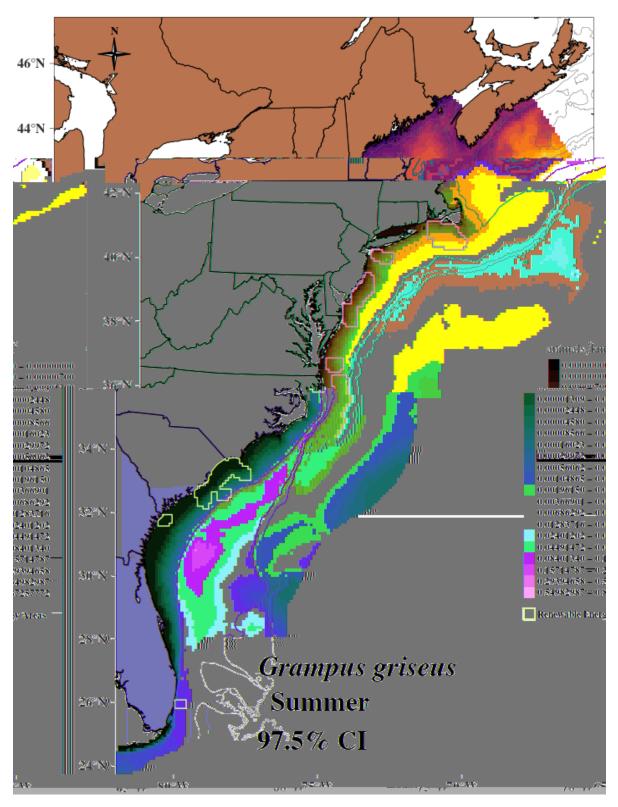




Figure 13-10 Risso's dolphin summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-11 Lower 2.5% confidence interval of the summer Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-12 Upper 97.5% confidence interval of the summer Risso's dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

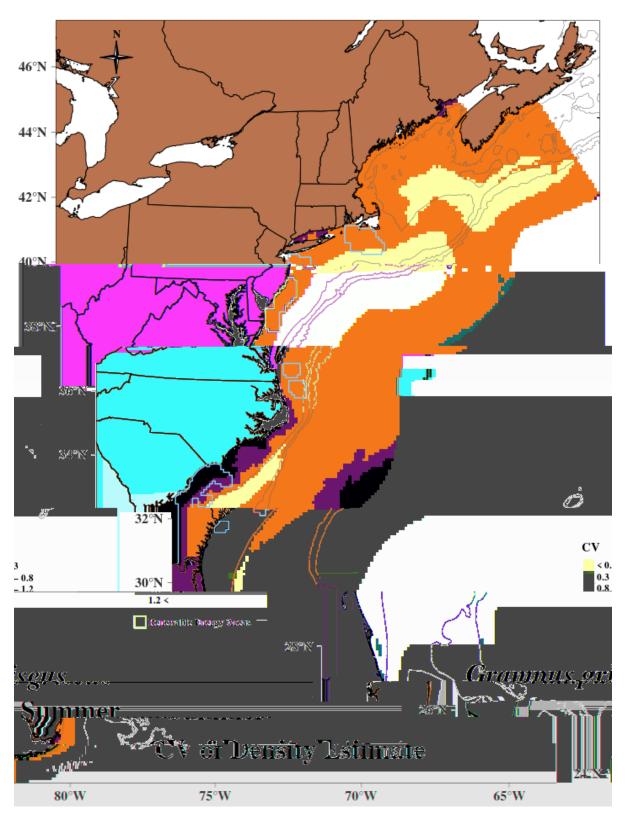


Figure 13-13 CV of summer Risso's dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

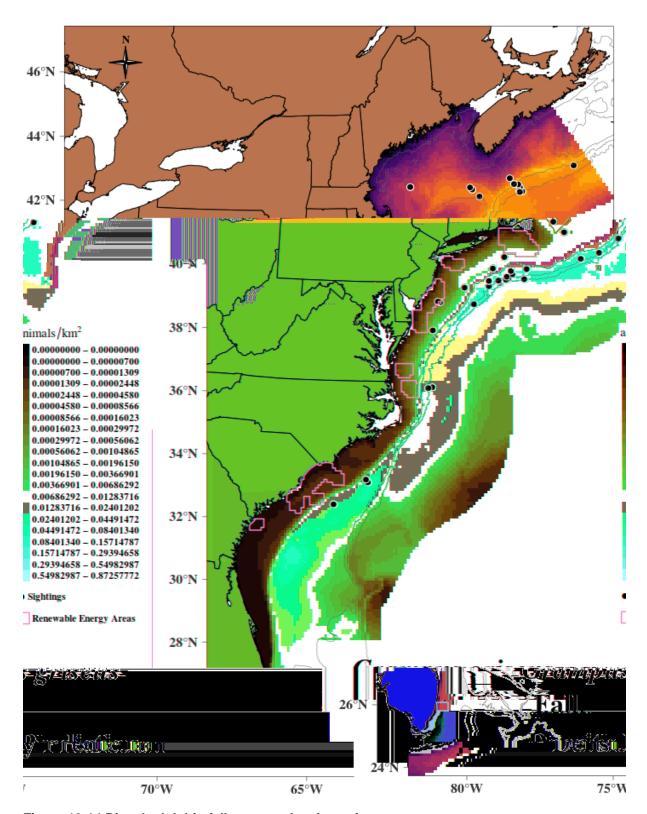



Figure 13-14 Risso's dolphin fall average density estimates

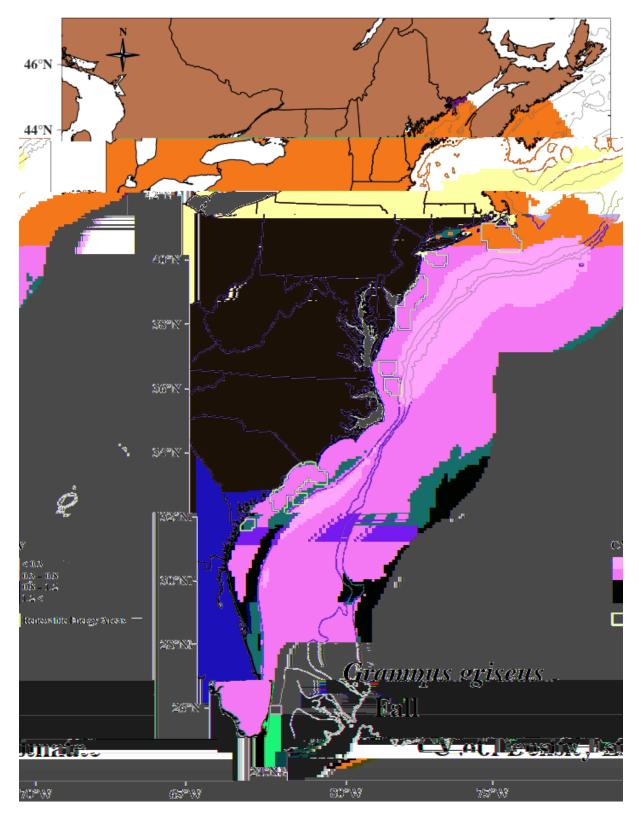

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-15 Lower 2.5% confidence interval of the fall Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-16 Upper 97.5% confidence interval of the fall Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-17 CV of fall Risso's dolphin density estimatesCV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

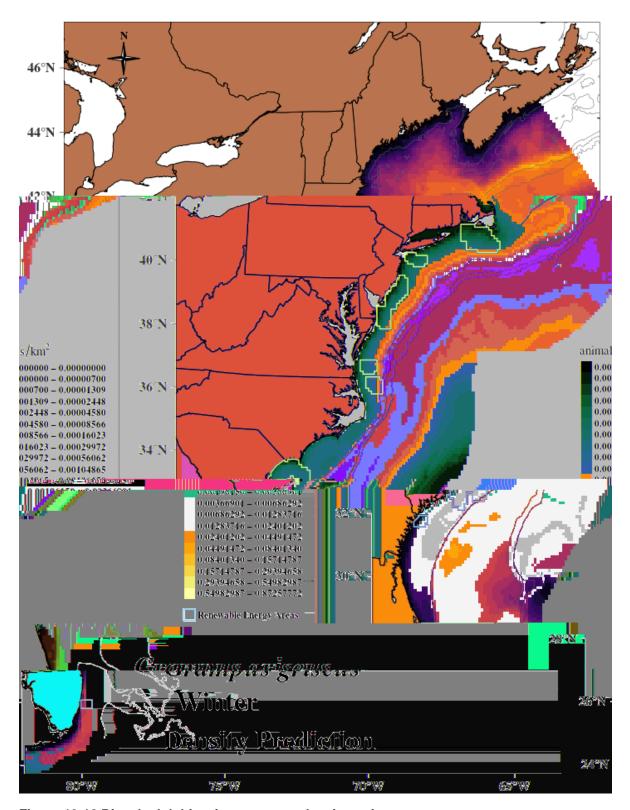
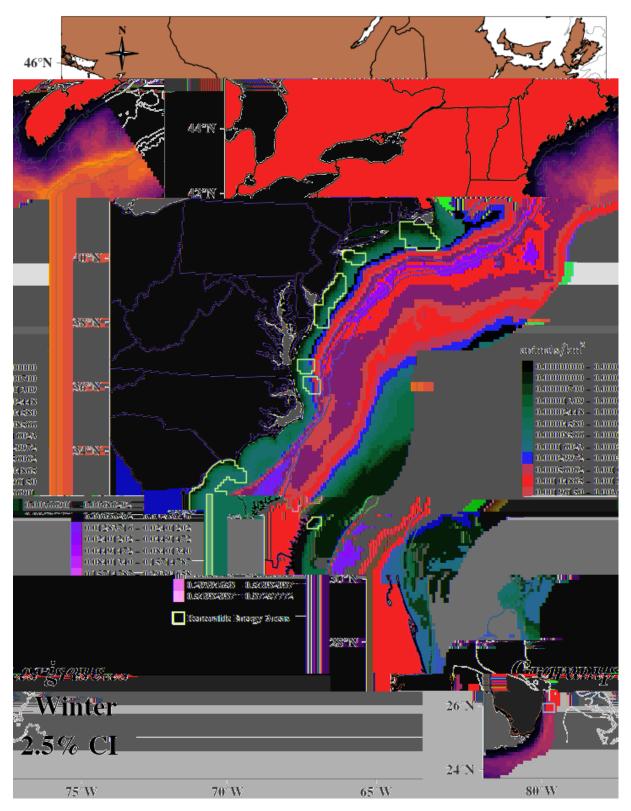
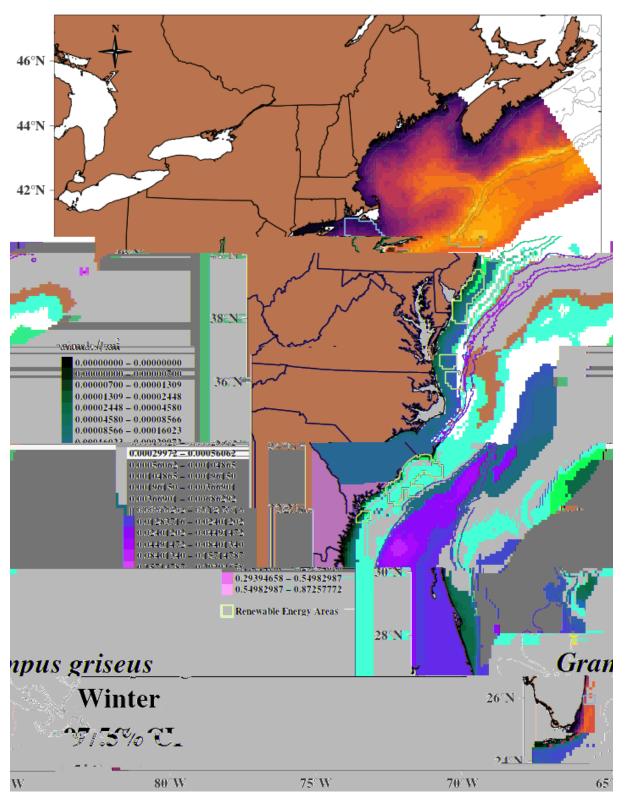




Figure 13-18 Risso's dolphin winter average density estimates

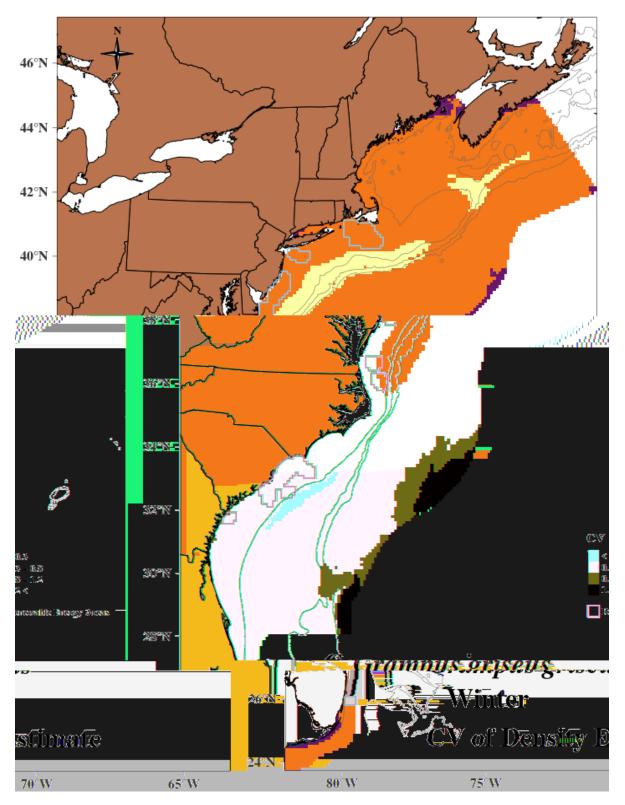

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-19 Lower 2.5% confidence interval of the winter Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-20 Upper 97.5% confidence interval of the winter Risso's dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 13-21 CV of winter Risso's dolphin density estimatesCV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

13.7 Offshore Energy Development Areas

Table 13-6 Risso's dolphin abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	2.1	0.37	1.0 4.2
(Mar–May)	NY	0.3	0.41	
` ,	NJ	0.6	0.40	
	DE/MD	0.7	0.36	
	VA	1.5	0.29	
	NC	5.9	0.26	
	NC/SC	2.5	0.35	
Summer	RI/MA	9.2	0.33	
(Jun-Aug)	NY	0.5	0.39	.0
	NJ	0.3	0.44	
	DE/MD	0.4	0.38	
	VA	0.5	0.36	.0
	NC	4.7	0.27	
	NC/SC	1.9	0.32	
Fall	RI/MA	4.5	0.34	
(Sep-Nov)	NY	0.2	0.42	
	NJ	0.3	0.45	
	DE/MD	0.3	0.41	
	VA	0.4	0.36	
	NC	2.5	0.29	
	NC/SC	1.0	0.36	.0
Winter	RI/MA	1.2	0.37	
(Dec-Feb)	NY	0.2	0.41	
	NJ	0.4	0.41	
	DE/MD	0.4	0.36	
	VA	1.0	0.30	
	NC	4.2	0.27	
	NC/SC	2.6	0.37	

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

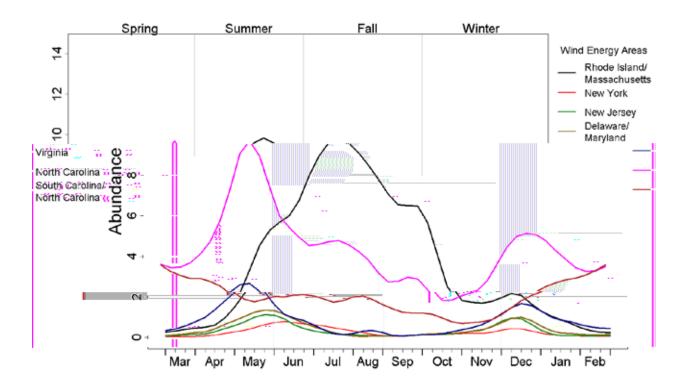


Figure 13-22 Average seasonal abundance of Risso's dolphins in the wind-energy study areas

Figure 14-1 White-sided dolphins
Image collected under MMPA Research permit #1355. Credit: NOAA/NEFSC/Peter Duley

14.1 Data Collection

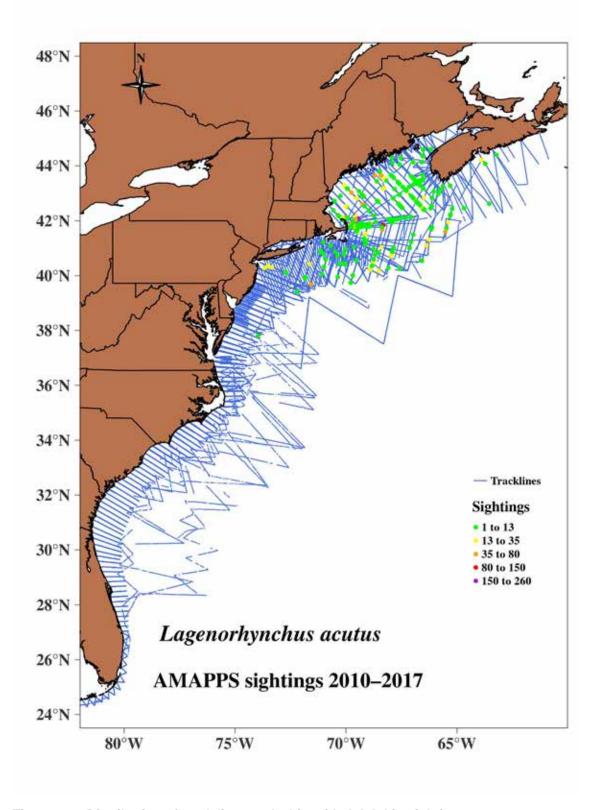


Figure 14-2 Distribution of track lines and white-sided dolphin sightings 2010 to 2017

Table 14-1 AMAPPS research effort 2010 to 2017 and Atlantic white-sided dolphin sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	3	61
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	62	536
NE Aerial	Summer	25,867	82	929
NE Aerial	Fall	37,850	144	2,675
NE Aerial	Winter	12,179	25	208
SE Shipboard	Spring	8,853	27	261
SE Shipboard	Summer	12,968	0	0
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	0	0
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

14.2 Mark-Recapture Distance Sampling Analysis

Table 14-2 Intermediate parameters in Atlantic white-sided dolphin mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
NE-aerial group 8	distance * observer	400	distance + group size + sea state	400	HR	0.57	0.10	0.19	0.87	0.90
NE- shipboard group 5	distance * observer + group size	3800	distance + swell	3800	HR	0.52	0.08	0.22	0.71	0.78
SE- shipboard group 1	distance + group size	2700	distance + sea state + glare	2700	HR	0.62	0.09	0.23	0.98	0.98

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

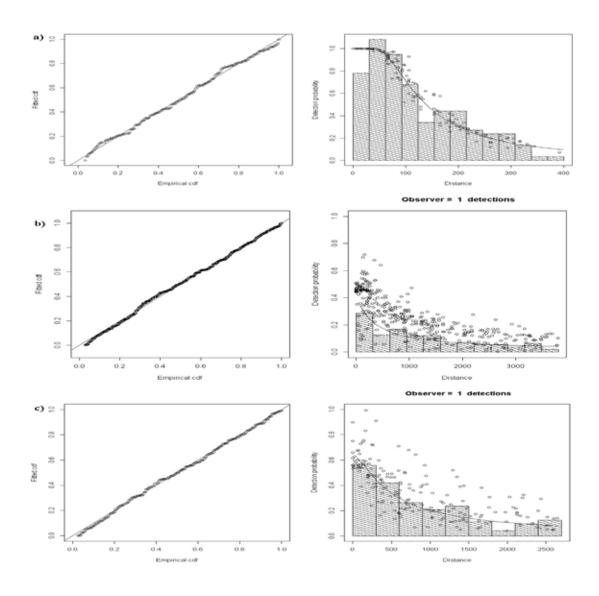


Figure 14-3 Q-Q plots and detection functions from the MRDS analyses a) NE-aerial analysis set 8; b) NE-shipboard analysis set 5; c) SE-shipboard analysis set 1.

14.3 Generalized Additive Model Analysis

Table 14-3 2010 to 2017 density-habitat model output for Atlantic white-sided dolphins

Covariates	Edf	Ref.df	F	C.dev	p-value
s(sstmur)	2.01	4	6.88	6.73	< 0.0001
s(picma)	0.95	4	4.71	6.56	< 0.0001
s(dist200)	0.94	4	3.24	4.81	<0.0001
te(LY,dist2GSSw)	10.95	24	3.69	28.18	< 0.0001

Adjusted $R^2 = 0.0117$. Deviance explained = 46.2%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 14-4 Atlantic white-sided dolphin density relative to significant habitat covariates
Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

14.4 Model Cross-Validation

Table 14-4 Diagnostic statistics from the Atlantic white-sided dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.104	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	91.000	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.097	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.012	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

14.5 Abundance Estimates for AMAPPS Study Area

Table 14-5 Atlantic white-sided dolphin average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	8,002	0.59	2,741–23,357
Summer (June-August)	2,938	0.48	1,204–7,172
Fall (September–November)	3,794	0.46	1,608–8,954
Winter (December–February)	7,084	0.55	2,586–19,403
Summer 2011 U.S. surveys ¹	48,819	0.61	
Summer 2016 U.S. surveys ¹	31,912	0.61	

¹Hayes et al. 2020

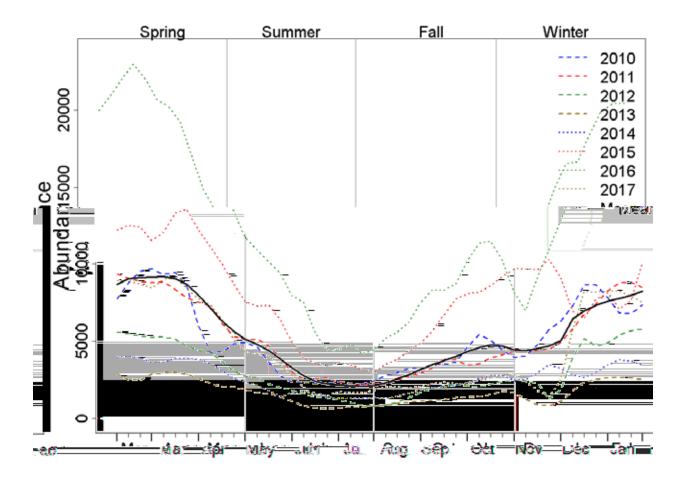


Figure 14-5 Annual abundance trends for Atlantic white-sided dolphins in the AMAPPS study area

14.6 Seasonal Prediction Maps

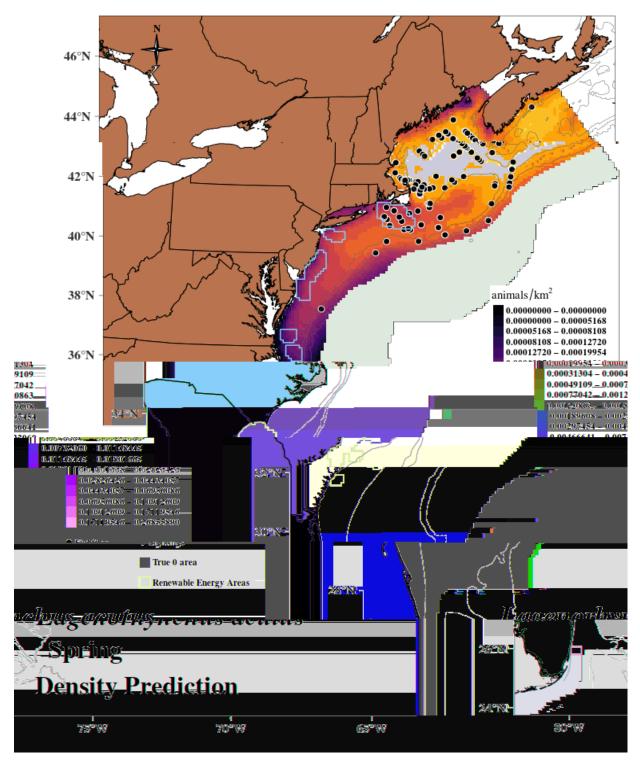
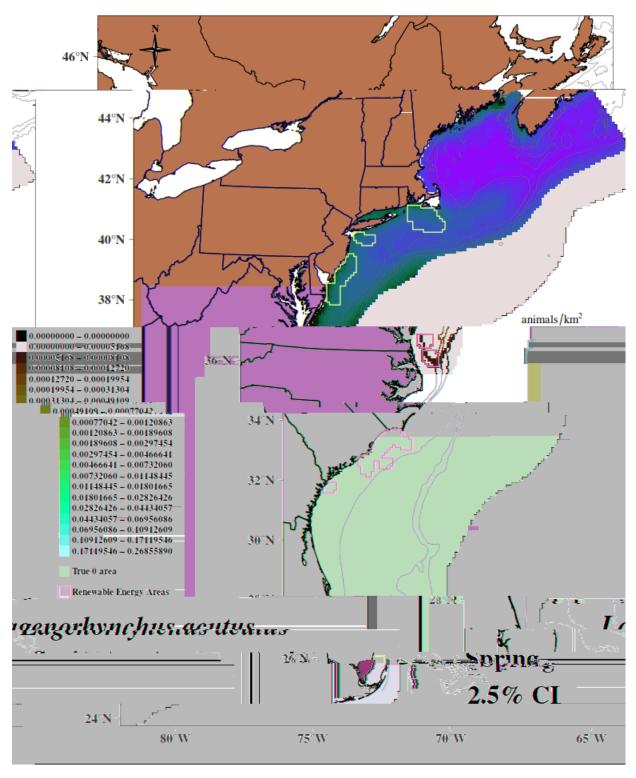




Figure 14-6 Atlantic white-sided dolphin spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-7 Lower 2.5% confidence interval of the spring white-sided dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-8 Upper 97.5% confidence interval of the spring white-sided dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

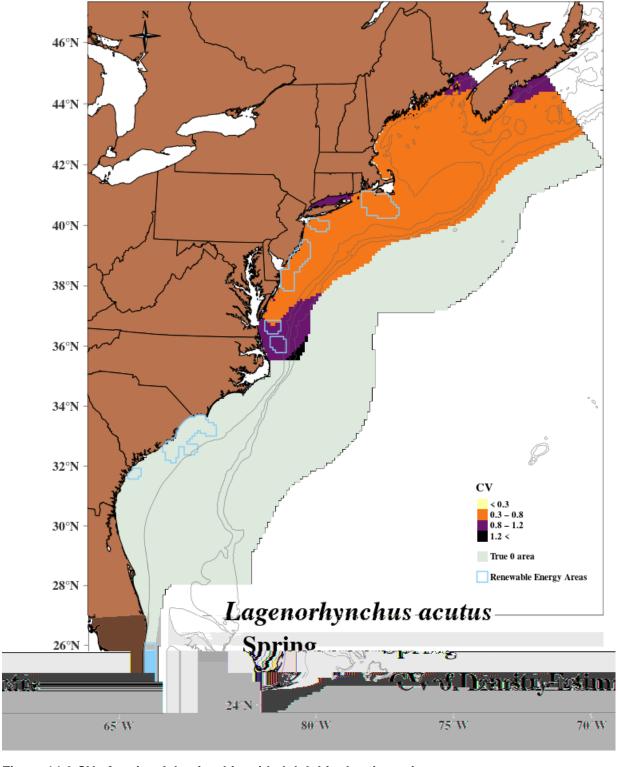


Figure 14-9 CV of spring Atlantic white-sided dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

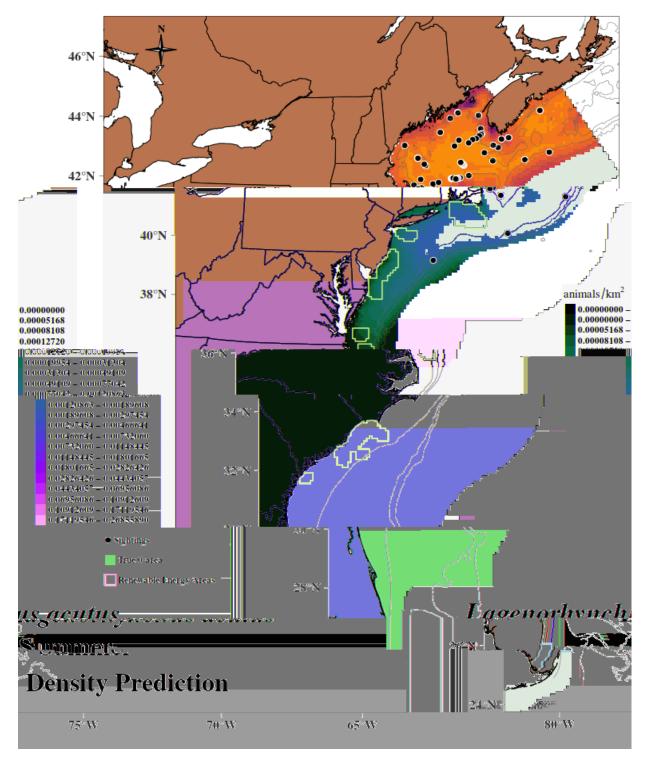
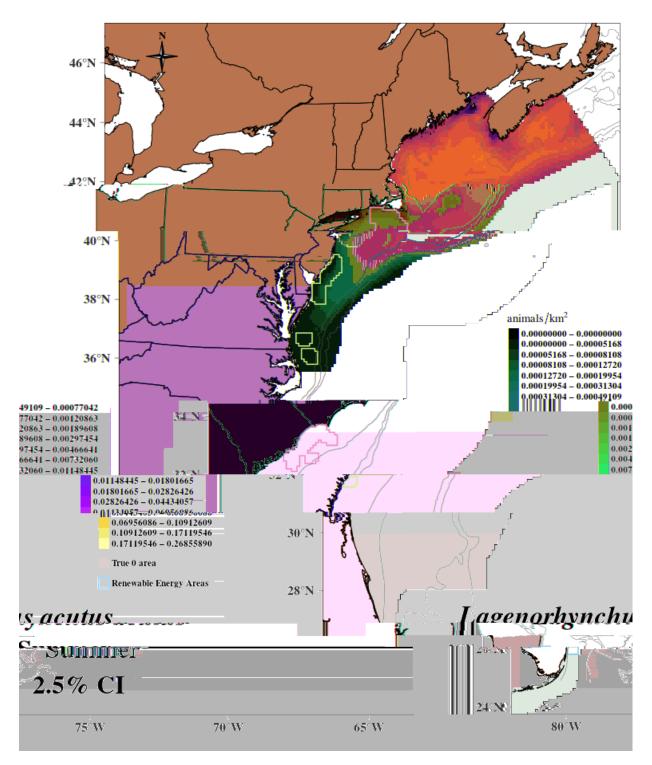



Figure 14-10 Atlantic white-sided dolphin summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-11 Lower 2.5% confidence interval of the summer white-sided dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

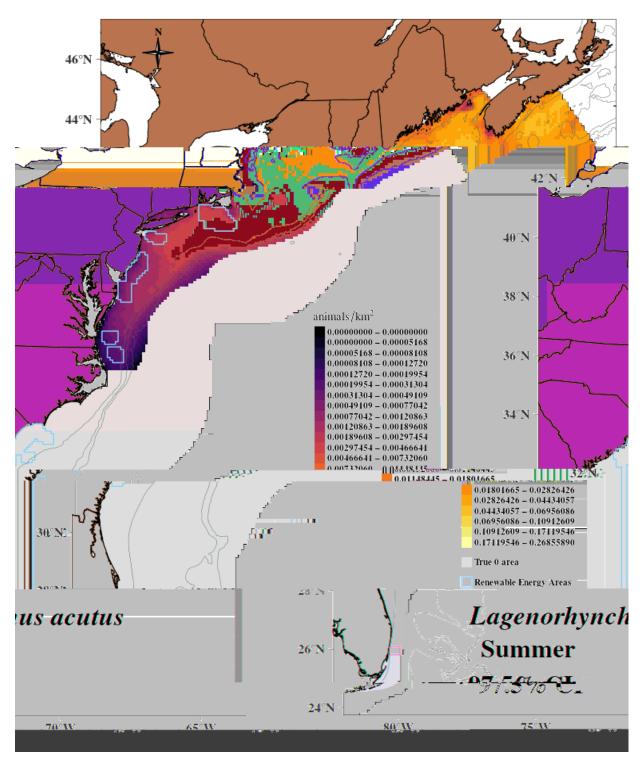


Figure 14-12 Upper 97.5% confidence interval of the summer white-sided dolphin density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

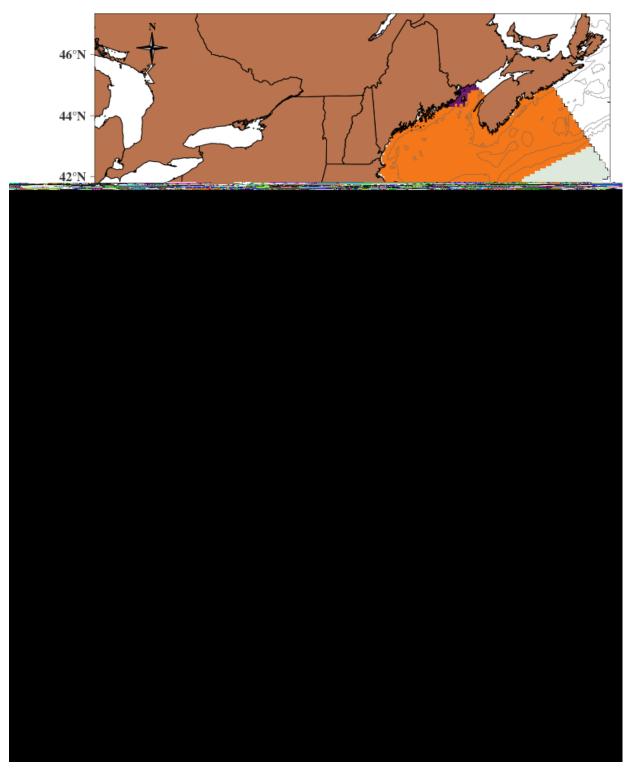


Figure 14-13 CV of summer Atlantic white-sided dolphin density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

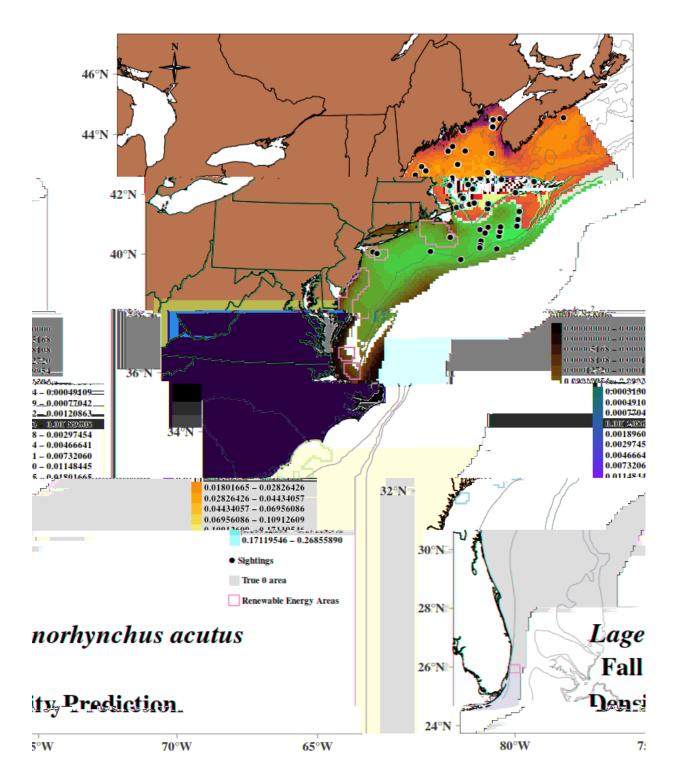
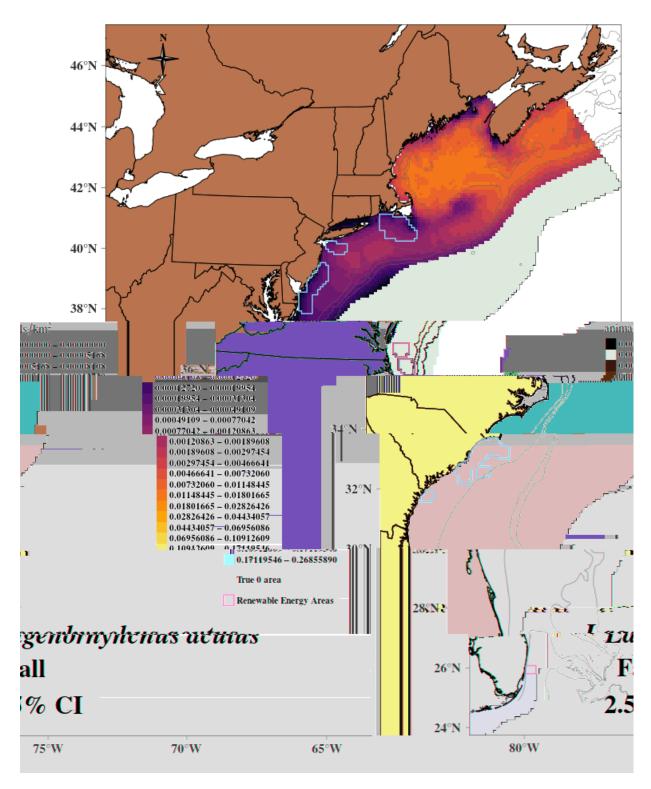
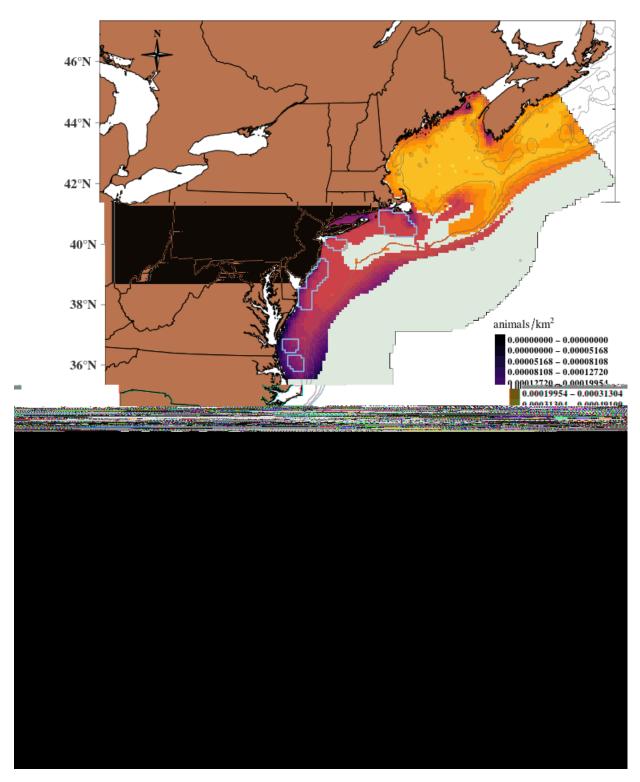




Figure 14-14 Atlantic white-sided dolphin fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-15 Lower 2.5% confidence interval of the fall white-sided dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-16 Upper 97.5% confidence interval of the fall white-sided dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

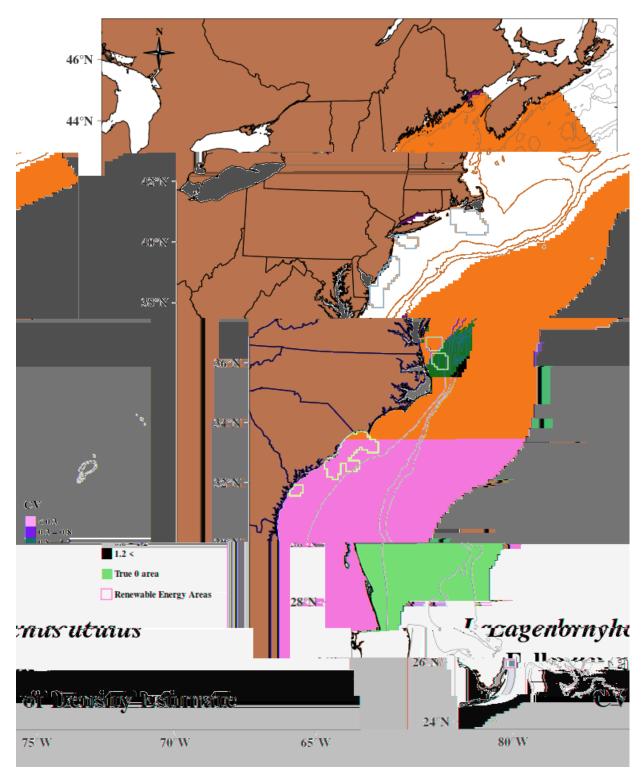


Figure 14-17 CV of fall Atlantic white-sided dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

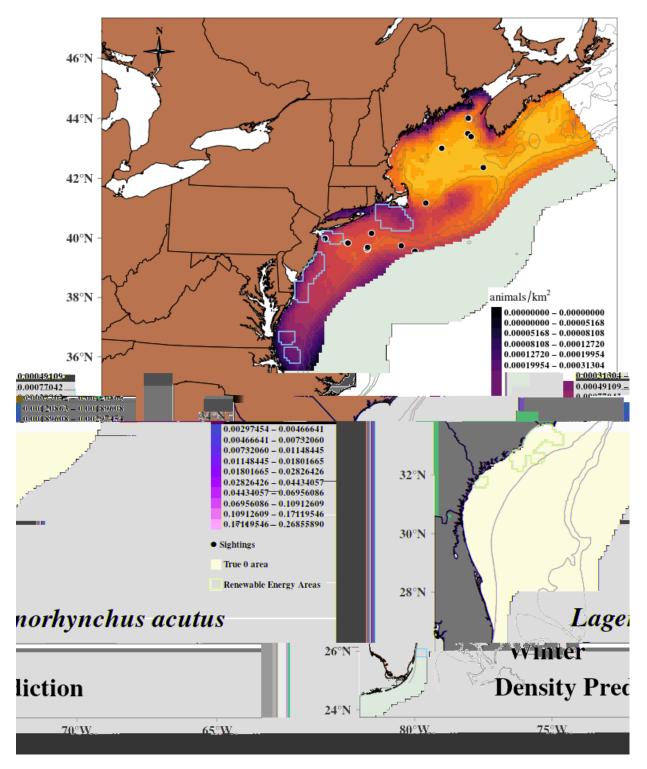
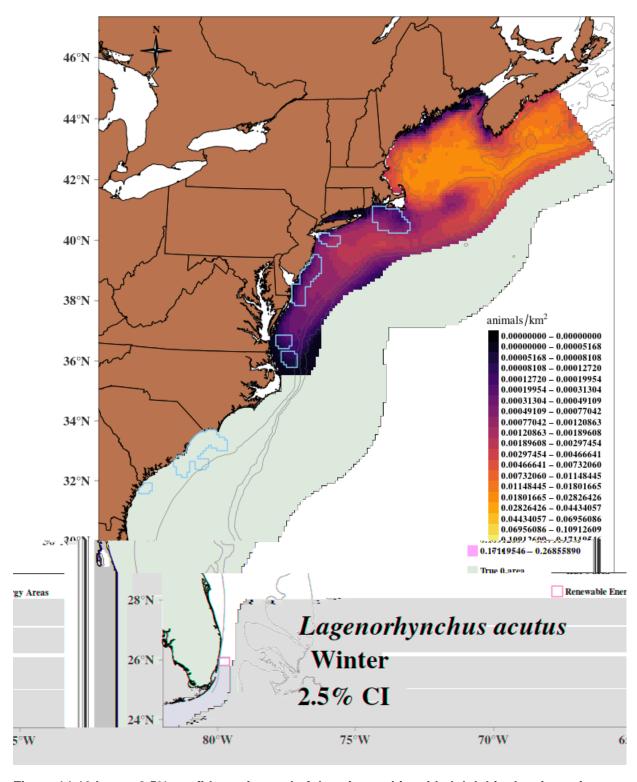
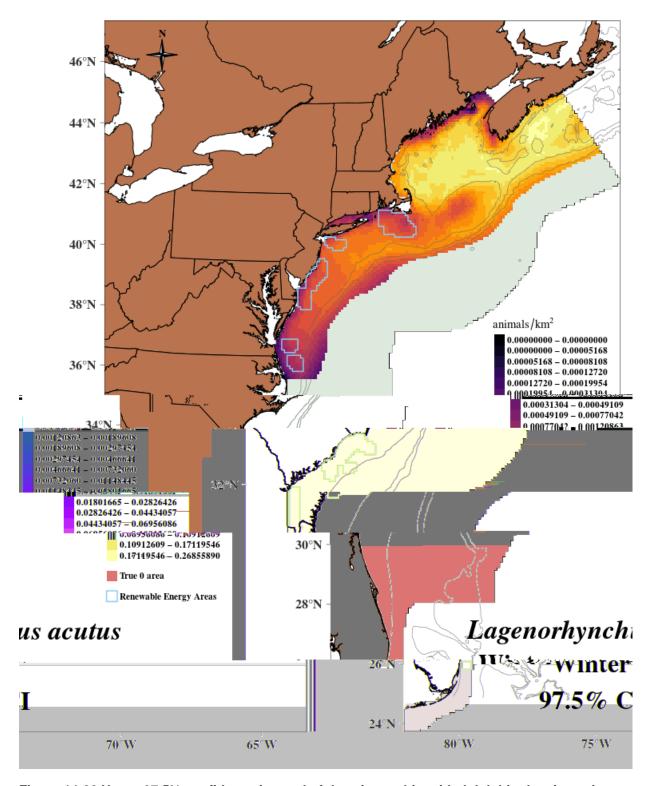




Figure 14-18 Atlantic white-sided dolphin winter average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-19 Lower 2.5% confidence interval of the winter white-sided dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 14-20 Upper 97.5% confidence interval of the winter white-sided dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

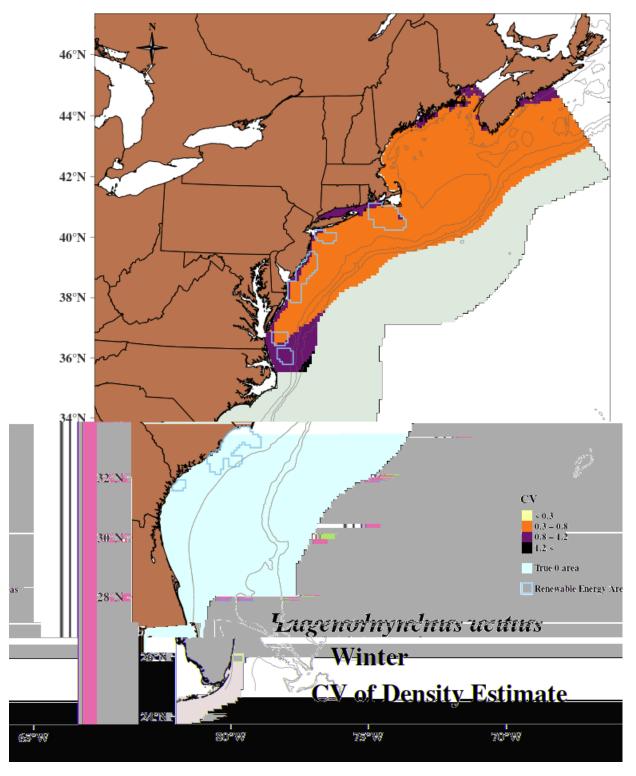


Figure 14-21 CV of winter Atlantic white-sided dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

14.7 Offshore Energy Development Areas

Table 14-6 Atlantic white-sided dolphin abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	53.5	0.61	
(Mar–May)	NY	10.3	0.63	.0
	NJ	10.6	0.68	
	DE/MD	4.3	0.69	
	VA	1.2	0.81	
	NC	1.1	0.95	
Summer	RI/MA	19.6	0.54	7.3 - 52.7
(Jun-Aug)	NY	2.1	0.59	0.7 - 6.2
	NJ	1.6	0.66	0.5 - 5.0
	DE/MD	0.8	0.66	0.3 - 2.7
	VA	0.2	0.73	0.1 - 0.8
	NC	0.2	0.88	0.0 - 0.8
Fall	RI/MA	17.9	0.56	6.5 - 49.7
(Sep-Nov)	NY	5.5	0.56	2.0 - 15.4
	NJ	4.8	0.60	1.6 - 14.2
	DE/MD	1.9	0.61	0.6 - 5.7
	VA	0.5	0.74	0.1 – 2.0
	NC	0.5	0.90	0.1 - 2.1
Winter	RI/MA	18.9	0.65	5.9 - 60.2
(Dec-Feb)	NY	9.1	0.66	2.8 - 29.5
	NJ	11.0	0.73	3.1 - 39.5
	DE/MD	4.5	0.71	1.3 - 15.8
	VA	1.5	0.77	0.4 - 5.6
	NC	1.2	0.92	0.2 - 5.3

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

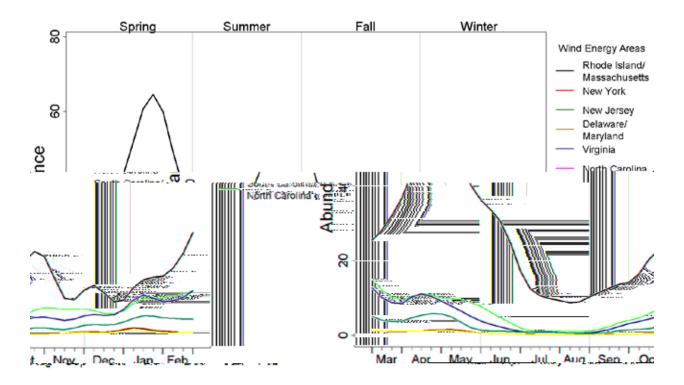


Figure 14-22 Average seasonal abundance of white-sided dolphins in the wind-energy study areas

Figure 15-1 Common dolphin Image collected under MMPA Research permit #775-1875. Credit: NOAA/NEFSC/Allison Henry.

15.1 Data Collection

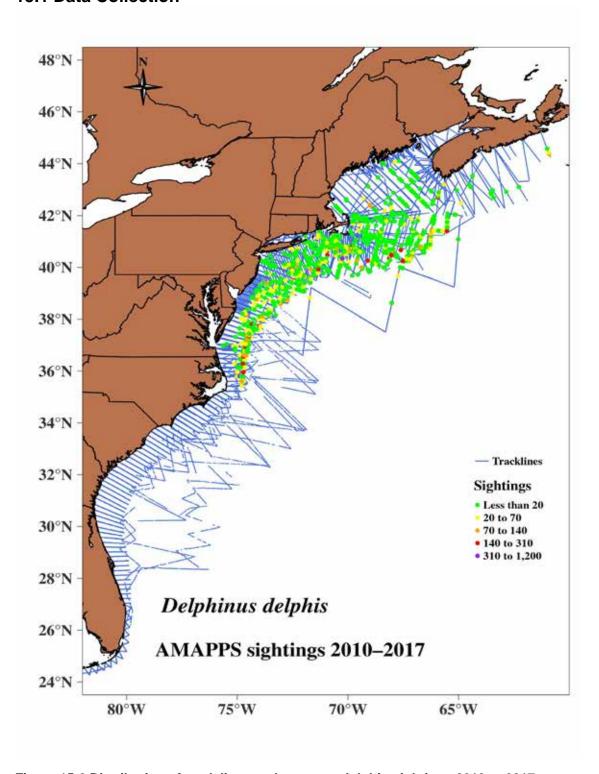


Figure 15-2 Distribution of track lines and common dolphin sightings 2010 to 2017

Table 15-1 AMAPPS research effort 2010 to 2017 and common dolphin sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	444	19,802
NE Shipboard	Fall	1,065	5	280
NE Aerial	Spring	13,314	8	215
NE Aerial	Summer	25,867	223	5,570
NE Aerial	Fall	37,850	223	5,823
NE Aerial	Winter	12,179	136	3,558
SE Shipboard	Spring	8,853	63	1,648
SE Shipboard	Summer	12,968	6	575
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	125	6,520
SE Aerial	Summer	28,236	11	784
SE Aerial	Fall	18,974	5	254
SE Aerial	Winter	8,950	36	1,625

15.2 Mark-Recapture Distance Sampling Analysis

Table 15-2 Intermediate parameters in common dolphin mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE–aerial group 3	distance + sea state + group size	300	distance + glare	LT20-300	HR	0.78	0.08	0.40	0.99	1.00
NE-aerial group 9	distance* observer + group size + sea state	300	distance + glare + size	300	HN	0.56	0.10	0.38	0.61	0.84
NE-shipboard group 5	distance * observer + group size	3800	distance + swell	3800	HR	0.52	0.08	0.22	0.71	0.78
SE–shipboard group 1	distance + group size	2700	distance + sea state + glare	2700	HR	0.62	0.09	0.23	0.98	0.98

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

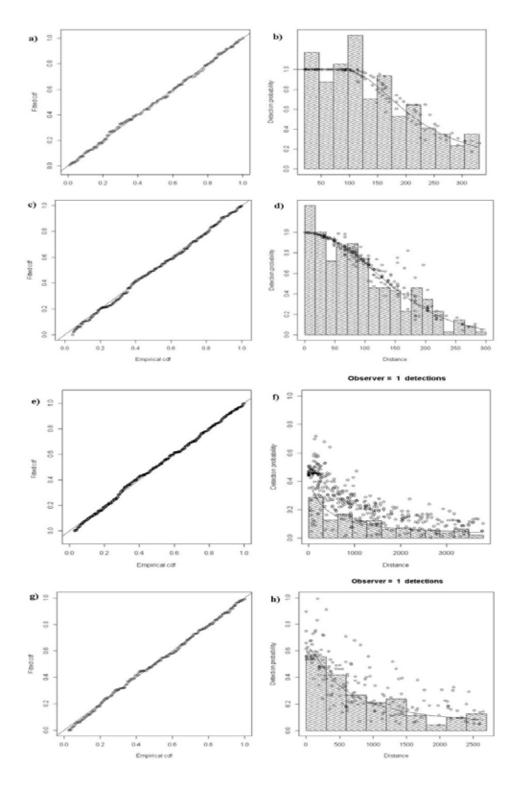


Figure 15-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 3; b) NE-aerial analysis set 9; c) NE-shipboard analysis set 5; d) SE-shipboard analysis set 1.

15.3 Generalized Additive Model Analysis

Table 15-3 2010 to 2017 density-habitat model output for common dolphins

Covariates	Edf	Ref.df	F	C. dev	p-value
s(sstmur)	4.12	5	13.23	11.80	<0.0001
s(btemp)	3.87	5	32.83	19.25	<0.0001
s(dist2GSNw)	3.82	5	7.19	4.42	<0.0001
s(dist2shore)	4.36	5	12.51	3.88	<0.0001
s(slope)	1.95	5	8.58	3.88	<0.0001
s(lat)	3.88	5	7.35	1.72	<0.0001
te(LY,lat)	5.70	23	0.88	5.83	<0.0001

Adjusted $R^2 = 0.0462$. Deviance explained = 50.3%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

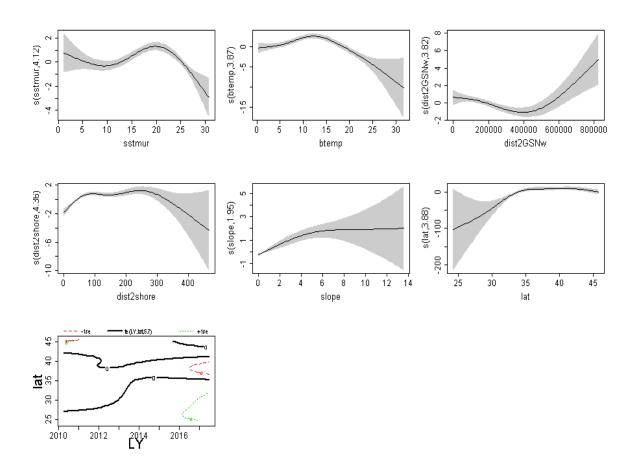


Figure 15-4 Common dolphin density related to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

15.4 Model Cross-Validation

Table 15-4 Diagnostic statistics from the common dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.358	Excellent
MAPE	Mean absolute percentage error	Non-zero density	99.140	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.169	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.146	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

15.5 Abundance Estimates for AMAPPS Study Area

Table 15-5 Common dolphin average abundance estimates for the AMAPPS study area

Values estimated by the density-habitat model with availability bias correction (aerial 0.649, CV=0.185; shipboard 1, CV=0.0), compared to the 2011 abundance reported in the 2019 stock assessment which does not include availability bias correction.

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	34,295	0.42	15,565–75,566
Summer (June-August)	77,109	0.34	40,325–147,449
Fall (September-November)	80,751	0.37	40,017–162,949
Winter (December-February)	38,748	0.39	18,533–81,011
Summer 2011 U.S. surveys ¹	70,184	0.28	
Summer 2016 U.S. surveys ¹	81,127	0.27	

¹Hayes et al. 2020

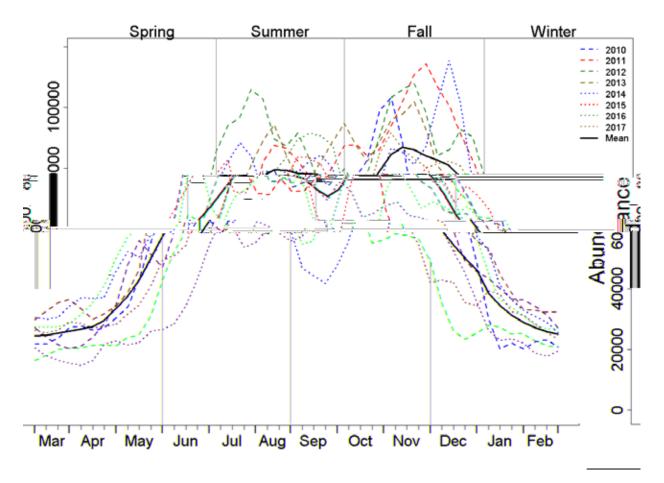


Figure 15-5 Annual abundance trends for common dolphins in the AMAPPS study area

15.6 Seasonal Prediction Maps

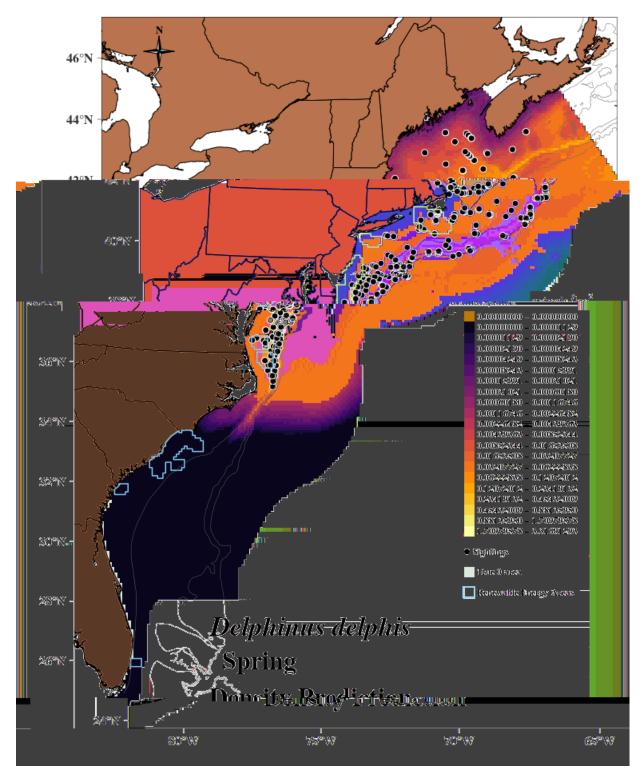
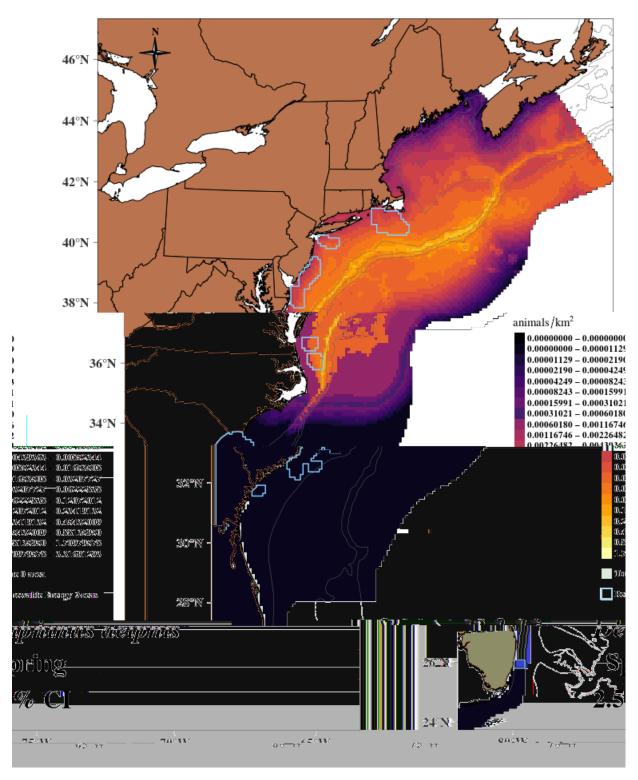
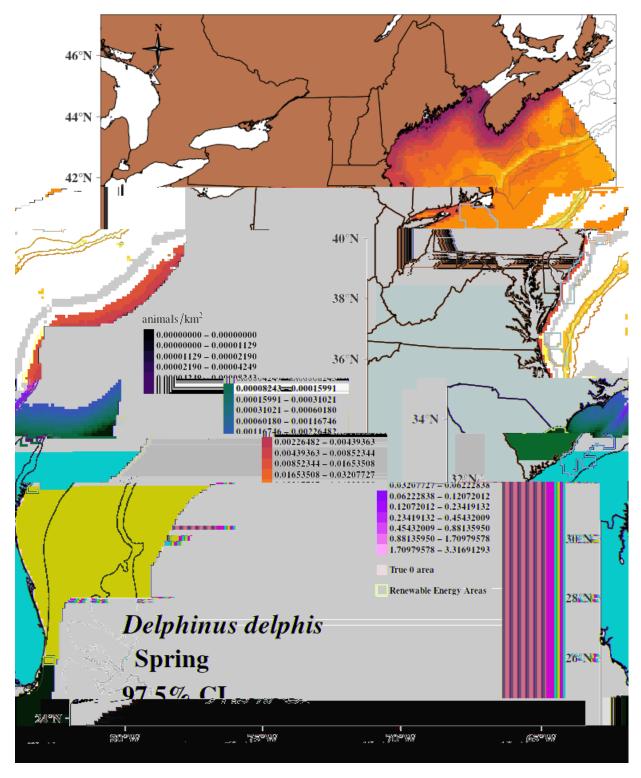




Figure 15-6 Common dolphin spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-7 Lower 2.5% confidence interval of the spring common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-8 Upper 97.5% confidence interval of the spring common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

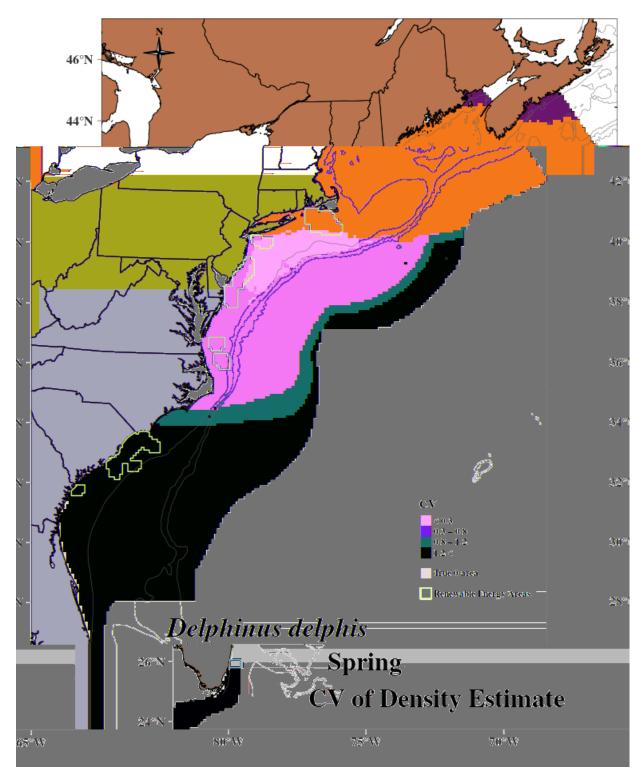


Figure 15-9 CV of spring common dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

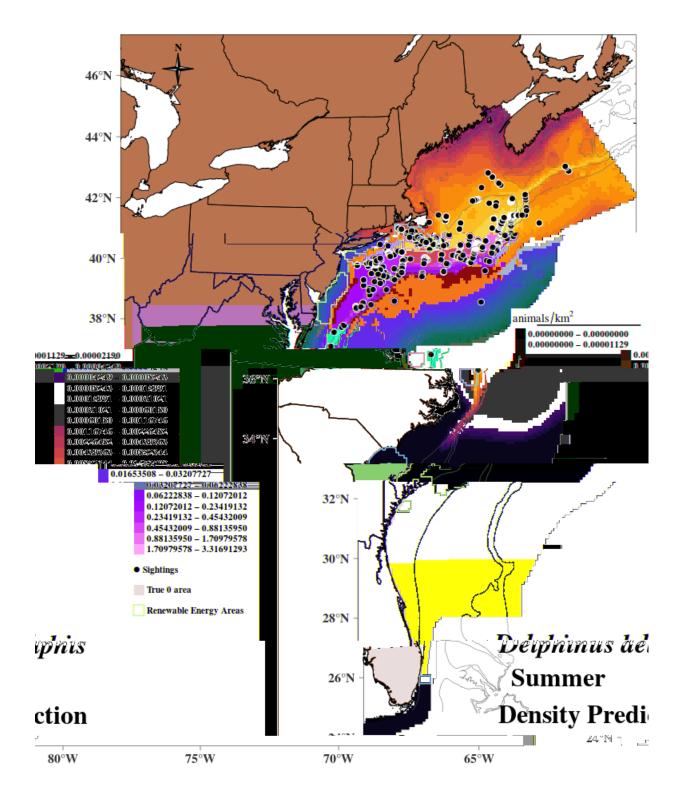
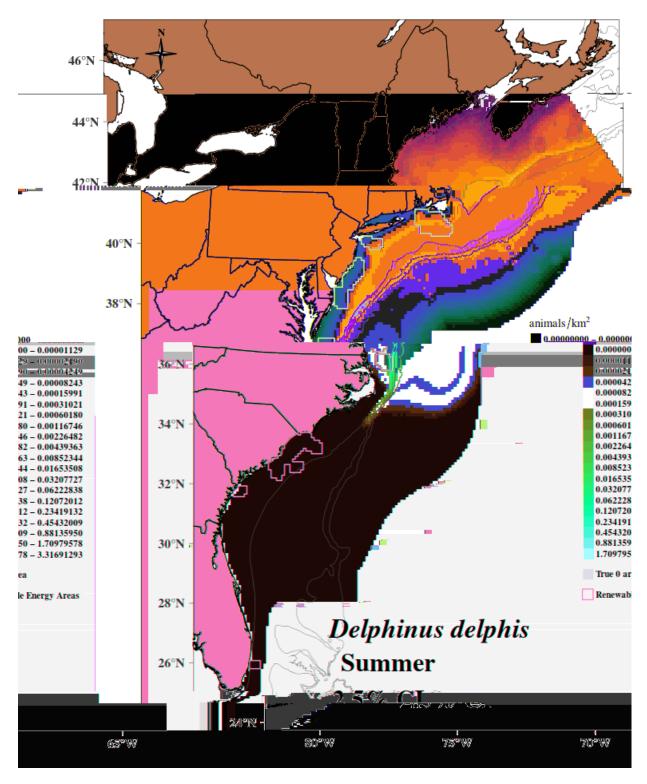
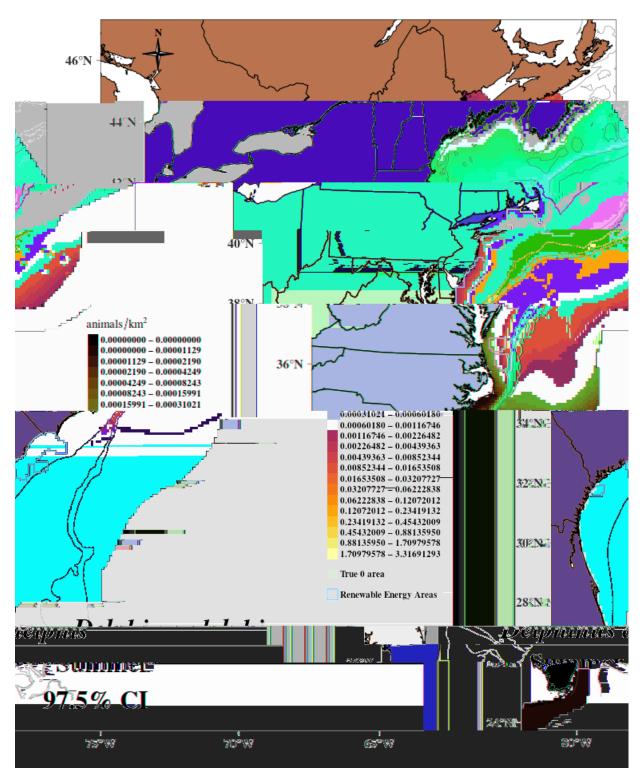




Figure 15-10 Common dolphin summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-11 Lower 2.5% confidence interval of the summer common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-12 Upper 97.5% confidence interval of the summer common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

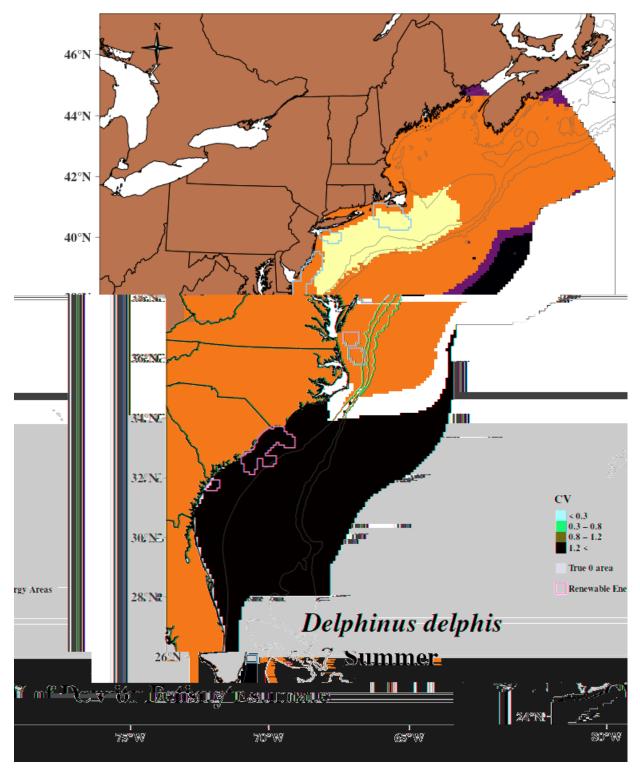


Figure 15-13 CV of summer common dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

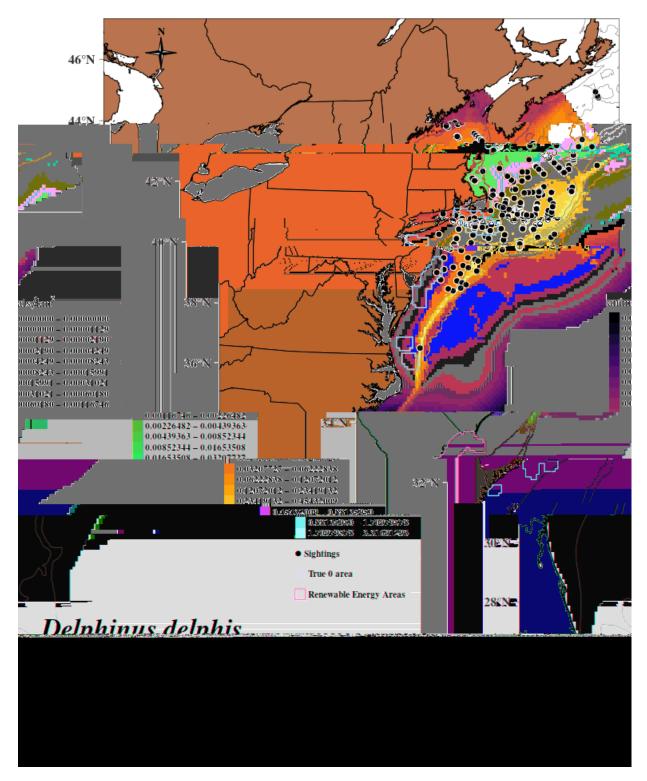
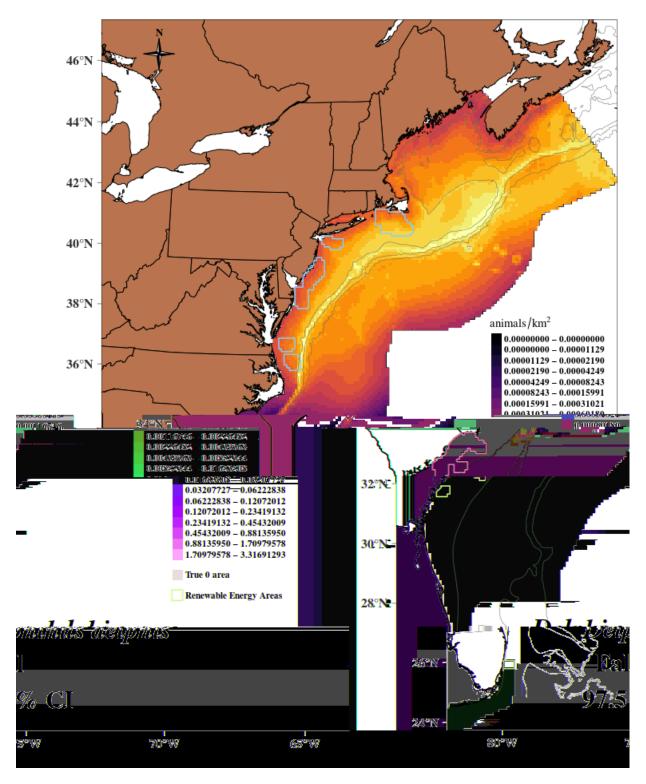



Figure 15-14 Common dolphin fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-15 Lower 2.5% confidence interval of the fall common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-16 Upper 97.5% confidence interval of the fall common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

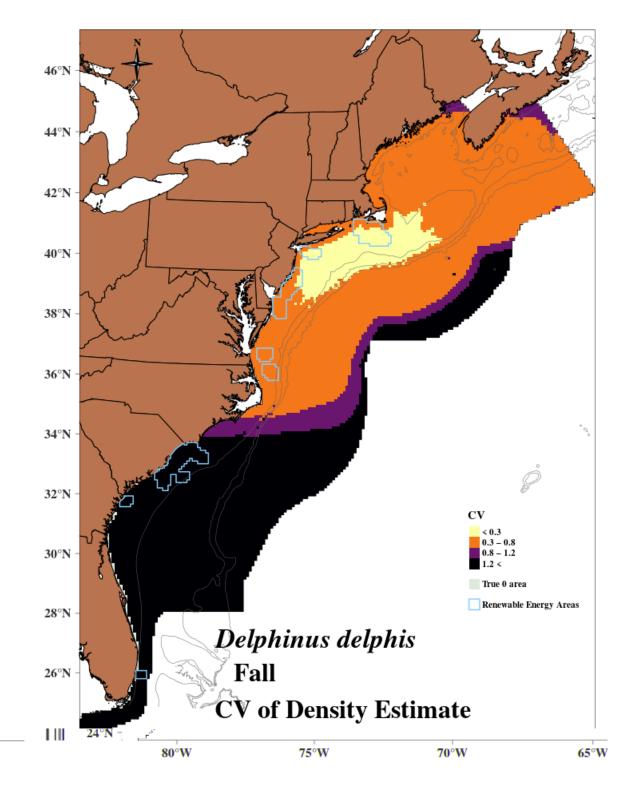


Figure 15-17 CV of fall common dolphin density estimates

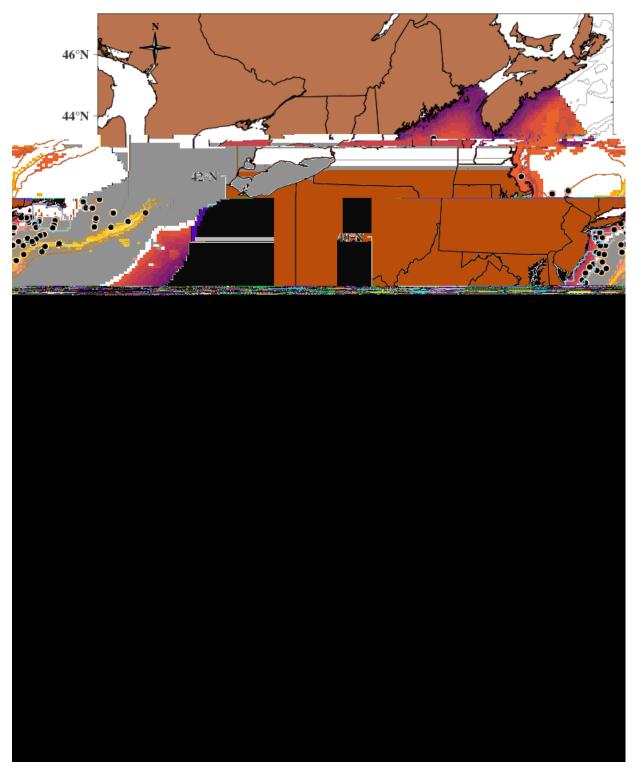
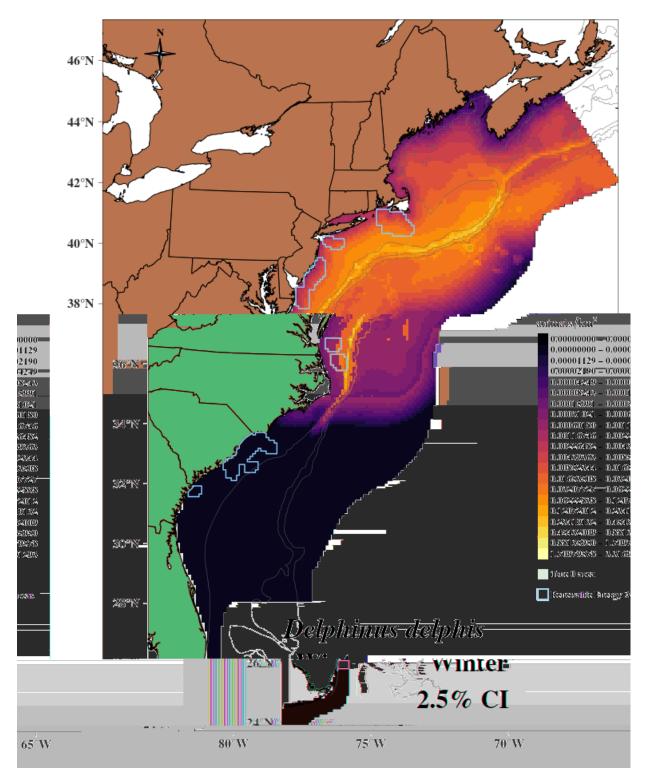
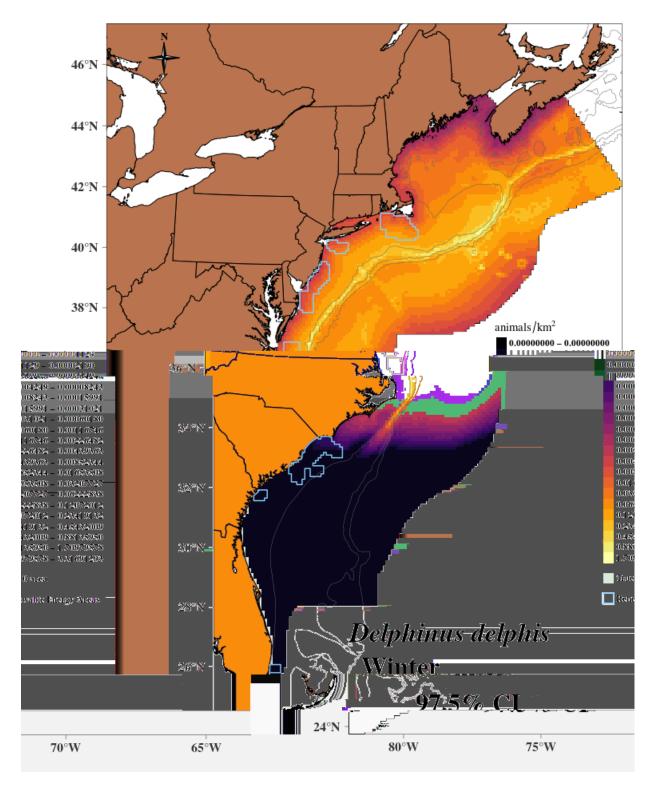




Figure 15-18 Common dolphin winter average density estimates

Figure 15-19 Lower 2.5% confidence interval of the winter common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 15-20 Upper 97.5% confidence interval of the winter common dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

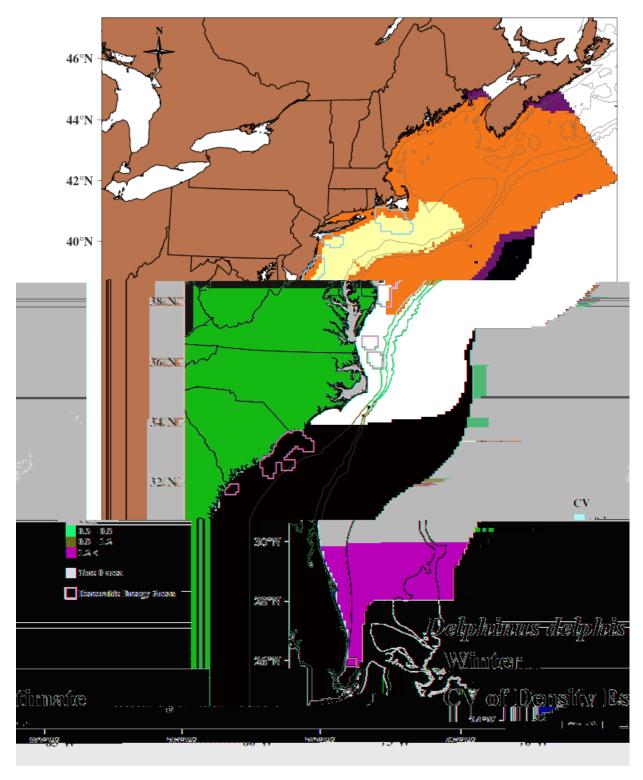


Figure 15-21 CV of winter common dolphin density estimates

15.7 Offshore Energy Development Areas

Table 15-6 Common dolphin average abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	356.3	0.31	195.7-648.6
(Mar-May)	NY	65.8	0.29	
	NJ	118.4	0.31	
	DE/MD	74.6	0.33	40.0 139.0
	VA	131.9	0.36	66.0 263.8
	NC	316.4	0.39	
	NC/SC	0.0	1.74	0.0 0.1
Summer	RI/MA	2,534.7	0.26	
(Jun-Aug)	NY	153.8	0.27	
	NJ	56.9	0.32	
	DE/MD	31.5	0.34	
	VA	17.3	0.40	
	NC	77.4	0.43	
	NC/SC	0.0	2.15	0.0 0.0
Fall	RI/MA	1,785.1	0.26	
(Sep-Nov)	NY	90.7	0.27	.0
	NJ	90.7	0.31	50.0 164.6
	DE/MD	52.6	0.34	
	VA	60.9	0.39	
	NC	143.7	0.45	
	NC/SC	0.0	1.67	0.0 0.0
Winter	RI/MA	515	0.26	
(Dec-Feb)	NY	56.8	0.27	
,	NJ	71.9	0.30	
	DE/MD	47.4	0.31	
	VA	113.3	0.34	
	NC	266.2	0.39	
± 1.0.1	NC/SC	0.0	1.73	0.0 0.1

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

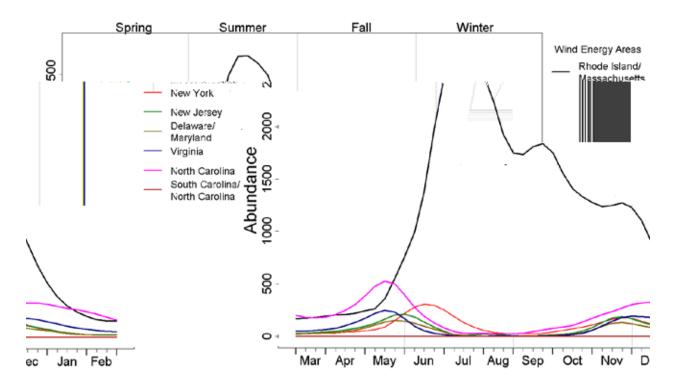


Figure 15-22 Average seasonal abundance of common dolphins in the wind-energy study areas

Figure 16-1 Atlantic Spotted DolphinsImage collected under MMPA Research permit #775-1875. Credit: NOAA/NEFSC/Allison Henry

16.1 Data Collection

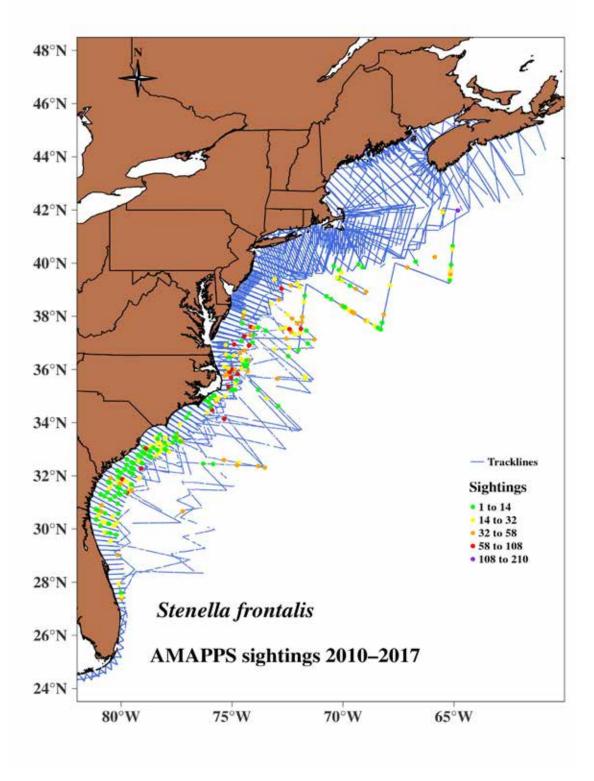
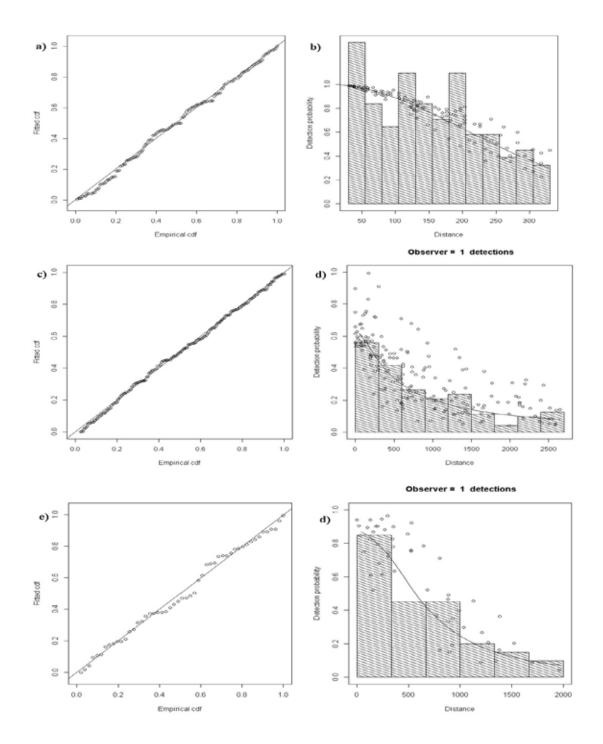


Figure 16-2 Distribution of track lines and Atlantic spotted dolphin sightings 2010 to 2017

Table 16-1 AMAPPS research effort 2010 to 2017 and Atlantic spotted dolphin sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	60	1,760
NE Shipboard	Fall	1,065	3	75
NE Aerial	Spring	13,314	0	0
NE Aerial	Summer	25,867	0	0
NE Aerial	Fall	37,850	0	0
NE Aerial	Winter	12,179	0	0
SE Shipboard	Spring	8,853	0	0
SE Shipboard	Summer	12,968	76	2,817
SE Shipboard	Fall	3,012	31	959
SE Aerial	Spring	41,293	70	1,346
SE Aerial	Summer	28,236	64	1,259
SE Aerial	Fall	18,974	37	580
SE Aerial	Winter	8,950	5	71

16.2 Mark-Recapture Distance Sampling Analysis

Table 16-2 Intermediate parameters in Atlantic spotted dolphin mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
SE–aerial group 1	distance + sea state + quality	330	distance + glare +quality	LT30-330	HN	0.65	0.10	0.14	0.92	0.90
NE-shipboard group 1	sea state + swell	2000	distance + sea state	2000	HR	0.87	0.08	0.39	0.94	0.92
SE-shipboard group 1	distance + group size	2700	distance + sea state + glare	2700	HR	0.62	0.09	0.23	0.976	0.98

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 16-3 Q-Q plots and detection functions from the MRDS analyses a) SE-aerial analysis set 1; b) NE-shipboard analysis set 1; c) SE-shipboard analysis set 1.

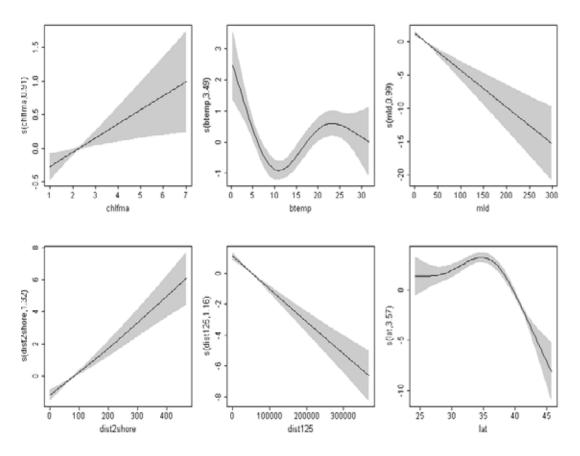

16.3 Generalized Additive Model Analysis

Table 16-3 2010 to 2017 density-habitat model output for Atlantic spotted dolphins

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chlfma)	0.77	4	0.77	0.39	0.0431
s(btemp)	3.53	4	11.21	4.38	< 0.0001
s(mld)	0.99	4	10.99	4.44	<0.0001
s(dist2shore)	1.22	4	13.87	4.48	< 0.0001
s(dist125)	1.16	4	24.42	8.12	< 0.0001
s(lat)	3.54	4	39.54	15.96	<0.0001

Adjusted $R^2 = 0.00124$. Deviance explained = 37.8%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

Figure 16-4 Atlantic spotted dolphin density relative to significant habitat covariatesPlots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

16.4 Model Cross-Validation

Table 16-4 Diagnostic statistics from the Atlantic spotted dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.101	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	95.600	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.123	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.040	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

16.5 Abundance Estimates for AMAPPS Study Area

Table 16-5 Atlantic spotted dolphin average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March–May)	17,464	0.32	
Summer (June-August)	44,947	0.30	
Fall (September–November)	20,836	0.33	
Winter (December–February)	3,855	0.40	
Summer 2011 U.S. surveys ¹	44,715	0.43	
Summer 2016 U.S. surveys ¹	39,921	0.27	

¹Hayes et al. 2020

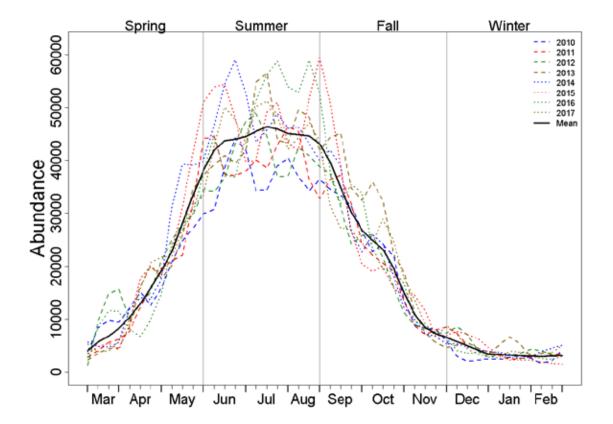


Figure 16-5 Annual abundance trends for Atlantic spotted dolphins in the AMAPPS study area

16.6 Seasonal Prediction Maps

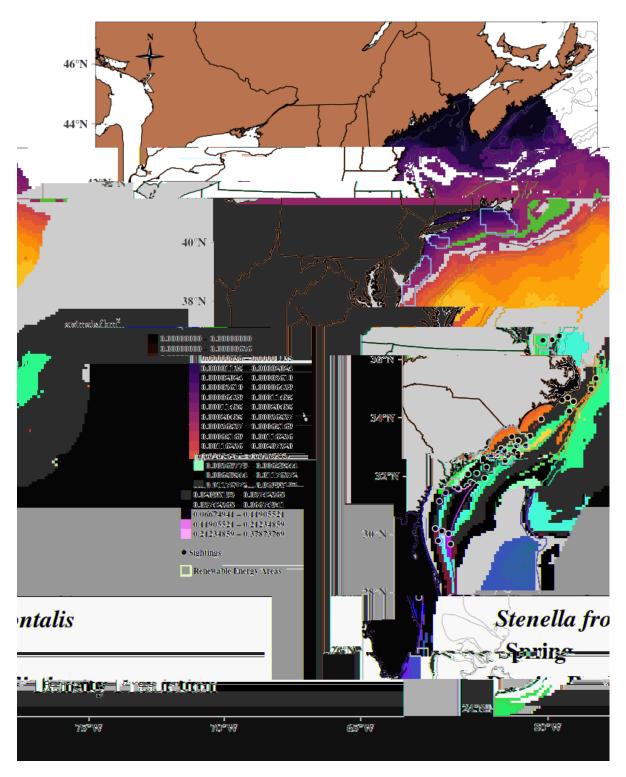


Figure 16-6 Atlantic spotted dolphin spring average density estimates

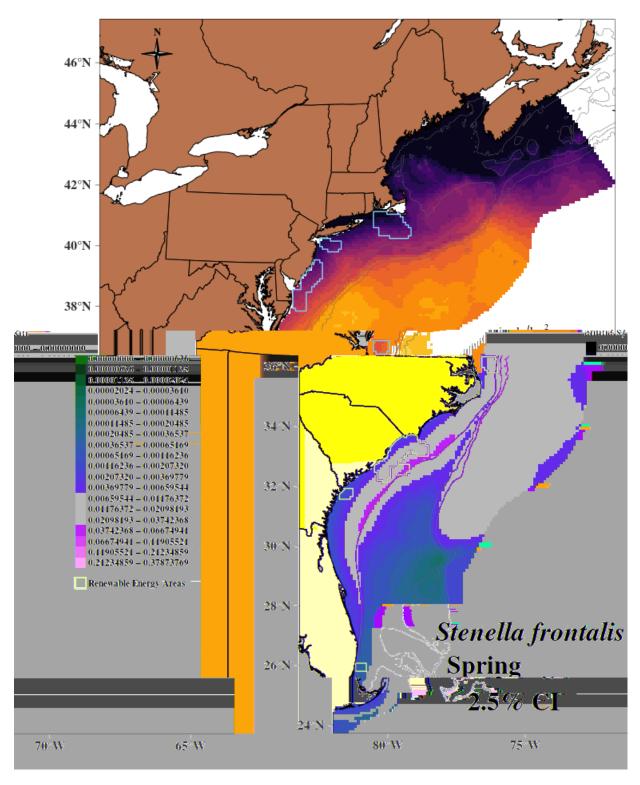


Figure 16-7 Lower 2.5% confidence interval of the spring Atlantic spotted dolphin density estimates

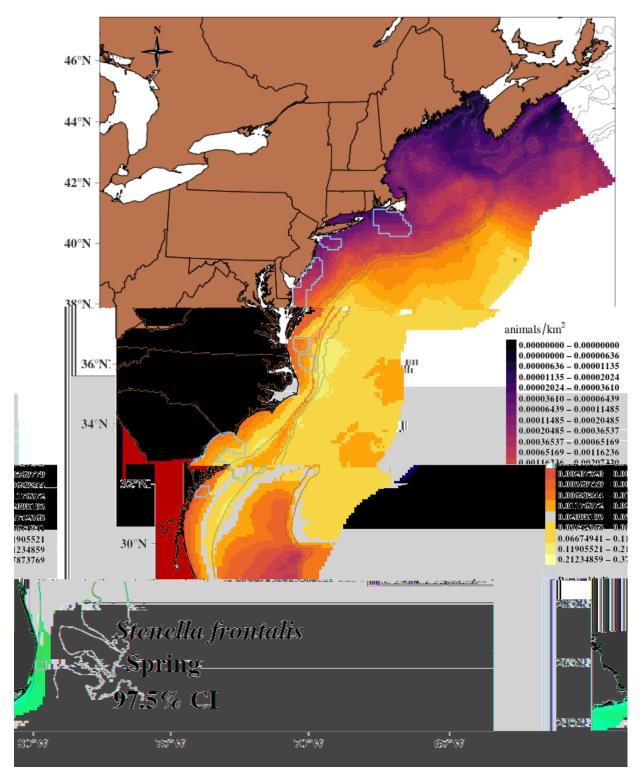


Figure 16-8 Upper 97.5% confidence interval of the spring Atlantic spotted dolphin density estimates

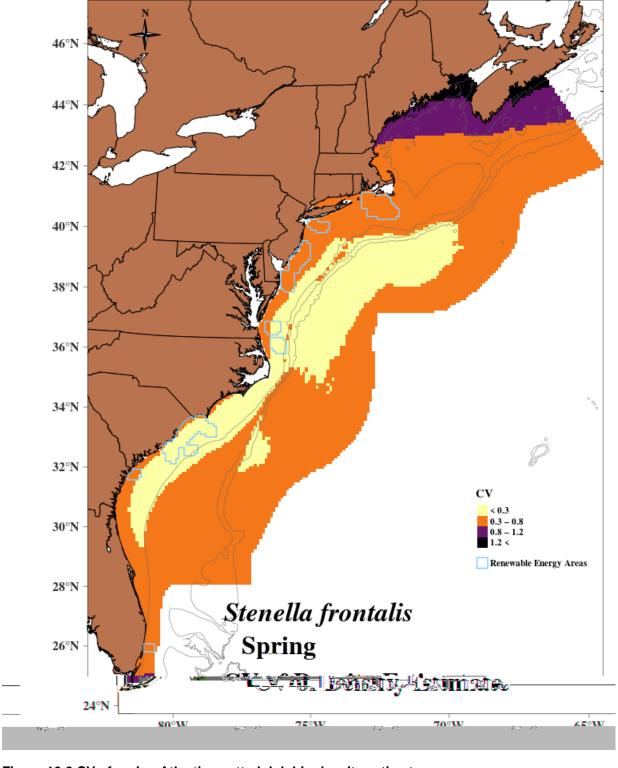


Figure 16-9 CV of spring Atlantic spotted dolphin density estimates

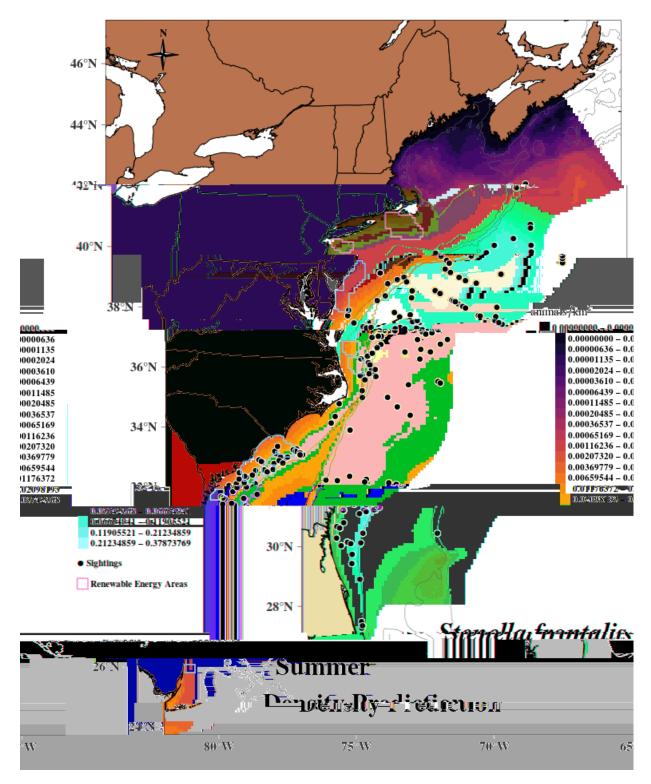


Figure 16-10 Atlantic spotted dolphin summer average density estimates

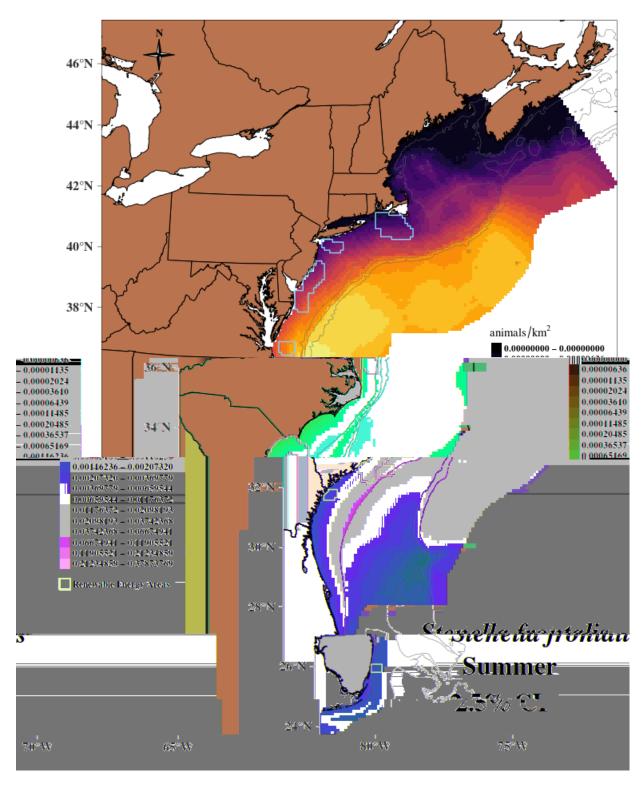


Figure 16-11 Lower 2.5% confidence interval of the summer Atlantic spotted dolphin density estimates

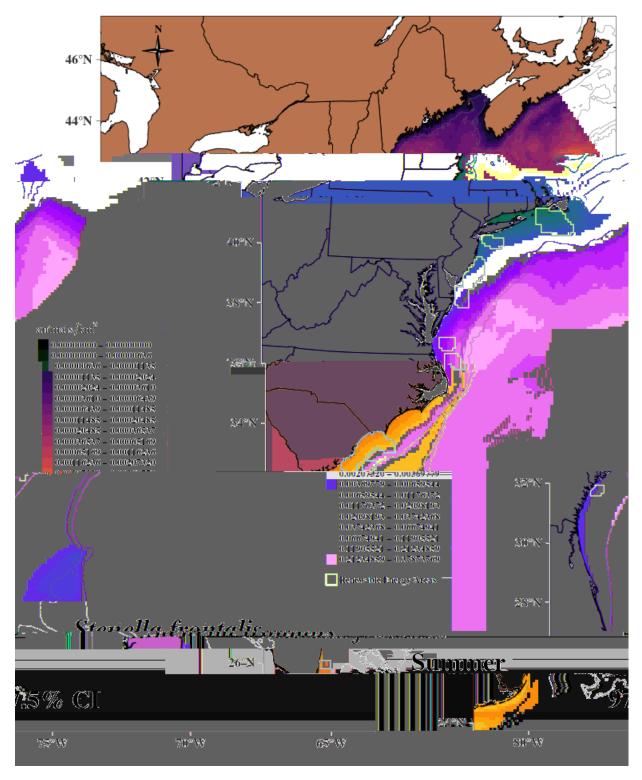


Figure 16-12 Upper 97.5% confidence interval of the summer Atlantic spotted dolphin density estimates

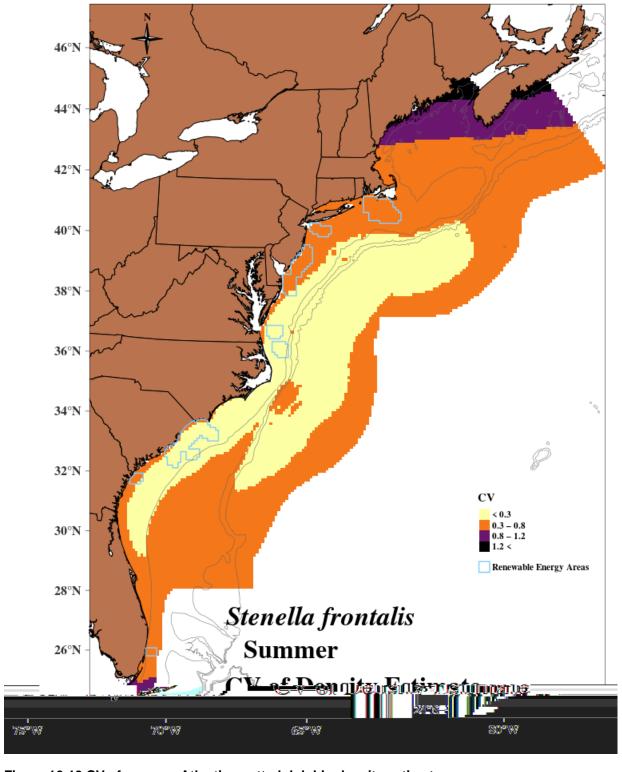


Figure 16-13 CV of summer Atlantic spotted dolphin density estimates

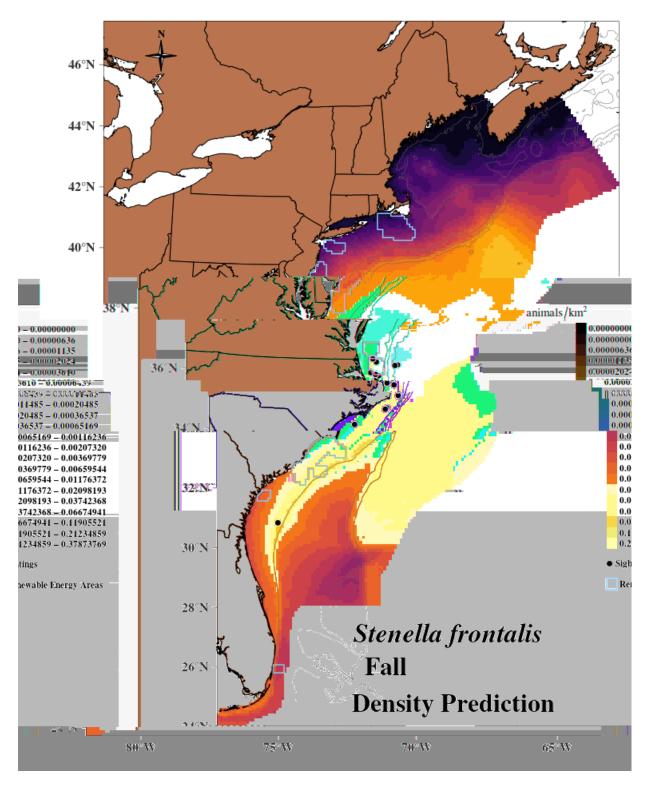
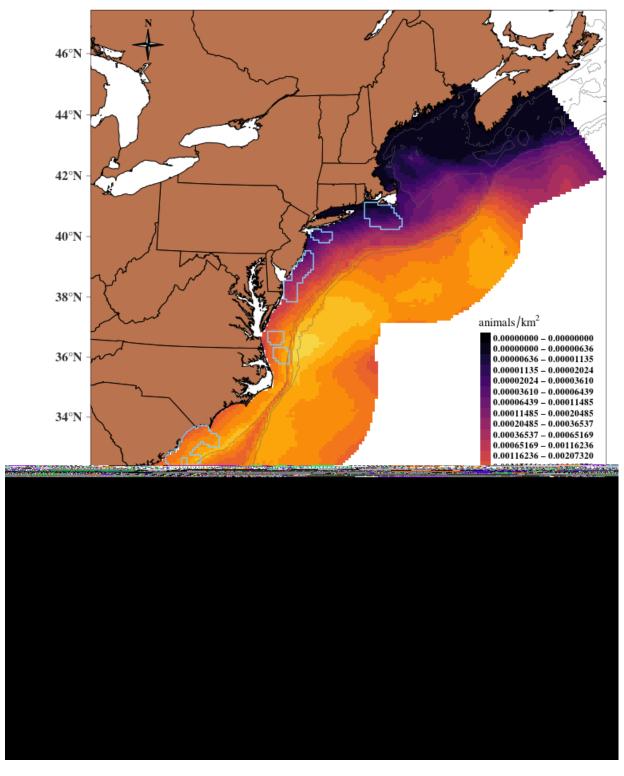
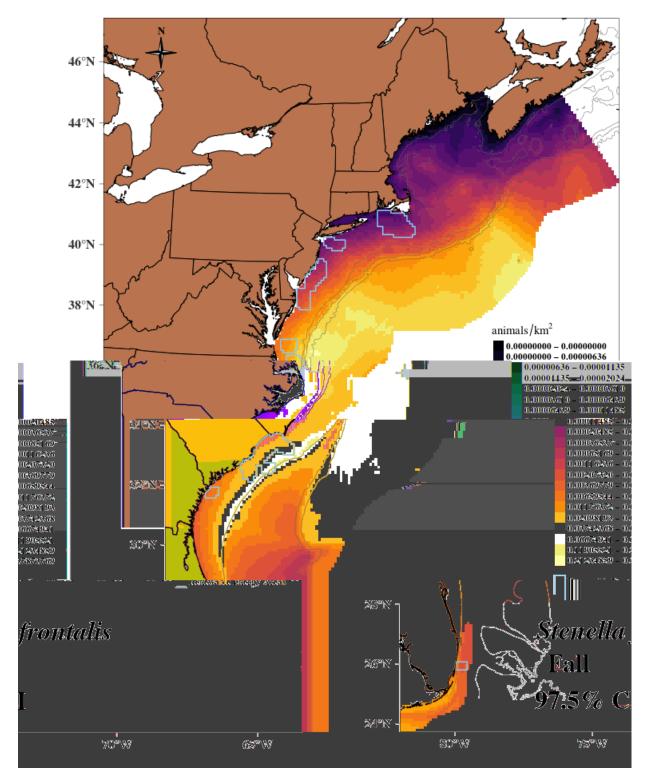




Figure 16-14 Atlantic spotted dolphin fall average density estimates

Figure 16-15 Lower 2.5% confidence interval of the fall Atlantic spotted dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 16-16 Upper 97.5% confidence interval of the fall Atlantic spotted dolphin density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

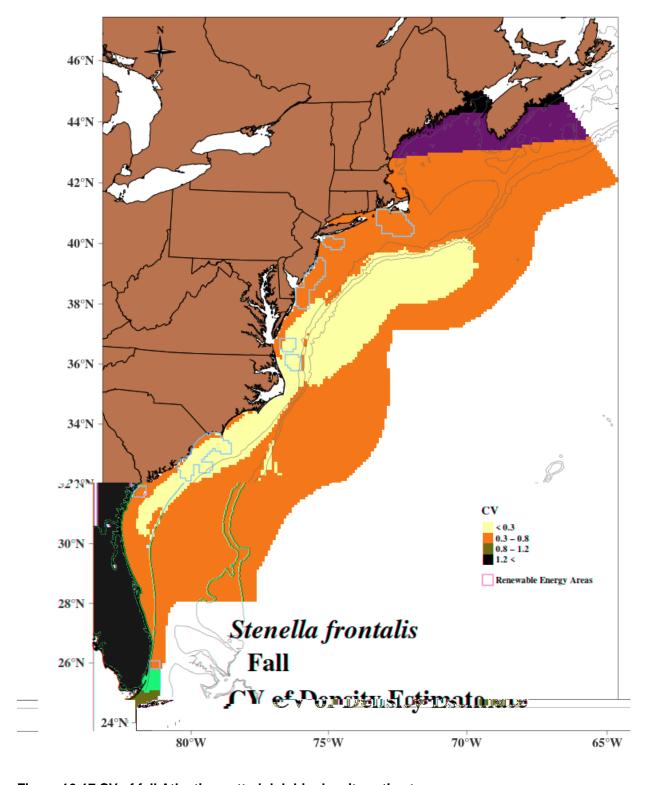


Figure 16-17 CV of fall Atlantic spotted dolphin density estimates

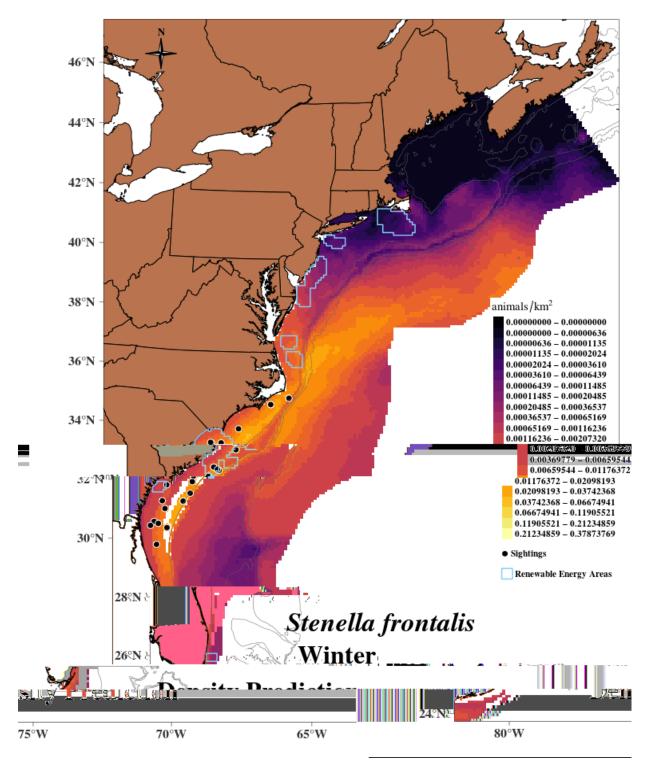


Figure 16-18 Atlantic spotted dolphin winter average density estimates

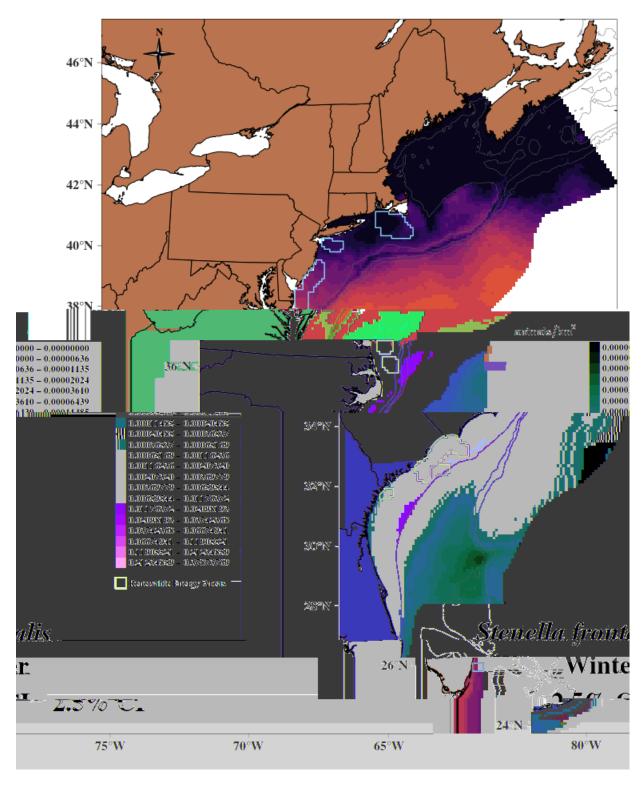


Figure 16-19 Lower 2.5% confidence interval of the winter Atlantic spotted dolphin density estimates

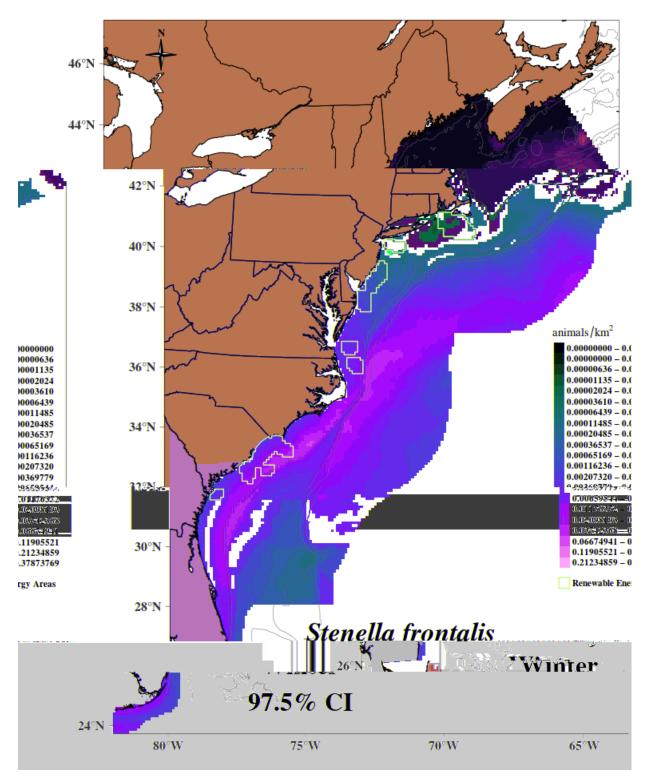


Figure 16-20 Upper 97.5% confidence interval of the winter Atlantic spotted dolphin density estimates

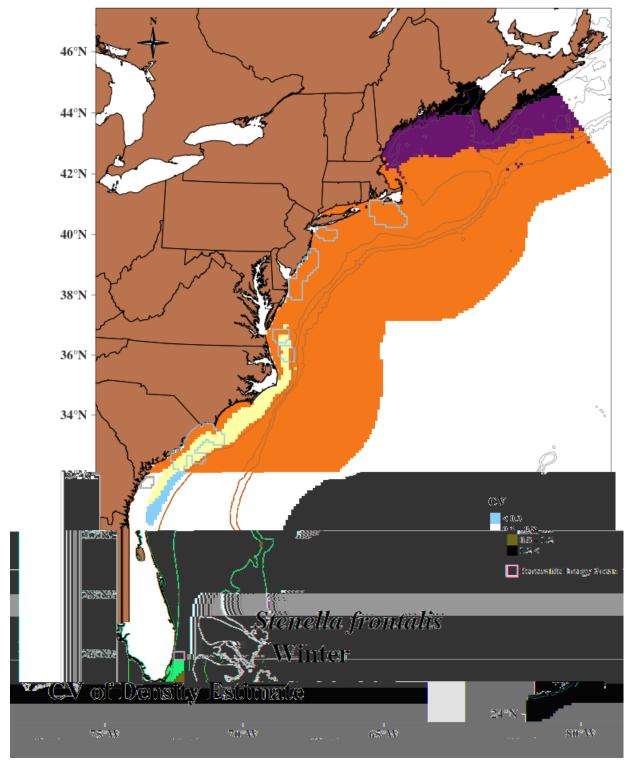


Figure 16-21 CV of winter Atlantic spotted dolphin density estimates

16.7 Offshore Energy Development Areas

Table 16-6 Atlantic spotted dolphin abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	1.1	0.42	
(Mar-May)	NY	0.3	0.43	
	NJ	2.1	0.39	1.0 4.5
	DE/MD	4.1	0.35	
	VA	20.6	0.29	
	NC	52.4	0.28	
	NC/SC	328.5	0.24	
Summer	RI/MA	2.0	0.39	1.0 4.2
(Jun-Aug)	NY	0.7	0.41	
	NJ	6.9	0.36	
	DE/MD	13.8	0.31	.0
	VA	69.1	0.26	
	NC	189.5	0.25	
	NC/SC	478.4	0.24	.0
Fall	RI/MA	1.0	0.40	
(Sep-Nov)	NY	0.3	0.43	
	NJ	3.3	0.38	
	DE/MD	6.5	0.33	
	VA	35.6	0.28	
	NC	101.5	0.27	
	NC/SC	359.5	0.27	
Winter	RI/MA	0.3	0.52	
(Dec-Feb)	NY	0.1	0.48	0.0 0.3
ŕ	NJ	2.1	0.43	
	DE/MD	3.6	0.39	
	VA	10.7	0.30	6.0 19.1
	NC	18.2	0.30	
	NC/SC	166.5	0.27	d (' 11(d' 11

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

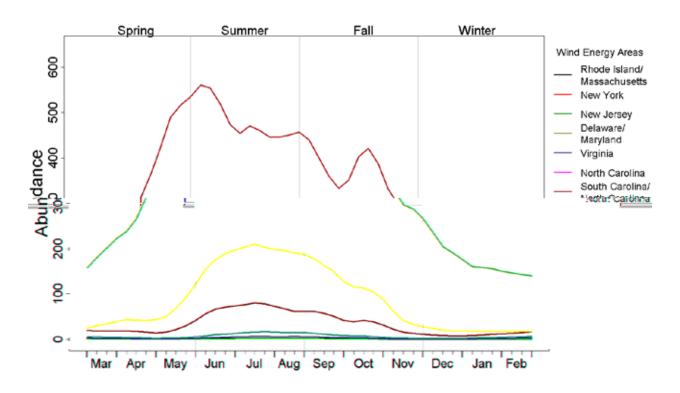


Figure 16-22 Average seasonal abundance of Atlantic spotted dolphins in the wind-energy study areas

© Todd Pusser 2013
Striped Dolphin-Cow/calf pair

Figure 17-1 Striped DolphinsImage collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Todd Pusser.

17.1 Data Collection

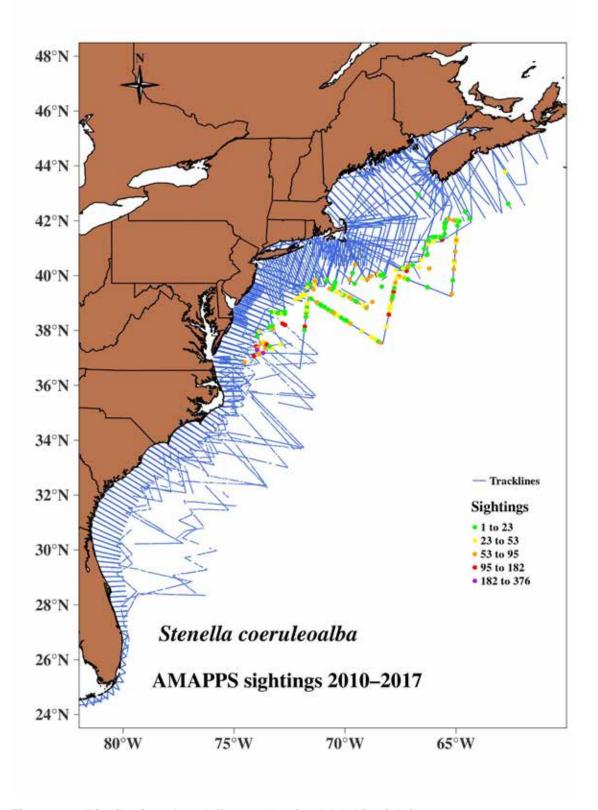
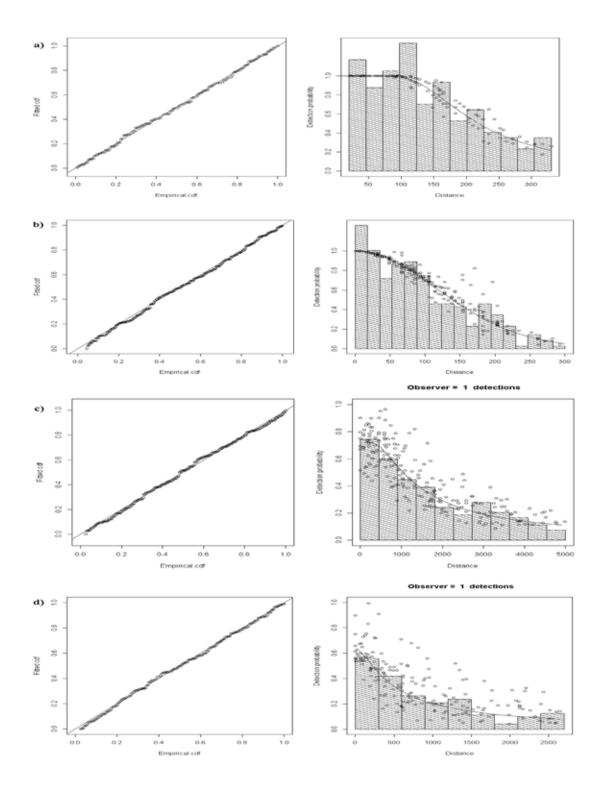


Figure 17-2 Distribution of track lines and striped dolphin sightings 2010 to 2017

Table 17-1 AMAPPS research effort 2010 to 2017 and striped dolphin sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	229	9,511
NE Shipboard	Fall	1,065	8	437
NE Aerial	Spring	13,314	1	100
NE Aerial	Summer	25,867	5	86
NE Aerial	Fall	37,850	8	385
NE Aerial	Winter	12,179	2	50
SE Shipboard	Spring	8,853	4	66
SE Shipboard	Summer	12,968	11	1,397
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	1	110
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

17.2 Mark-Recapture Distance Sampling Analysis

Table 17-2 Intermediate parameters in striped dolphin mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p-value	K-S p- value	CvM p- value
SE–aerial group 3	distance + group size + sea state	300	distance + glare	LT20-330	HR	0.78	0.08	0.40	0.99	1.00
NE-aerial group 9	distance * observer + sea state + group size	300	distance + glare + group size	300	HN	0.56	0.10	0.38	0.61	0.84
NE- shipboard group 2	distance * observer + sea state + group size	5000	distance + sea state	5000	HR	0.72	0.07	0.99	0.95	0.94
SE- shipboard group 1	distance + group size	2700	distance + sea state + glare	2700	HR	0.62	0.09	0.23	0.98	0.98

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 17-3 Q-Q plots and detection functions from the MRDS analysesa) SE-aerial analysis set 3; b) NE-aerial analysis set 9; c) NE-shipboard analysis set 2; d) SE-shipboard analysis set 1.

17.3 Generalized Additive Model Analysis

Table 17-3 2010 to 2017 density-habitat model output for striped dolphins

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chlfma)	1.01	4	4.80	5.96	< 0.0001
s(sstfma)	1.08	4	4.85	5.63	< 0.0001
s(dist2GSNw)	2.83	4	6.05	2.43	< 0.0001
s(btemp)	2.56	4	5.57	2.37	< 0.0001
s(depth)	3.70	4	27.45	31.23	< 0.0001
s(lat)	2.98	4	13.61	23.99	< 0.0001

Adjusted $R^2 = 0.0213$. Deviance explained = 71.6%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

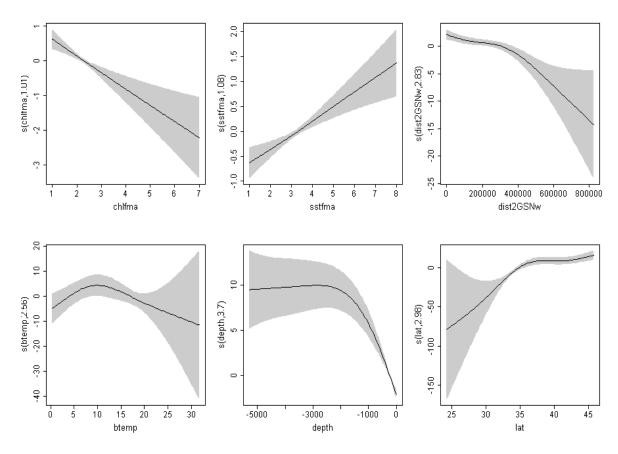


Figure 17-4 Striped dolphin density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

17.4 Model Cross-Validation

Table 17-4 Diagnostic statistics from the striped dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.233	Fair to good
MAPE	Mean absolute percentage error	Non-zero density	76.875	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.138	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.039	Excellent

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

17.5 Abundance Estimates for AMAPPS Study Area

Table 17-5 Striped dolphin average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March-May)	50,904	0.33	27,107–95,593
Summer (June-August)	61,195	0.33	32,587–114,919
Fall (September–November)	48,944	0.34	25,595–93,591
Winter (December–February)	46,238	0.34	24,180–88,417
Summer 2011 U.S. surveys ¹	54,807	0.30	
Summer 2011 U.S. surveys ¹	67,036	0.29	

¹Hayes et al. 2020

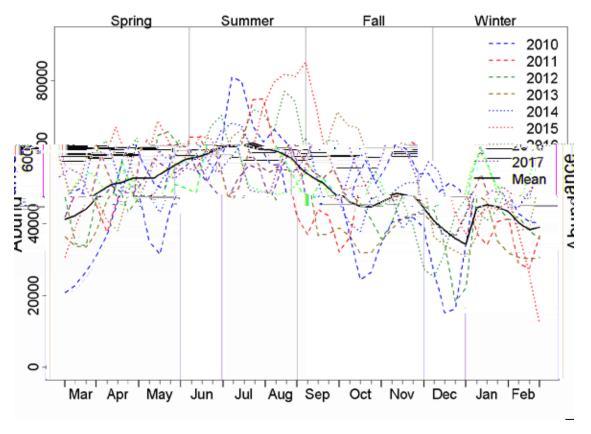


Figure 17-5 Annual abundance trends for striped dolphins in the AMAPPS study area

17.6 Seasonal Prediction Maps

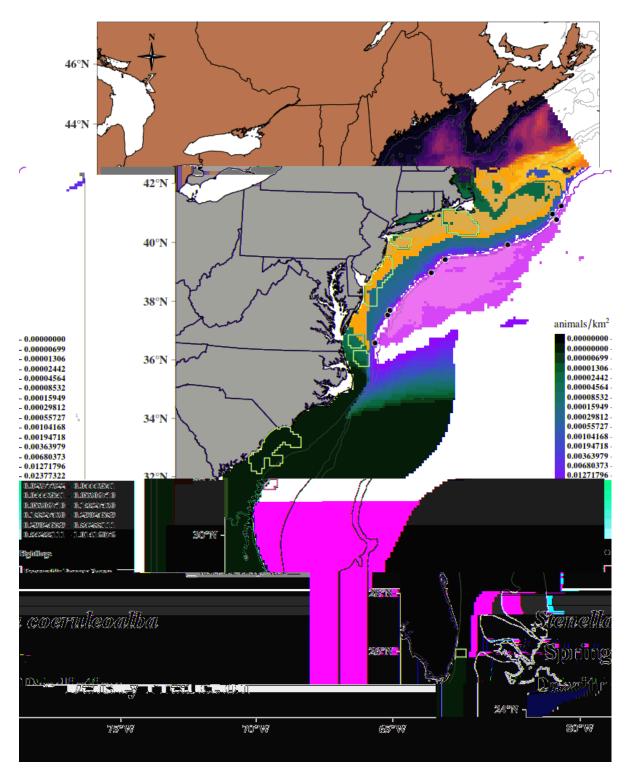
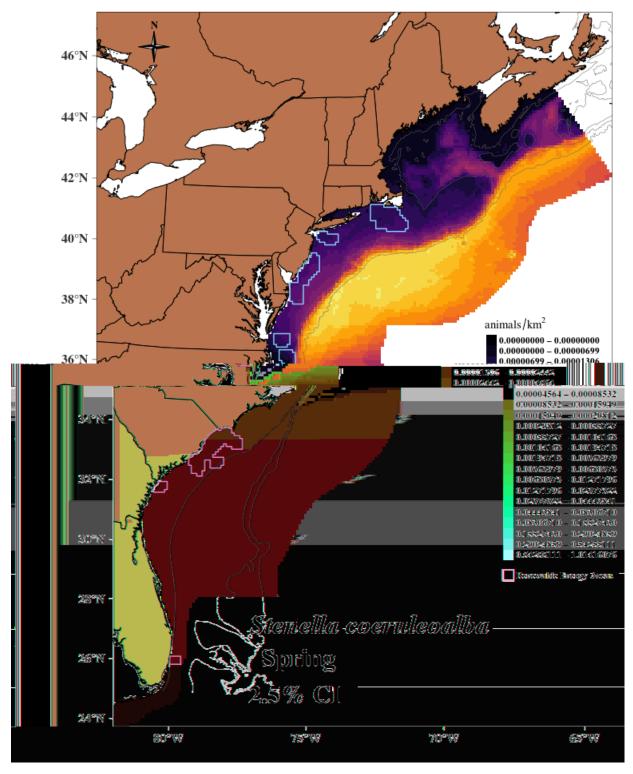
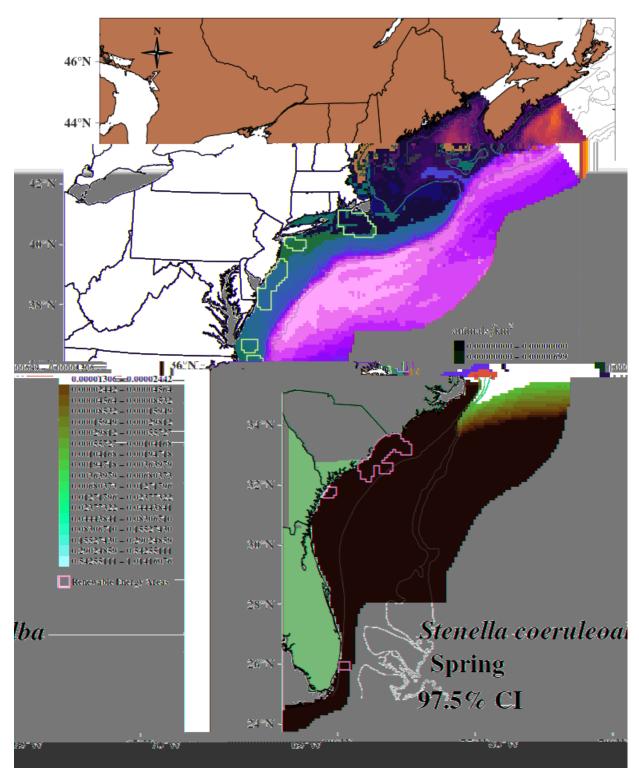




Figure 17-6 Striped dolphin spring average density estimates

Figure 17-7 Lower 2.5% confidence interval of the spring striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 17-8 Upper 97.5% confidence interval of the spring striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

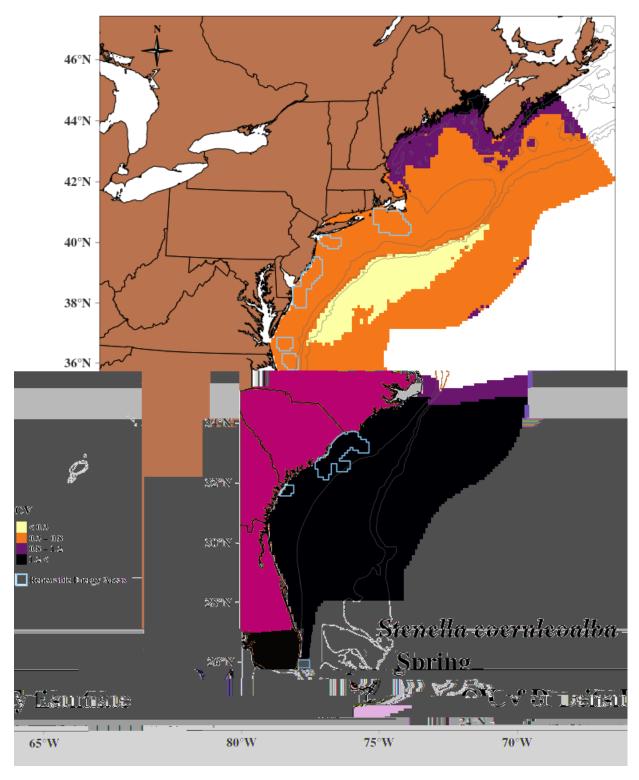


Figure 17-9 CV of spring striped dolphin density estimates

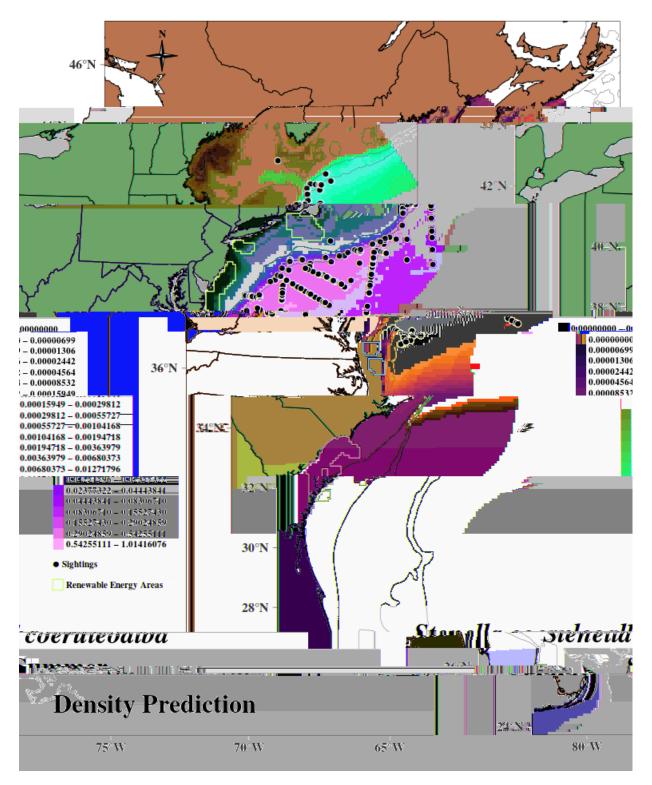
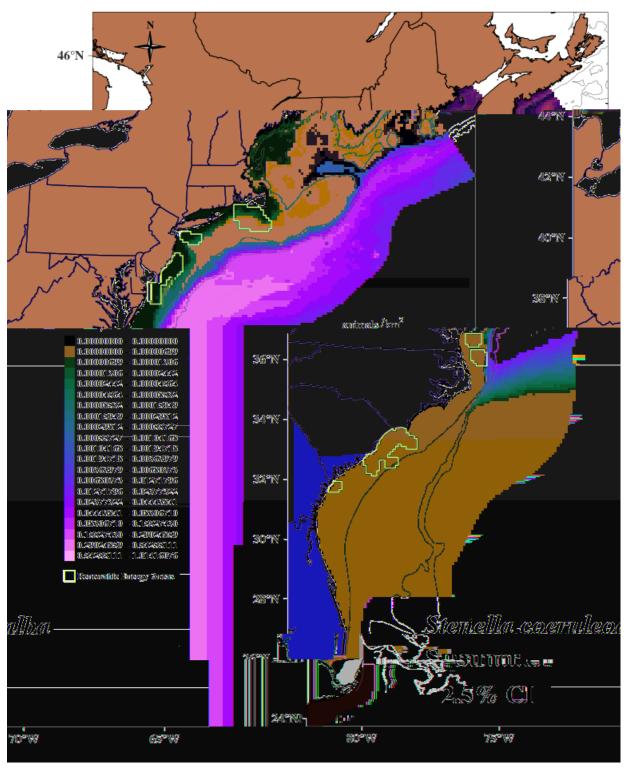
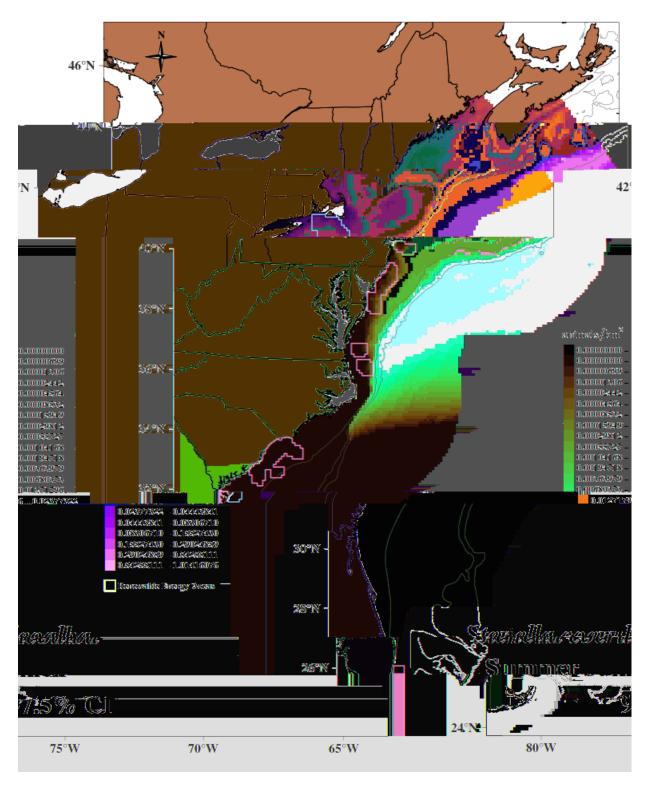




Figure 17-10 Striped dolphin summer average density estimates

Figure 17-11 Lower 2.5% confidence interval of the summer striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 17-12 Upper 97.5% confidence interval of the summer striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

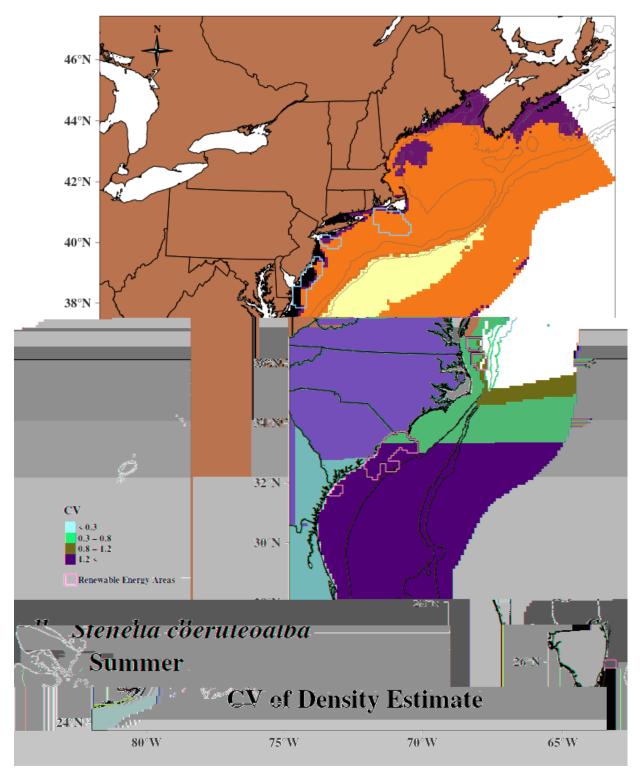


Figure 17-13 CV of summer striped dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

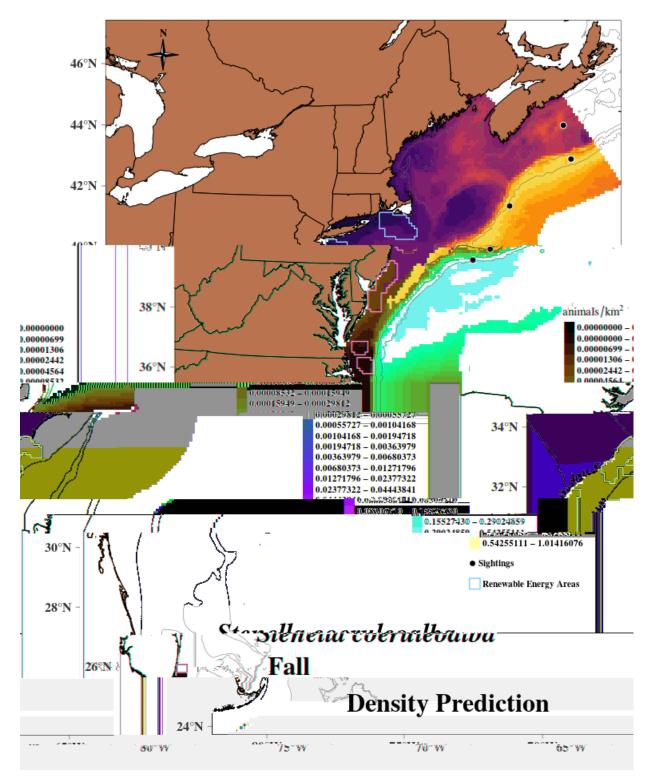
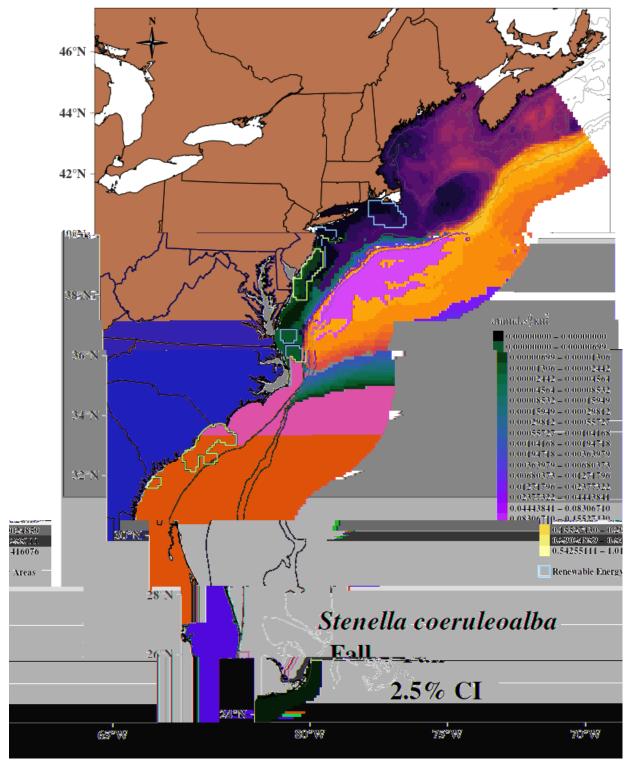
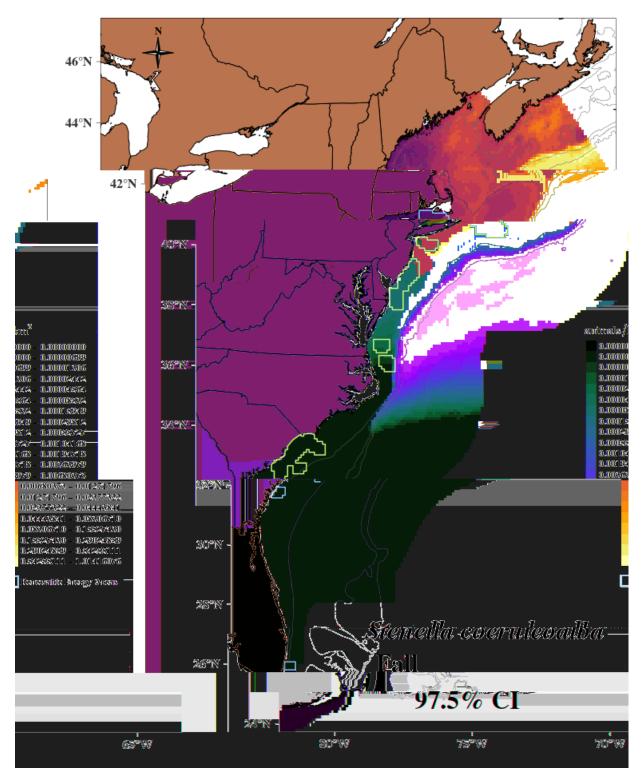




Figure 17-14 Striped dolphin fall average density estimates

Figure 17-15 Lower 2.5% confidence interval of the fall striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 17-16 Upper 97.5% confidence interval of the fall striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

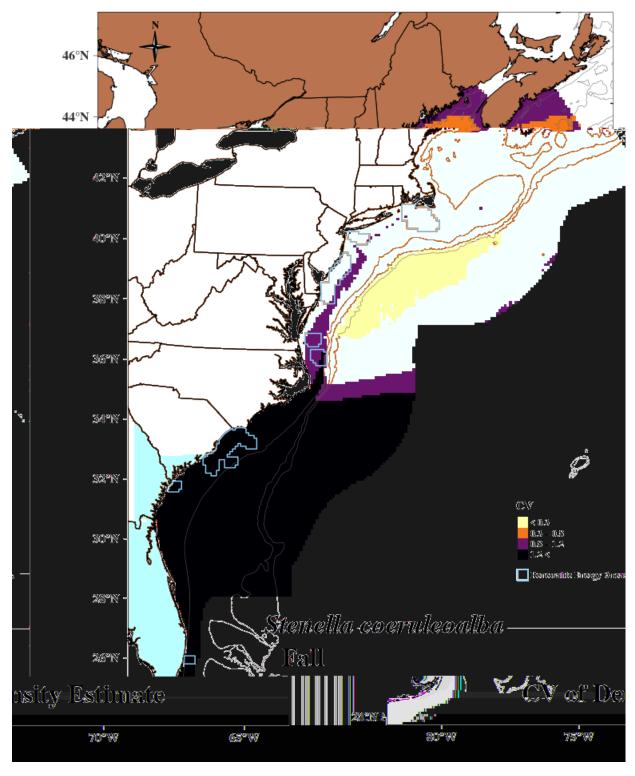


Figure 17-17 CV of fall striped dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

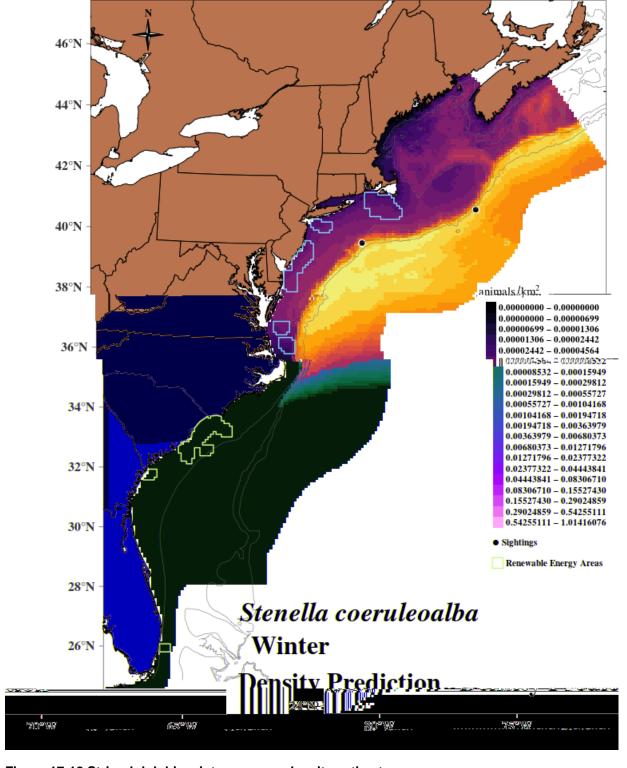
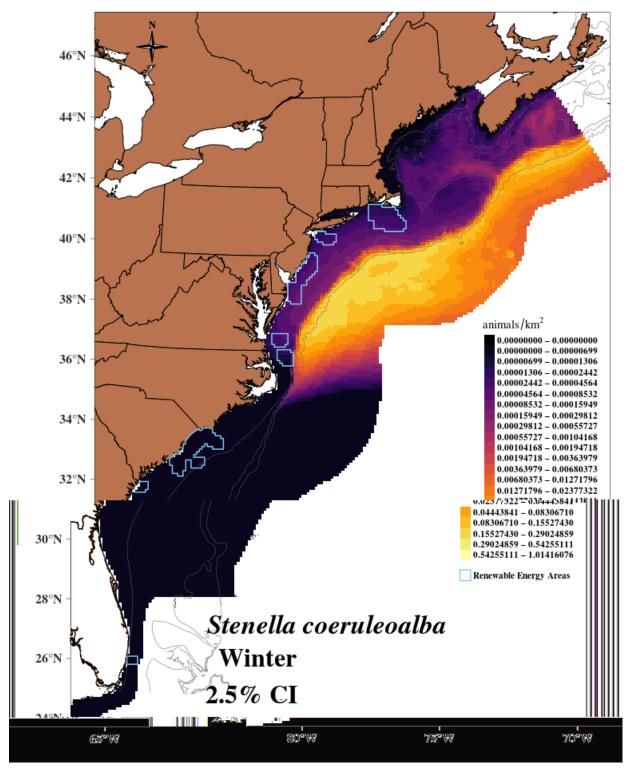
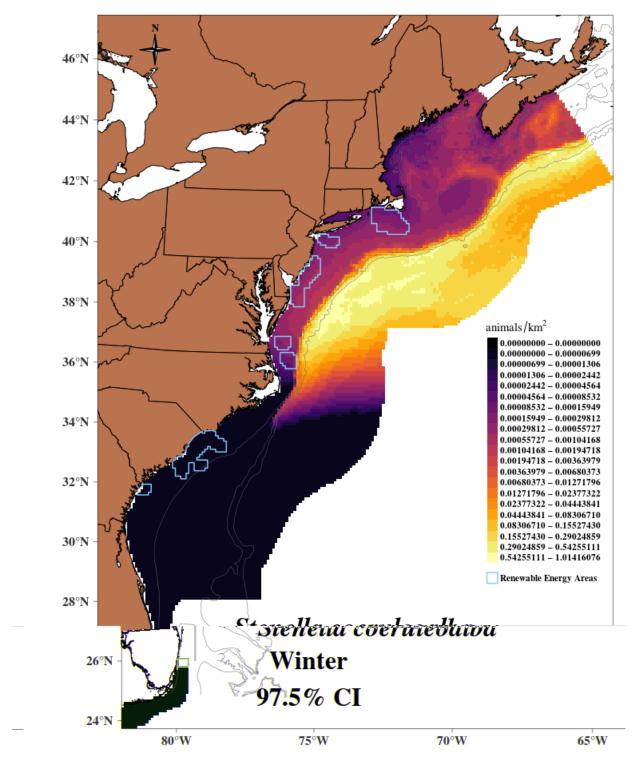




Figure 17-18 Striped dolphin winter average density estimates

Figure 17-19 Lower 2.5% confidence interval of the winter striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 17-20 Upper 97.5% confidence interval of the winter striped dolphin density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

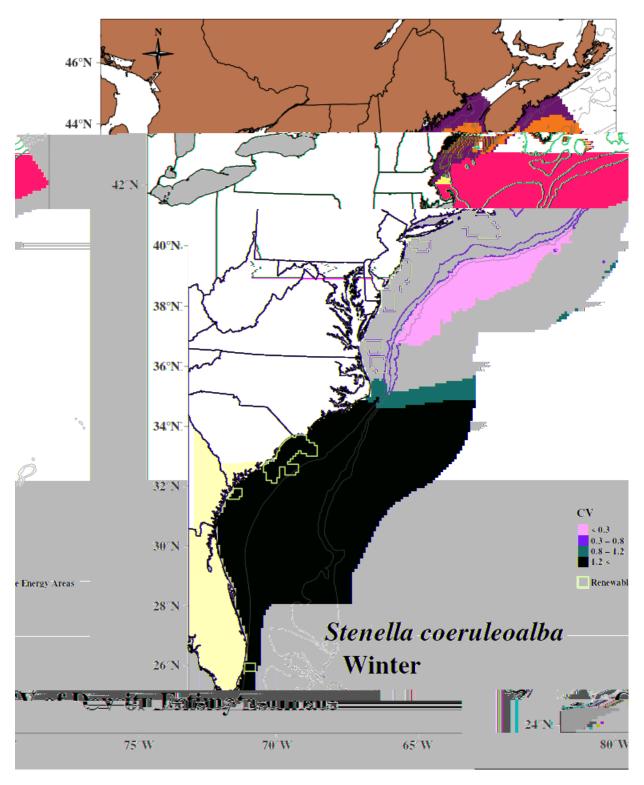


Figure 17-21 CV of winter striped dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

17.7 Offshore Energy Development Areas

Table 17-6 Striped dolphin abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	0.9	0.61	
(Mar-May)	NY	0.2	0.61	
	NJ	1.0	0.57	
	DE/MD	0.7	0.58	.0
	VA	0.2	0.63	
	NC	0.1	0.65	0.0 0.4
	NC/SC	0.0	2.52	0.0 0.0
Summer	RI/MA	1.3	0.56	
(Jun-Aug)	NY	0.1	0.60	0.0 0.3
	NJ	0.0	0.93	0.0 0.2
	DE/MD	0.0	0.76	0.0 0.1
	VA	0.0	0.91	0.0 0.0
	NC	0.0	0.84	0.0 0.1
	NC/SC	0.0	8.16	0.0 0.0
Fall	RI/MA	0.5	0.65	
(Sep-Nov)	NY	0.0	0.74	0.0 0.2
	NJ	0.2	0.68	
	DE/MD	0.1	0.70	0.0 0.5
	VA	0.0	0.92	0.0 0.1
	NC	0.0	1.02	0.0 0.1
	NC/SC	0.0	2.74	0.0 0.0
Winter	RI/MA	1.1	0.56	
(Dec-Feb)	NY	0.2	0.61	
	NJ	1.1	0.57	.0
	DE/MD	0.8	0.57	
	VA	0.3	0.60	
	NC	0.1	0.66	0.0 0.4
	NC/SC	0.0	2.49	0.0 0.0

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

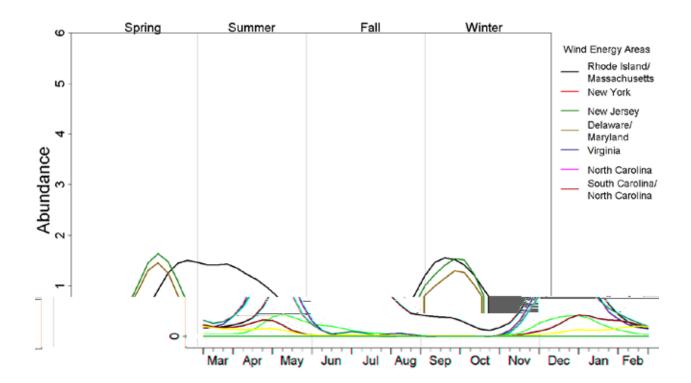


Figure 17-22 Average seasonal abundance of striped dolphins in the wind-energy study areas

18 Common Bottlenose Dolphin (*Tursiops truncatus*)

Figure 18-1 Common bottlenose dolphins Image collected under MMPA Research permit #17355. Credit: NOAA/NEFSC/Corey Accardo

18.1 Data Collection

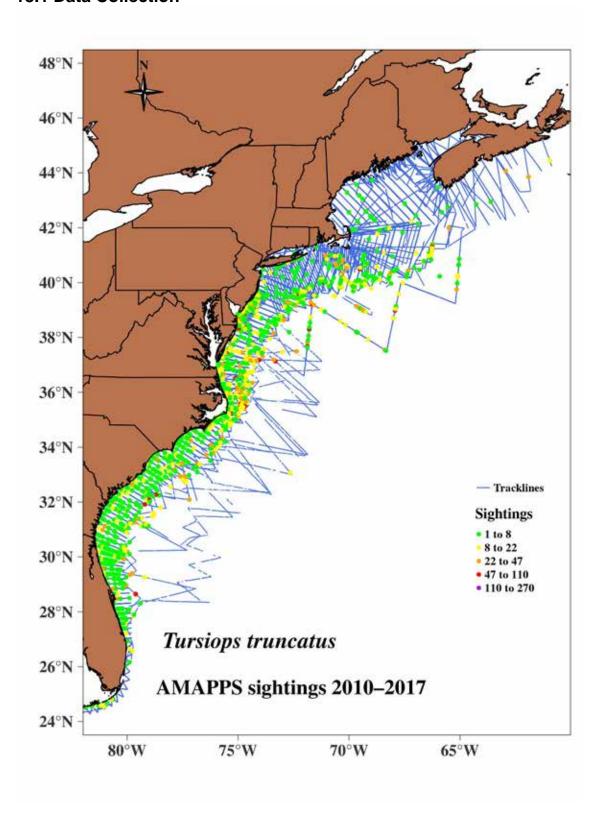


Figure 18-2 Distribution of track lines and common bottlenose dolphin sightings 2010 to 2017

Table 18-1 AMAPPS research effort 2010 to 2017 and common bottlenose dolphin sightings

Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	345	3,865
NE Shipboard	Fall	1,065	16	186
NE Aerial	Spring	13,314	38	256
NE Aerial	Summer	25,867	28	178
NE Aerial	Fall	37,850	46	623
NE Aerial	Winter	12,179	7	36
SE Shipboard	Spring	8,853	26	390
SE Shipboard	Summer	12,968	134	2,352
SE Shipboard	Fall	3,012	55	1,213
SE Aerial	Spring	41,293	466	4,139
SE Aerial	Summer	28,236	312	3,144
SE Aerial	Fall	18,974	212	2,233
SE Aerial	Winter	8,950	83	812

18.2 Mark-Recapture Distance Sampling Analysis

Table 18-2 Intermediate parameters in common bottlenose dolphin mark-recapture distance sampling (MRDS) models

Analysis		MR Truncation		DS Truncation	Key			Chi- square	K-S p-	CvM p-
Set	MR Model	(m)	DS Model	(m)	function	p(0)	p(0) CV	p-value	value	value
	distance *									
	observer +		distance +							
SE-aerial	group size +		glare +							
group 2	sea state	340	group size	340	HR	0.86	0.02	0.12	0.93	0.70
	distance *									
	observer +		distance +							
NE-aerial	group size +		sea state +							
group 4	quality	450	quality	450	HR	0.62	0.13	0.17	0.99	0.96
	distance *									
NE-	observer +									
shipboard	group size +		distance +							
group 3	sea state	4000	sea state	4000	HR	0.59	0.10	0.53	0.86	0.97
SE-	distance *									
shipboard	observer +		distance +							
group 2	sea state	2800	glare	2800	HR	0.69	0.09	0.47	0.99	0.95

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

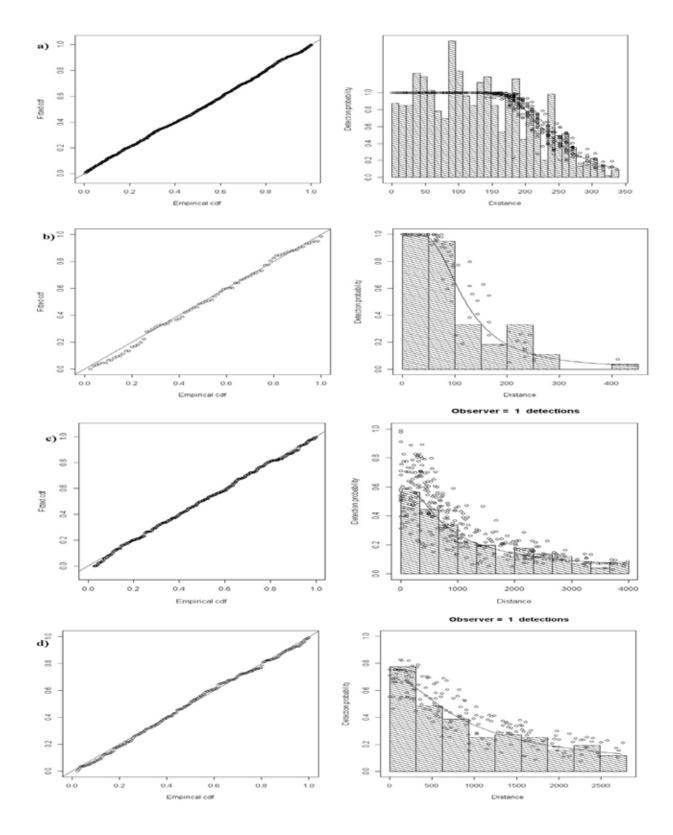


Figure 18-3 Q-Q plots and detection functions from the MRDS analyses
a) SE-aerial analysis set 2; b) NE-aerial analysis set 4; c) NE-shipboard analysis set 3; d) SE-shipboard analysis set 2.

18.3 Generalized Additive Model Analysis

Table 18-3 2010 to 2017 density-habitat model output for common bottlenose dolphins

Covariates	Edf	Ref.df	F	C.dev	p-value
s(chla)	3.37	4	17.00	1.93	<0.0001
s(salinity)	3.25	4	7.42	1.18	<0.0001
s(btemp)	3.73	4	21.51	2.67	<0.0001
s(pp)	3.31	4	8.70	5.40	<0.0001
s(dist2GSNw)	3.86	4	49.59	5.66	<0.0001
s(slope)	3.52	4	19.58	2.41	<0.0001
te(LY,sstmur)	17.57	24	9.41	8.66	<0.0001

Adjusted $R^2 = 0.0212$. Deviance explained = 27.9%.

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

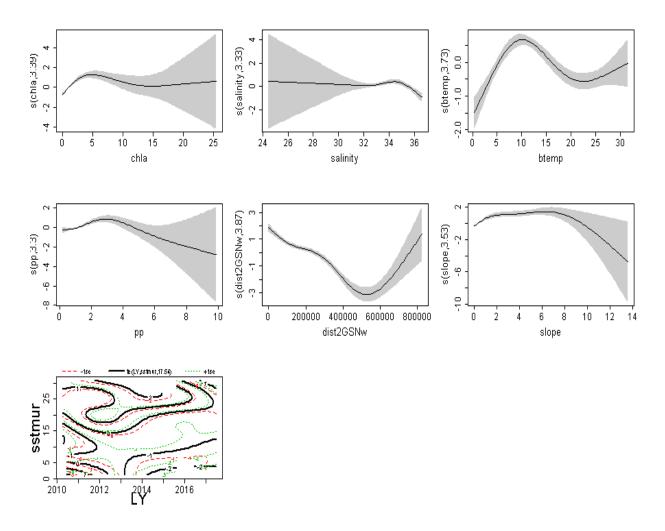


Figure 18-4 Annual abundance trends for common bottlenose dolphins in the AMAPPS study area Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

18.4 Model Cross-Validation

Table 18-4 Diagnostic statistics from the common bottlenose dolphin density-habitat model

Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
RHO	Spearman rank correlation	Non-zero density	0.325	Excellent
MAPE	Mean absolute percentage error	Non-zero density	83.800	Fair to good
RHO	Spearman rank correlation	All data divided in 25 random samples	0.181	Fair to good
MAE	Mean absolute error	All data divided in 25 random samples	0.069	Fair to good

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3

MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

18.5 Abundance Estimates for AMAPPS Study Area

Table 18-5 Common bottlenose dolphin average abundance estimates for the AMAPPS study area

Season	Average Abundance	CV	95% Confidence Interval
Spring (March–May)	30,423	0.29	17,431–53,099
Summer (June-August)	55,040	0.27	32,725–92,571
Fall (September–November)	44,812	0.27	26,644–75,369
Winter (December–February)	25,912	0.28	15,123–44,398
Summer 2011 U.S. surveys ¹	77,532	0.40	
Summer 2016 U.S. surveys ¹	61,888	0.23	

¹Hayes et al. 2020

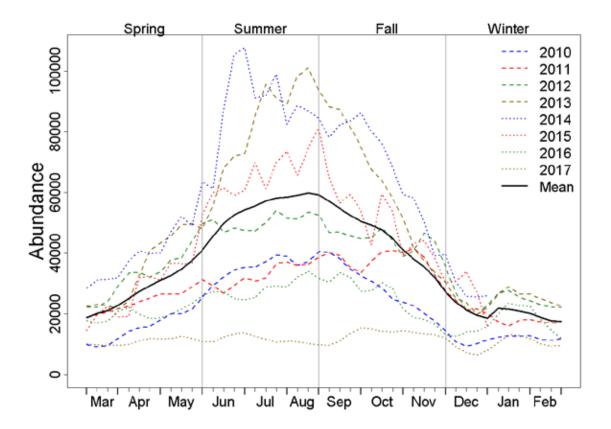


Figure 18-5 Annual abundance trends for common bottlenose dolphins in the AMAPPS study area

18.6 Seasonal Prediction Maps

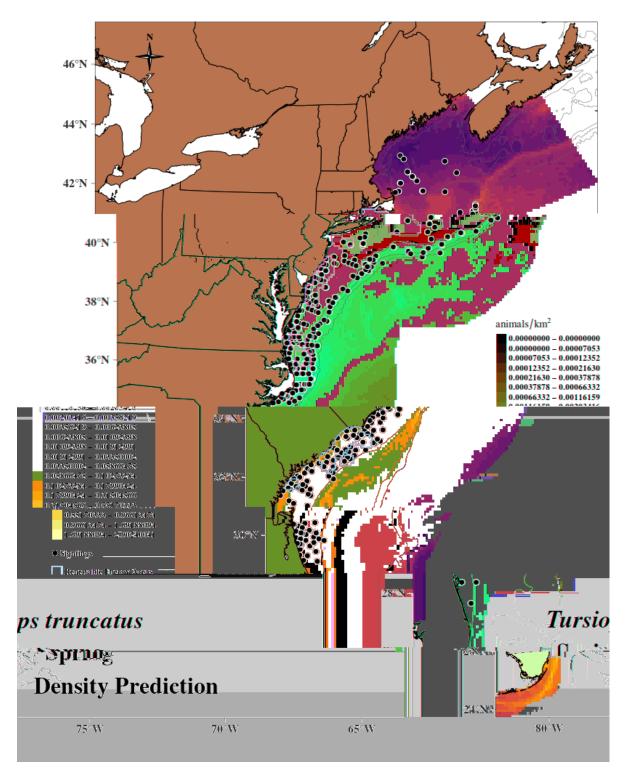


Figure 18-6 Common bottlenose dolphin spring average density estimates

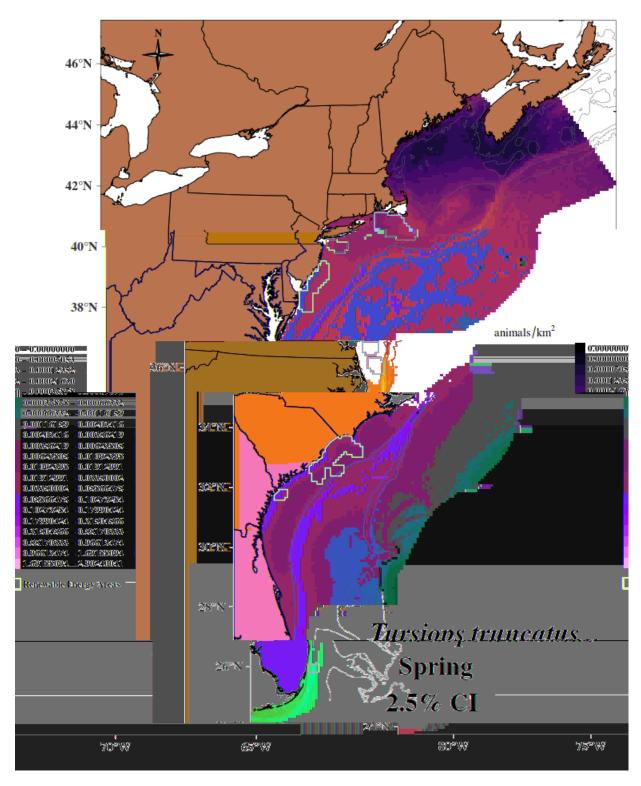


Figure 18-7 Lower 2.5% confidence interval of the spring common bottlenose dolphin density estimates

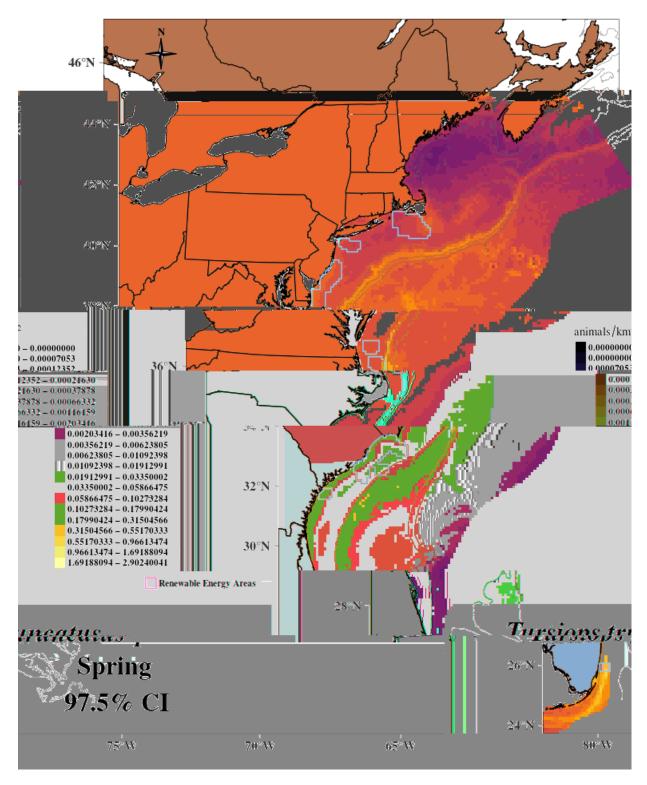


Figure 18-8 Upper 97.5% confidence interval of the spring common bottlenose dolphin density estimates

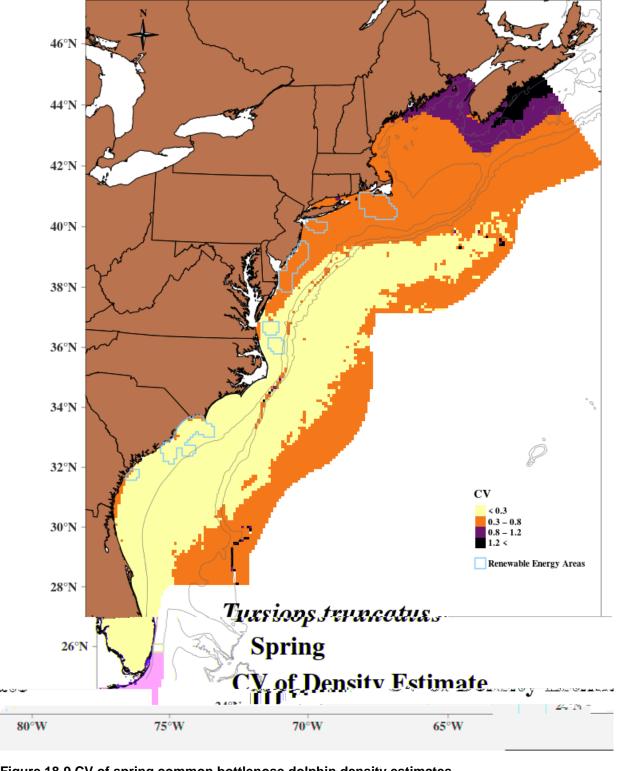
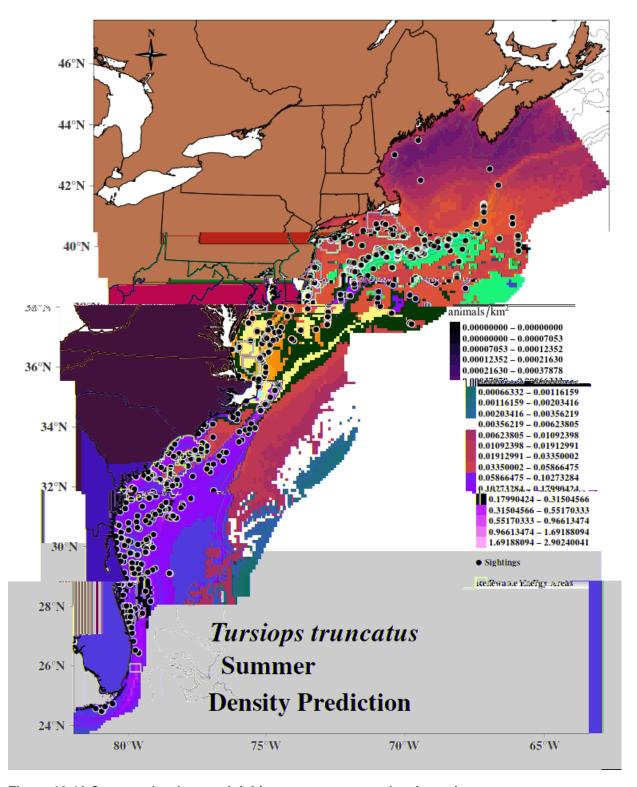



Figure 18-9 CV of spring common bottlenose dolphin density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

Figure 18-10 Common bottlenose dolphin summer average density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

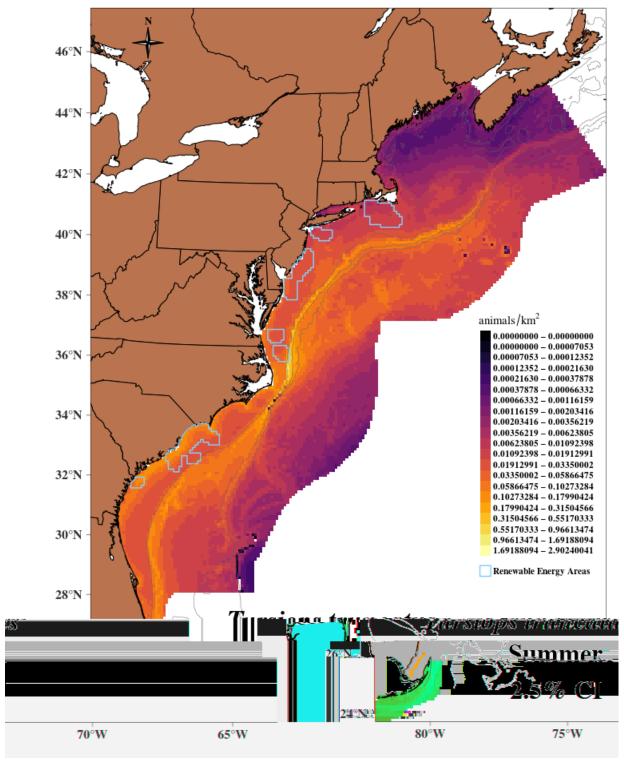


Figure 18-11 Lower 2.5% confidence interval of the summer common bottlenose dolphin density estimates

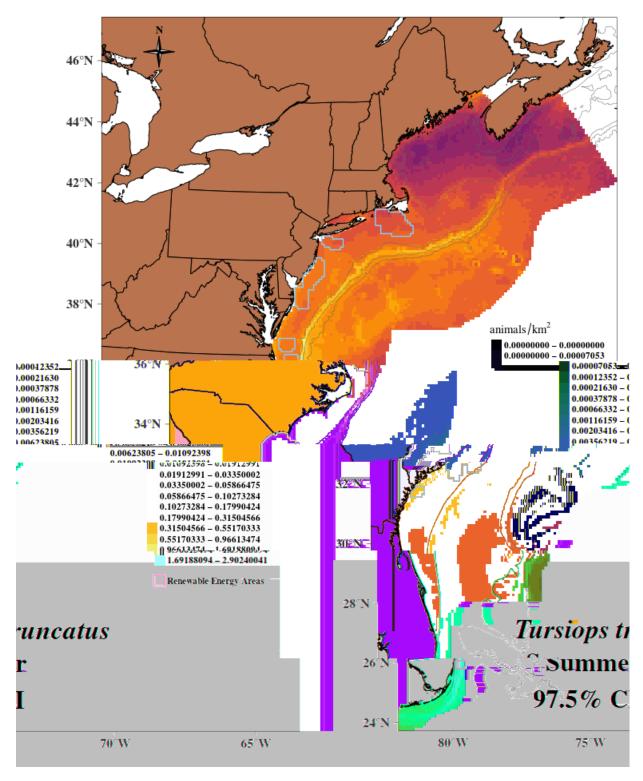


Figure 18-12 Upper 97.5% confidence interval of the summer common bottlenose dolphin density estimates

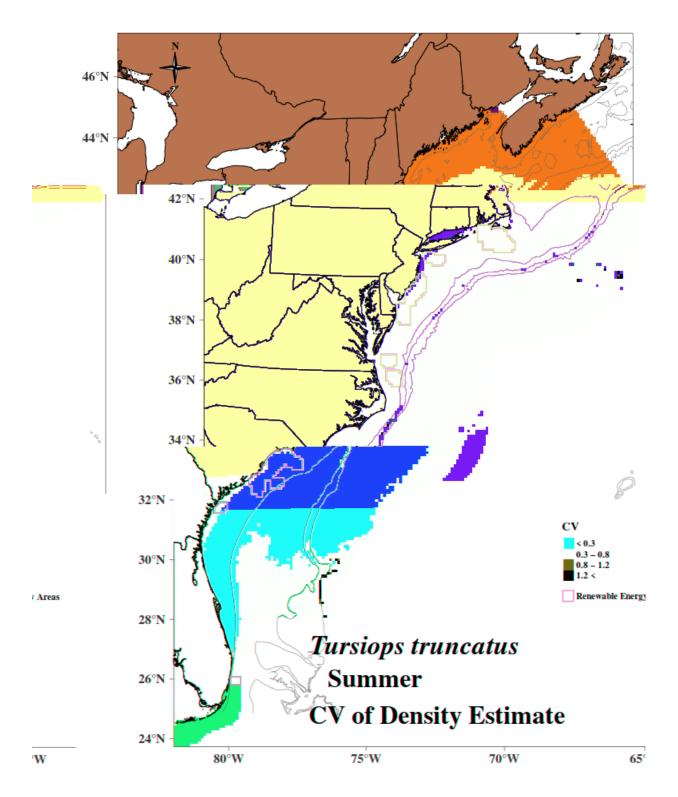


Figure 18-13 CV of summer common bottlenose dolphin density estimates

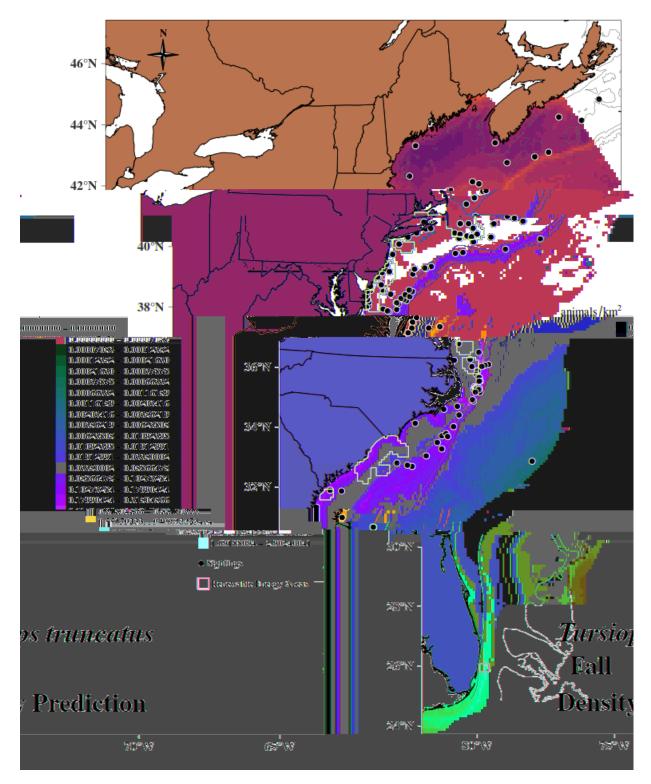


Figure 18-14 Common bottlenose dolphin fall average density estimates

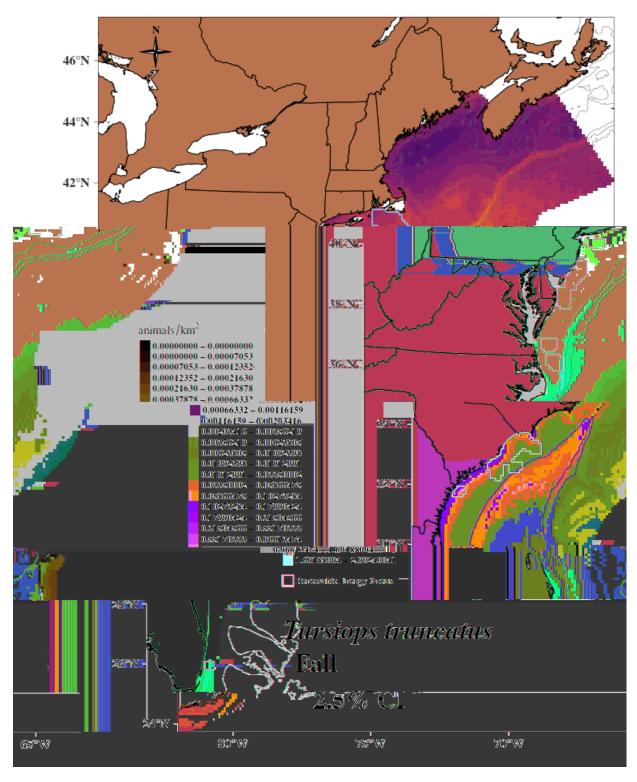


Figure 18-15 Lower 2.5% confidence interval of the fall common bottlenose dolphin density estimates

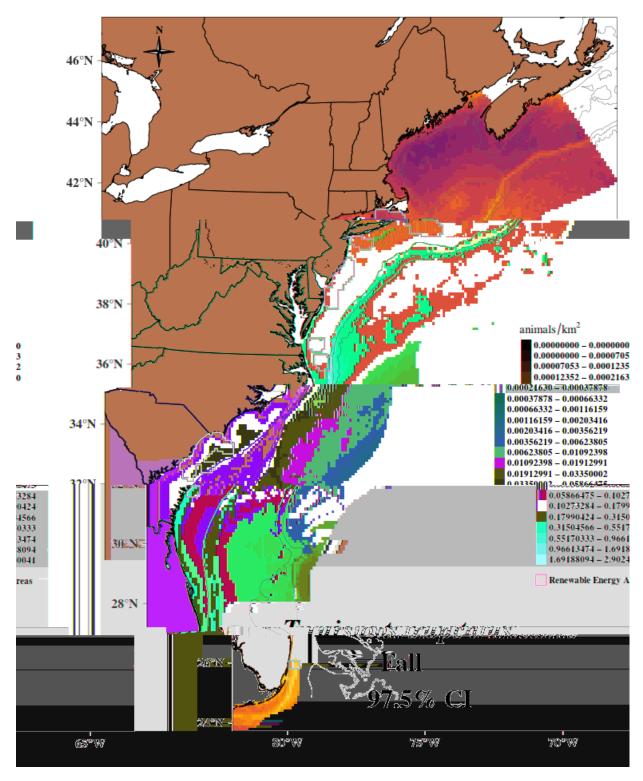
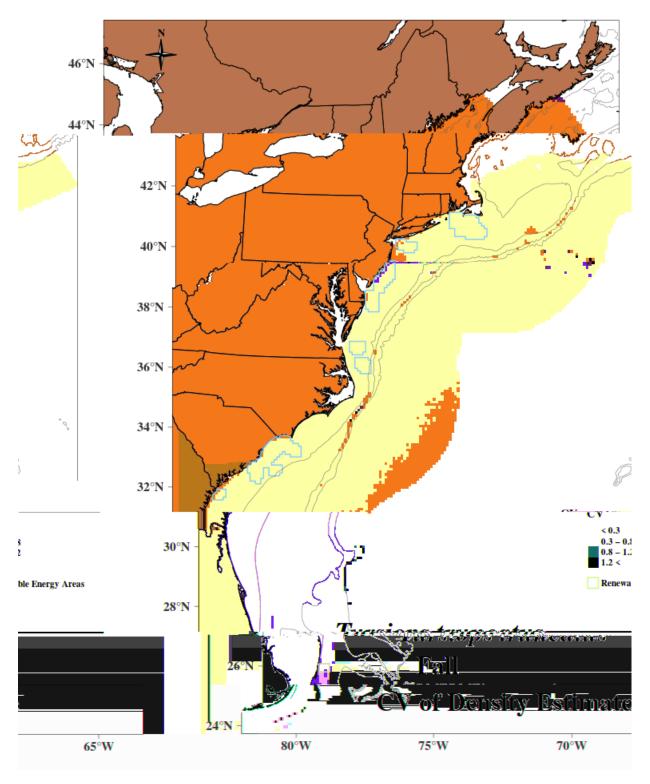



Figure 18-16 Upper 97.5% confidence interval of the fall common bottlenose dolphin density estimates

Figure 18-17 CV of fall common bottlenose dolphin density estimatesCV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas.

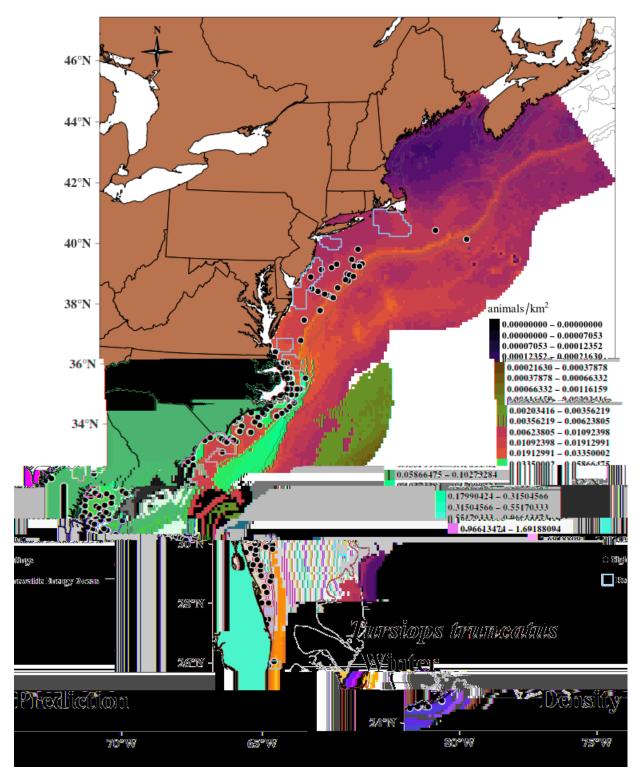


Figure 18-18 Common bottlenose dolphin winter average density estimates

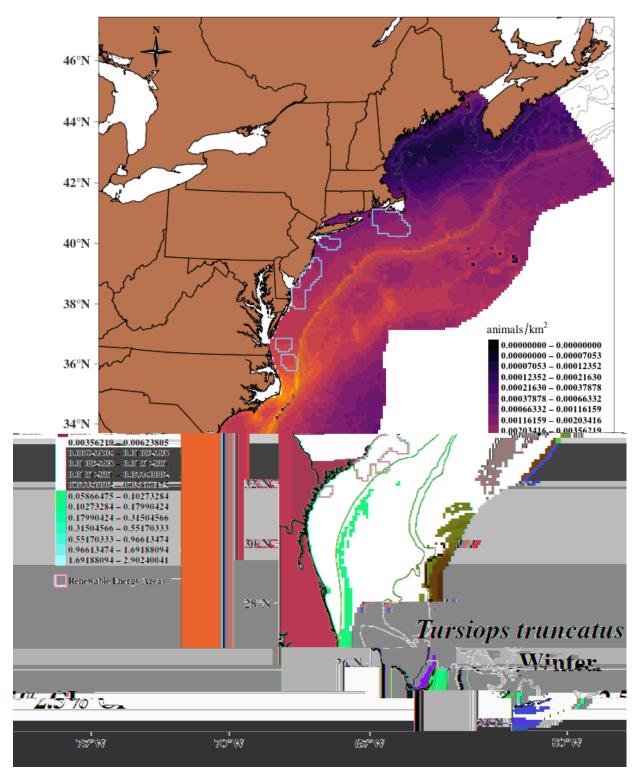


Figure 18-19 Lower 2.5% confidence interval of the winter common bottlenose dolphin density estimates

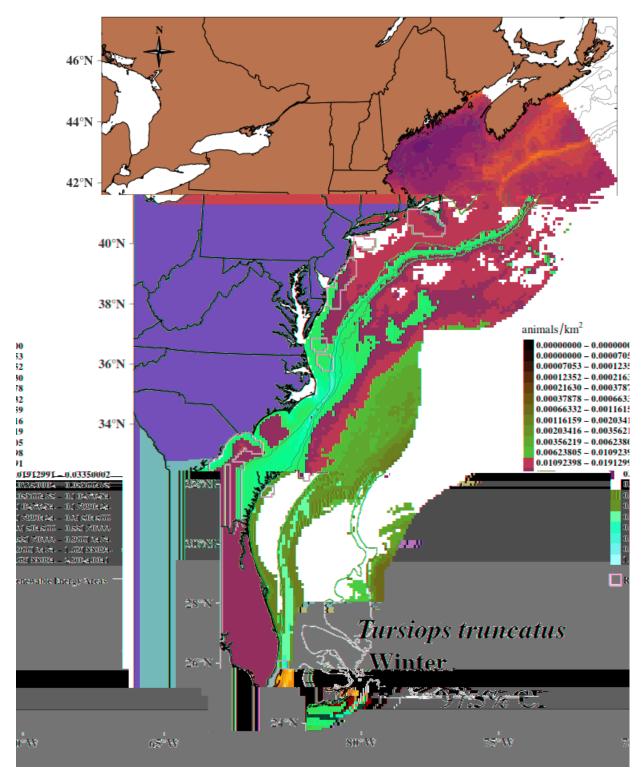


Figure 18-20 Upper 97.5% confidence interval of the winter common bottlenose dolphin density estimates

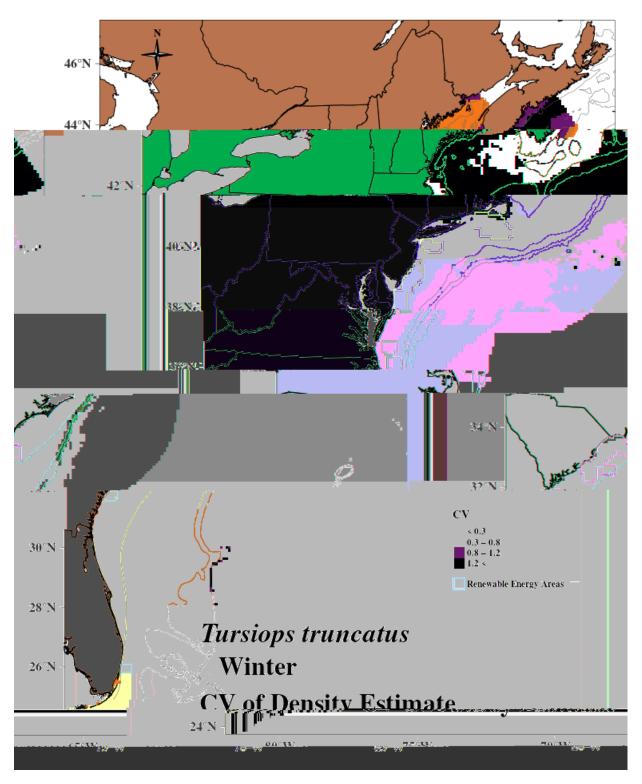


Figure 18-21 CV of winter common bottlenose dolphin density estimates

18.7 Offshore Energy Development Areas

Table 18-6 Common bottlenose dolphin abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	87.6	0.48	36–212.9
(Mar-May)	NY	22.4	0.38	10.9–45.8
	NJ	120.8	0.34	62.6-232.9
	DE/MD	87.7	0.33	46.3–166.0
	VA	69.0	0.29	39.5–120.5
	NC	176.1	0.27	104.1–297.8
	NC/SC	754.7	0.27	450-1,265.4
Summer	RI/MA	228.9	0.24	144.4–362.9
(Jun-Aug)	NY	67.9	0.27	40.5-114.0
	NJ	299.7	0.28	176.5–508.9
	DE/MD	197.5	0.26	120.3–324.3
	VA	133.6	0.24	84.7–210.9
	NC	342.9	0.25	213.4–550.9
	NC/SC	1,883.8	0.27	1,112.2–3,190.6
Fall	RI/MA	127.2	0.24	79.3–204.0
(Sep-Nov)	NY	26.3	0.27	15.5–44.6
	NJ	144.8	0.29	83.1–252.1
	DE/MD	123.4	0.28	71.9–211.7
	VA	75.3	0.25	46.1–123.0
	NC	189.5	0.26	114.7–313.1
	NC/SC	1333.6	0.26	812.1–2,190
Winter	RI/MA	83.0	0.60	28.0-245.8
(Dec-Feb)	NY	12.8	0.43	5.7–28.7
	NJ	67.7	0.47	28.4–161.4
	DE/MD	57.3	0.47	24.0-137.3
	VA	60.8	0.34	31.6–116.8
	NC	121.0	0.28	70.0–209.2
	NC/SC	555.7	0.27	330.9–933.2

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

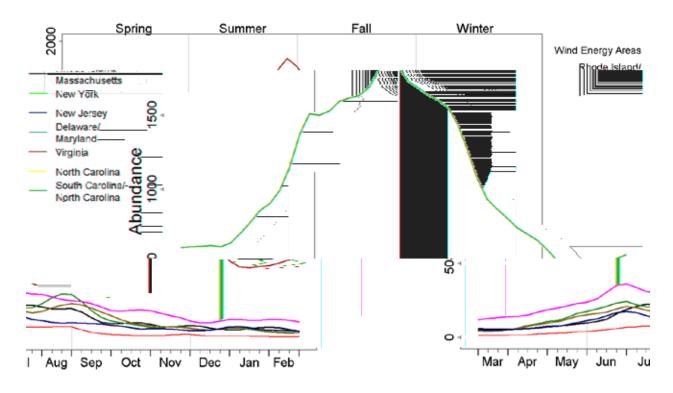


Figure 18-22 Average seasonal abundance of common bottlenose dolphins in the wind-energy study areas

Figure 19-1 Harbor porpoises

19.1 Data Collection

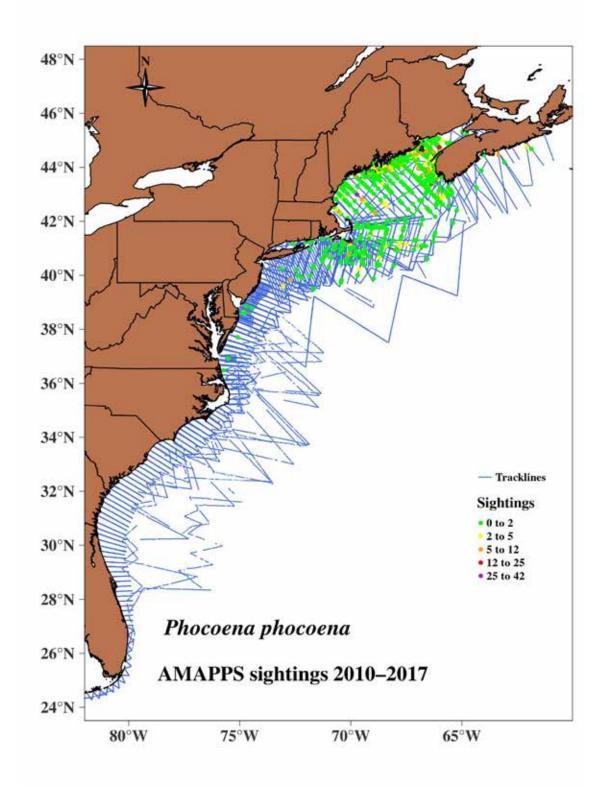
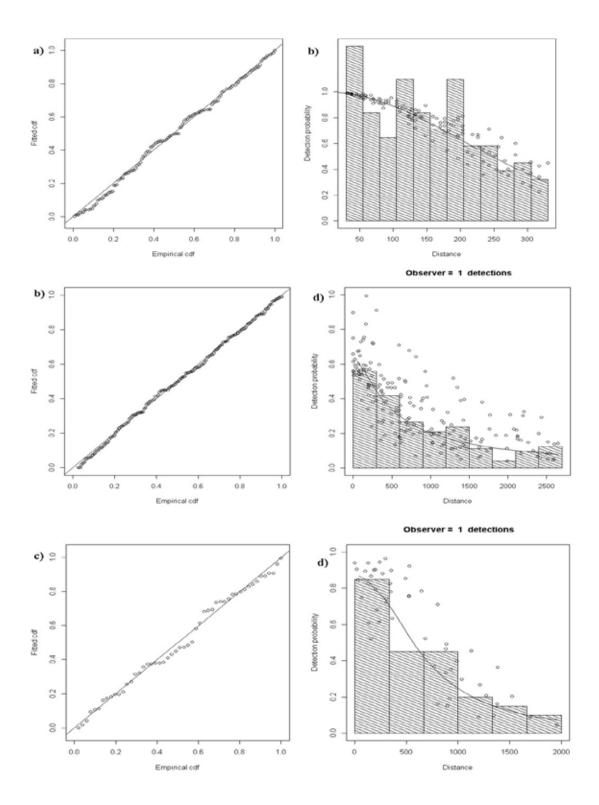


Figure 19-2 Distribution of track lines and harbor porpoise sightings 2010 to 2017

Table 19-1 AMAPPS research effort 2010 to 2017 and harbor porpoise sightings


Survey Region and Platform	Season	Effort (km)	Number of Groups	Number of Animals
NE Shipboard	Summer	37,529	4	6
NE Shipboard	Fall	1,065	0	0
NE Aerial	Spring	13,314	181	264
NE Aerial	Summer	25,867	341	757
NE Aerial	Fall	37,850	390	1,547
NE Aerial	Winter	12,179	135	258
SE Shipboard	Spring	8,853	11	21
SE Shipboard	Summer	12,968	0	0
SE Shipboard	Fall	3,012	0	0
SE Aerial	Spring	41,293	8	13
SE Aerial	Summer	28,236	0	0
SE Aerial	Fall	18,974	0	0
SE Aerial	Winter	8,950	0	0

19.2 Mark-Recapture Distance Sampling Analysis

Table 19-2 Intermediate parameters in harbor porpoise mark-recapture distance sampling (MRDS) models

Analysis Set	MR Model	MR Truncation (m)	DS Model	DS Truncation (m)	Key function	p(0)	p(0) CV	Chi- square p- value	K-S p- value	CvM p- value
NE-aerial group 5	distance * observer	210	distance + sea state + glare	350	HR	0.52	0.10	0.46	0.75	0.78
NE- shipboard group 5	distance * observer + group size	3800	distance + swell	3800	HR	0.52	0.08	0.22	0.71	0.78
SE– shipboard group 2	distance * observer + sea state	2800	distance + glare	2800	HR	0.69	0.09	0.47	0.99	0.95

MR=Mark-Recapture, DS=Distance Sampling, HR=Hazard Rate, HN= Half Normal, LT= Left truncation (in m), CV=Coefficient of variation. Values of p>0.5 for Chisquare, Kolmogorov-Smirnov test (K-S) and Cramer-von Mises test (CvM) indicate good fit. The definition of p(0) is the probability of detecting a group on the track line. Species included in the analysis sets are explained in main text Tables 6-5 to 6-8.

Figure 19-3 Q-Q plots and detection functions from the MRDS analyses a) NE-aerial analysis set 5; b) NE-shipboard analysis set 5; c) SE-shipboard analysis set 2

19.3 Generalized Additive Model Analysis

Table 19-3 2010 to 2017 density-habitat model output for harbor porpoises

Model	Covariates	Edf	Ref.df	F	C.dev	p-value
November	s(sstfma):LY	2.13	4	3.61	8.68	0.0003
to May -	s(salinity)	1.06	4	6.38	15.47	<0.0001
spread out	s(btemp)	0.77	4	0.69	1.08	0.0557
distribution	s(mlp)	0.98	4	3.43	5.61	0.0001
	Adjusted $R^2 = 0.04$	De	viance explai	ned = 30.8%		
June to	s(chlfma):LY	1.78	8	3.71	13.86	<0.0001
October –	s(mld)	3.27	4	7.67	4.85	<0.0001
compact	s(dist2shore)	1.01	4	3.52	3.29	0.0001
distribution	s(dist200)	3.08	4	7.07	4.42	<0.0001
	s(lat)	1.91	4	19.86	29.29	<0.0001
	Adjusted $R^2 = 0.05$	Devia	nce explained	d = 55.7%		

Includes the estimated degrees of freedom (Edf), reference degrees of freedom (Ref.df), contribution to the deviance (C.dev) explained for each habitat covariate and its associated p-value. Covariate abbreviations explained in main text in Tables 6-1 and 6-2.

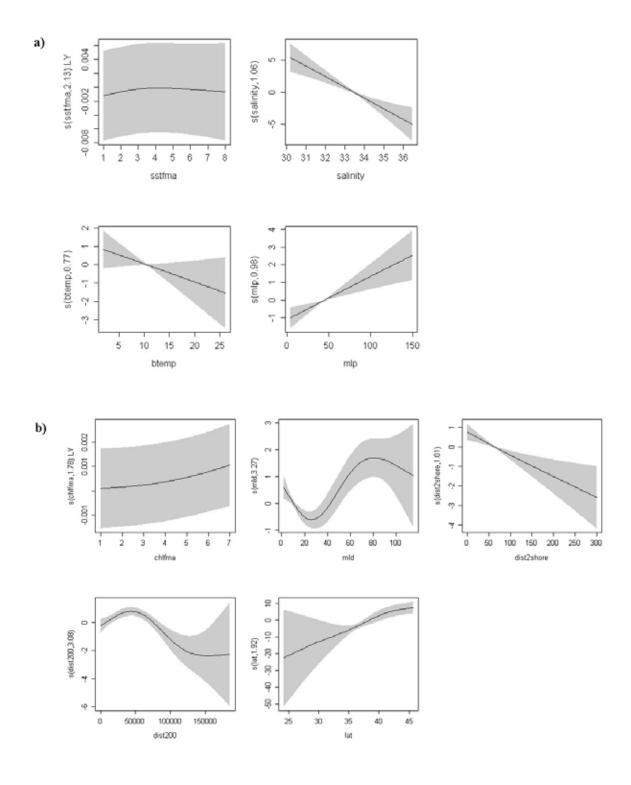


Figure 19-4 Harbor porpoise density relative to significant habitat covariates

Plots represent the partial smooths and interaction terms of the density-habitat model, where the shaded regions represent the 95% credible intervals. Covariate abbreviations explained in main text in Tables 6-1 and 6-2. Plots in (a) are from the November to May (spread out distribution) model, and (b) are from the June to October (compact distribution) model.

19.4 Model Cross-Validation

Table 19-4 Diagnostic statistics from the harbor porpoise density-habitat model

	Diagnostic Statistic	Description	Calculated with	Model Values (x)	Score
November	RHO	Spearman rank correlation	Non-zero density	0.318	Excellent
to May –	MAPE	Mean absolute percentage error	Non-zero density	94.432	Fair to good
spread out	RHO	Spearman rank correlation	All data divided in 25 random samples	0.157	Fair to good
distribution	MAE	Mean absolute error	All data divided in 25 random samples	0.143	Excellent
June to	RHO	Spearman rank correlation	Non-zero density	0.318	Excellent
October –	MAPE	Mean absolute percentage error	Non-zero density	81.184	Fair to good
compact	RHO	Spearman rank correlation	All data divided in 25 random samples	0.181	Fair to good
distribution	MAE	Mean absolute error	All data divided in 25 random samples	0.377	Fair to good

RHO: Poor= x<0.05; Fair to good =0.05<=x<0.3; Excellent= x>0.3 MAPE: Poor= x>150%; Fair to good= 150%>=x>50%; Excellent= x<=50%

MAE: Poor= x>1; Fair to good = 1>=x>0.25; Excellent= x<=0.25

19.5 Abundance Estimates for AMAPPS Study Area

Table 19-5 Harbor porpoise average abundance estimates for the AMAPPS study area

Season	Time Period	Average Abundance	CV	95% Confidence Interval
	2010-2013	54,660	0.66	16,820–177,632
Spring (March-May)	2014-2017	29,006	0.58	10,095–83,342
	2010–2017	41,813	0.63	13,464–129,850
	2010–2013	113,483	0.25	70,040–183,873
Summer (June-August)	2014–2017	60,388	0.26	36,580–99,691
	2010–2017	86,569	0.25	53,429–140,265
	2010–2013	69,395	0.34	36,290–132,698
Fall (September–November)	2014–2017	39,137	0.32	21,223–72,172
	2010–2017	54,264	0.33	28,896–101,903
	2010–2013	38,731	0.63	12,472–120,279
Winter (December–February)	2014–2017	27,454	0.53	10,353-72,801
	2010–2017	33,086	0.59	11,335–96,574
Summer 2011 U.S. surveys ¹		79,883	0.32	
Summer 2016 U.S. surveys ¹		75,079	0.38	

¹Hayes et al. 2020

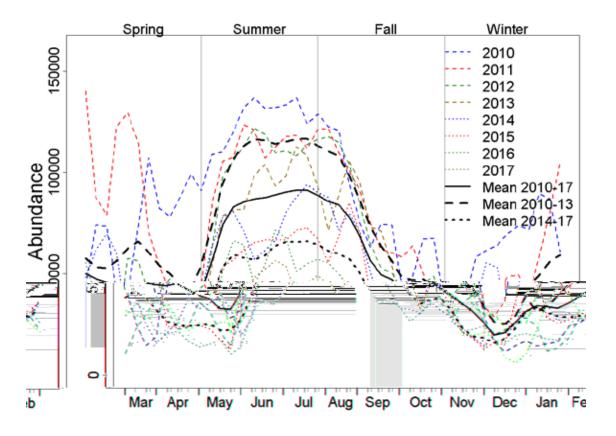


Figure 19-5 Annual abundance trends for harbor porpoises in the AMAPPS study area

19.6 Seasonal Prediction Maps

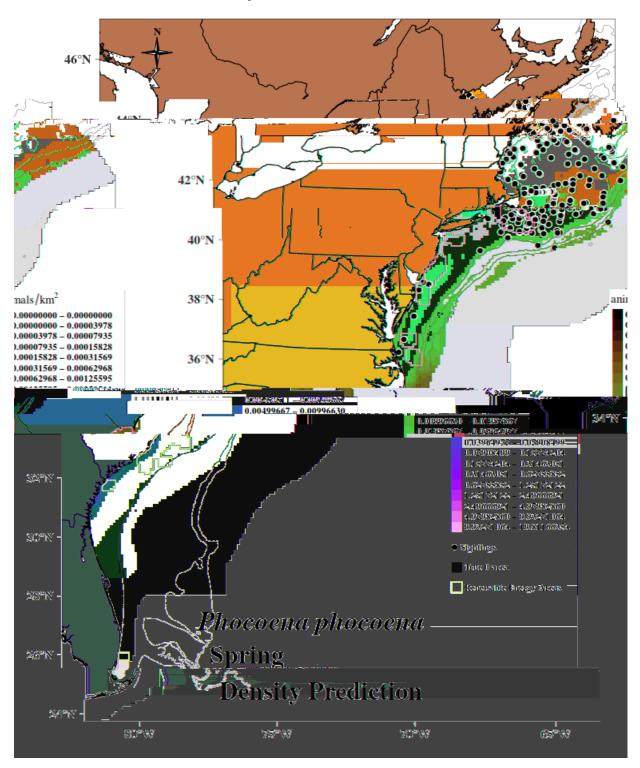
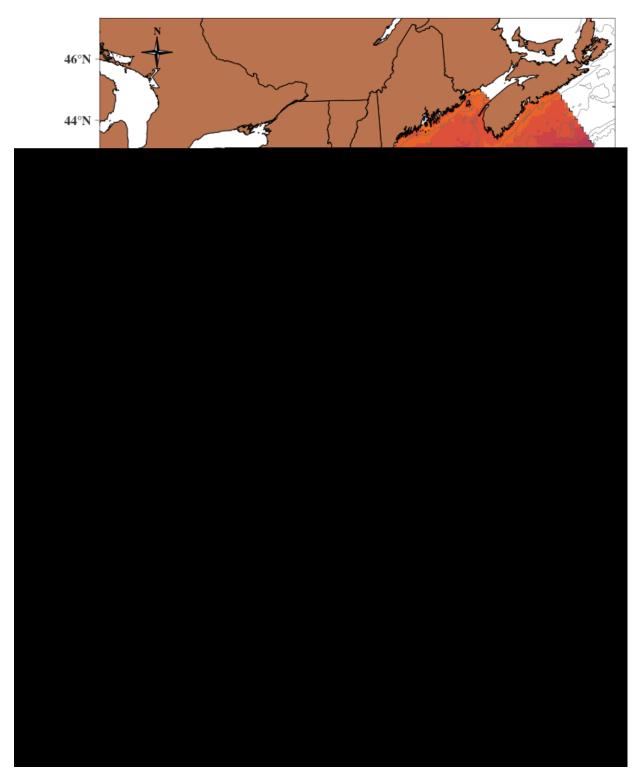
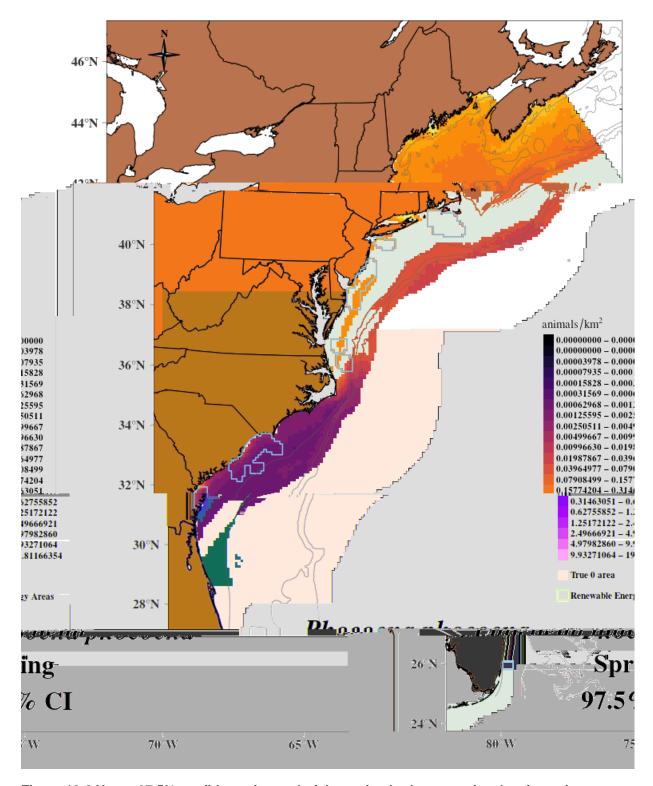




Figure 19-6 Harbor porpoise spring average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-7 Lower 2.5% confidence interval of the spring harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-8 Upper 97.5% confidence interval of the spring harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

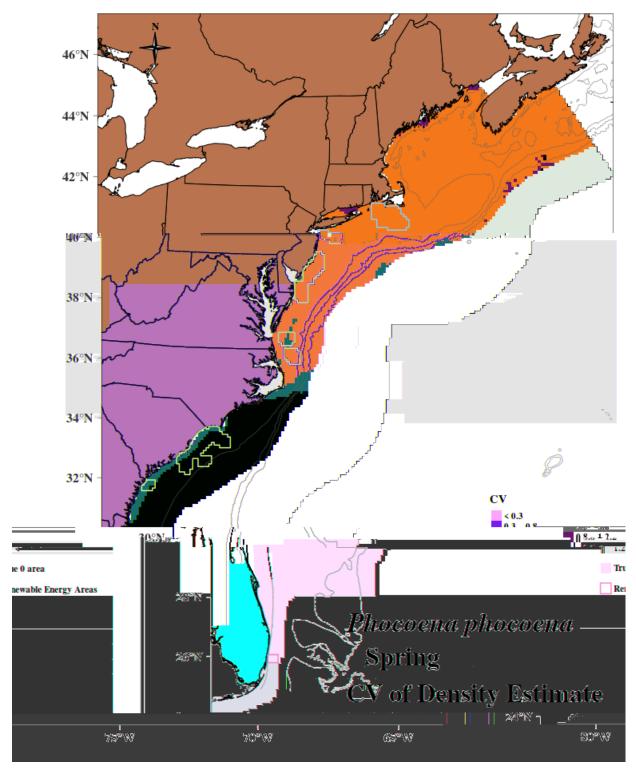


Figure 19-9 CV of spring harbor porpoise density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

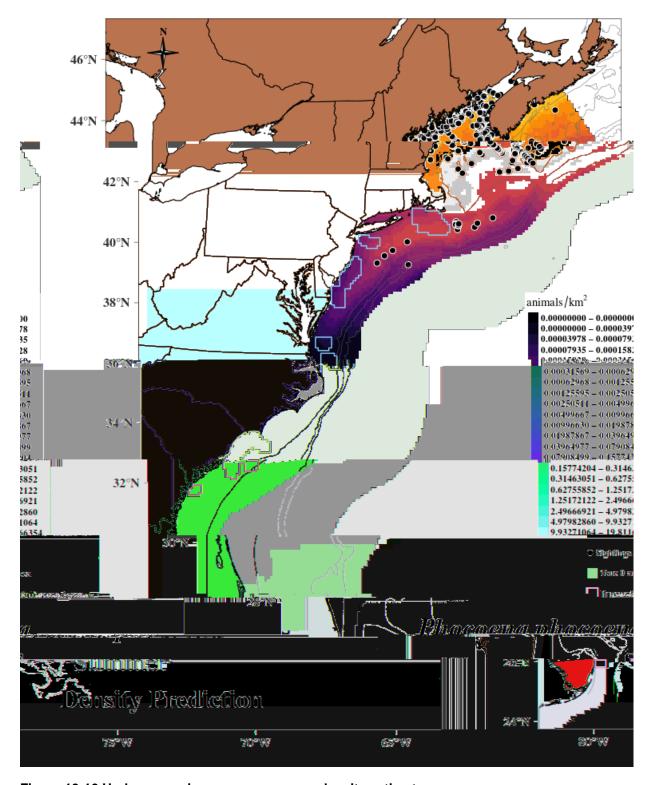
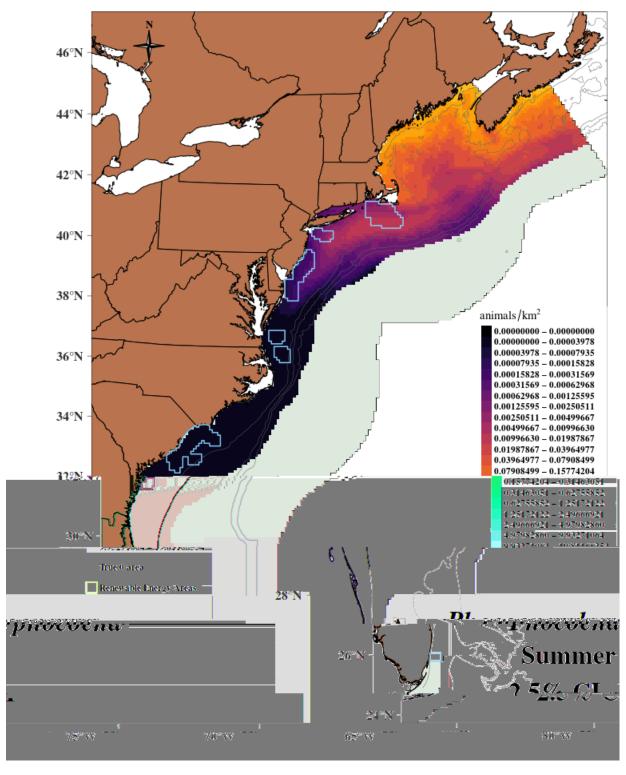



Figure 19-10 Harbor porpoise summer average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-11 Lower 2.5% confidence interval of the summer harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-12 Upper 97.5% confidence interval of the summer harbor porpoise density estimates Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

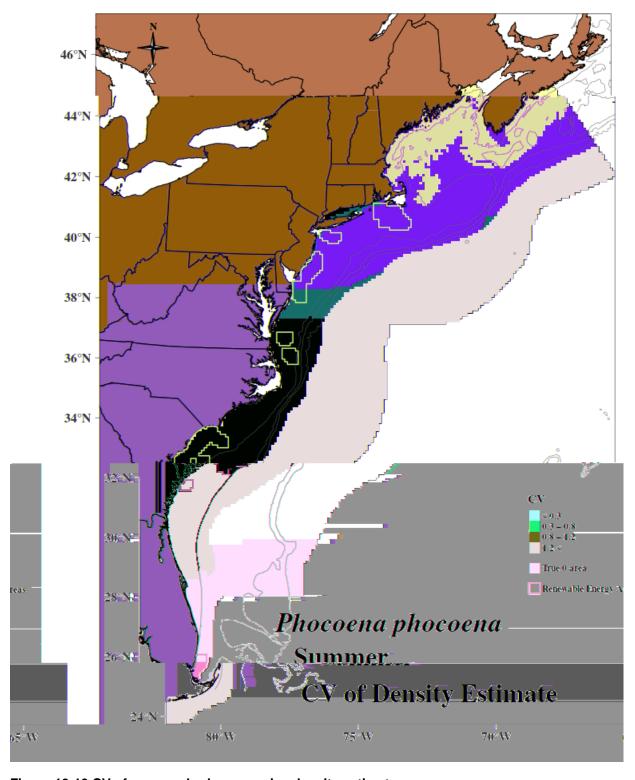


Figure 19-13 CV of summer harbor porpoise density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

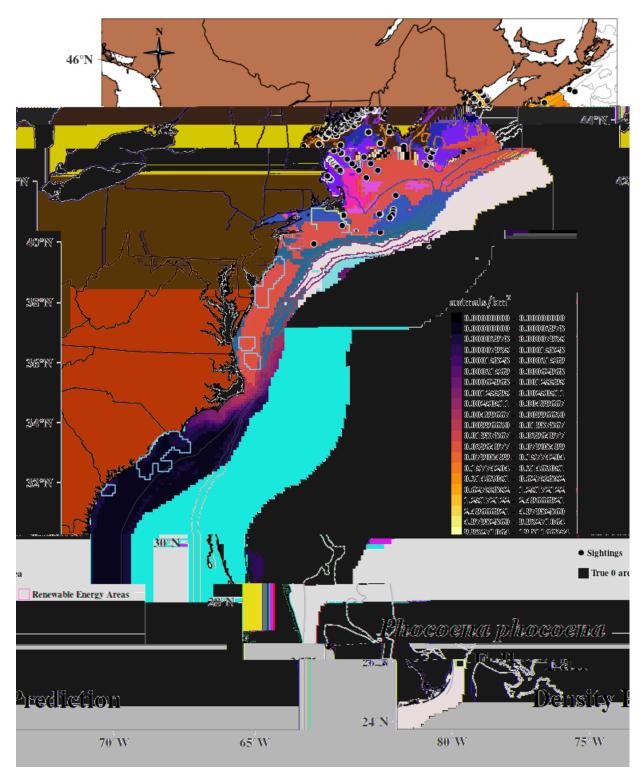
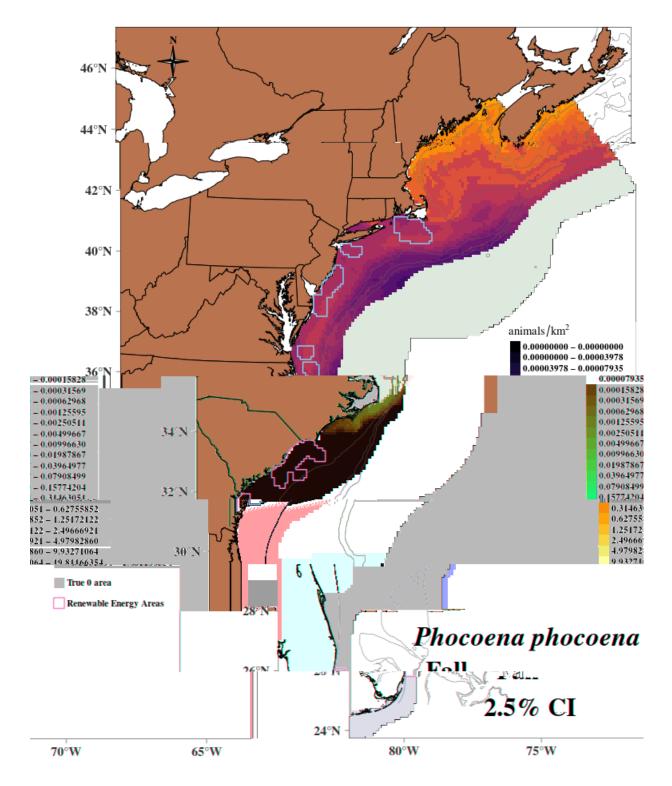
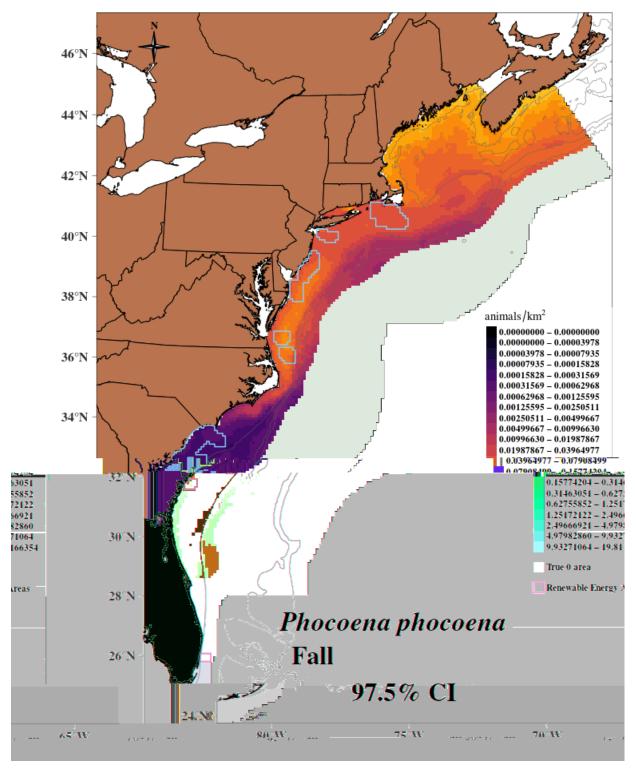




Figure 19-14 Harbor porpoise fall average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-15 Lower 2.5% confidence interval of the fall harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-16 Upper 97.5% confidence interval of the fall harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

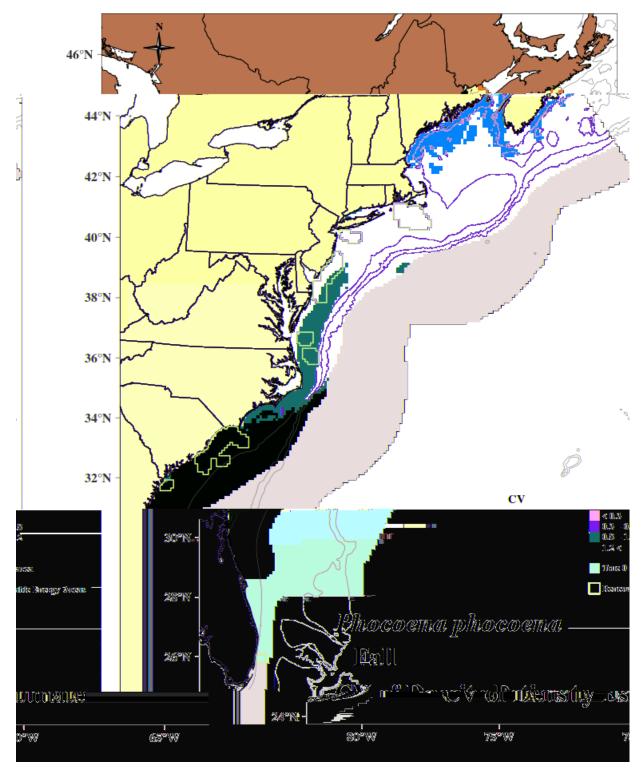


Figure 19-17 CV of fall harbor porpoise density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

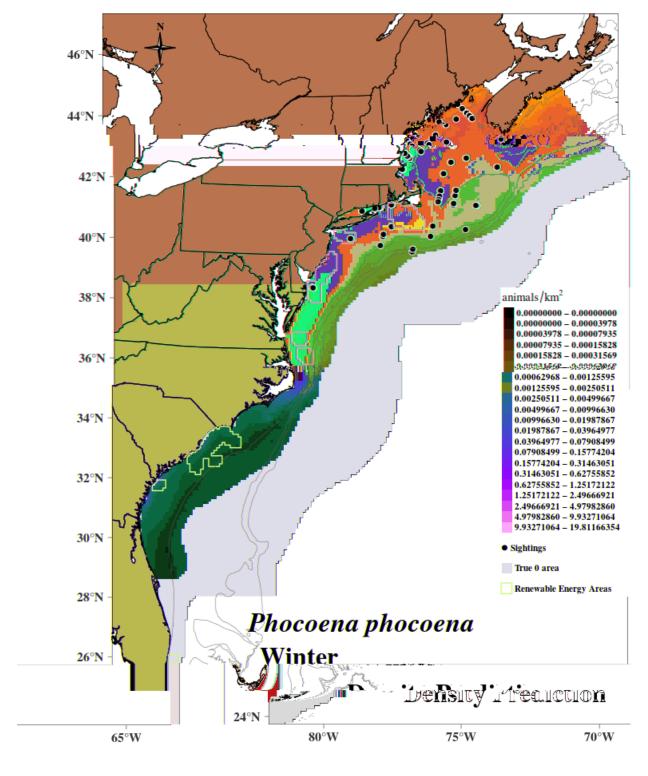
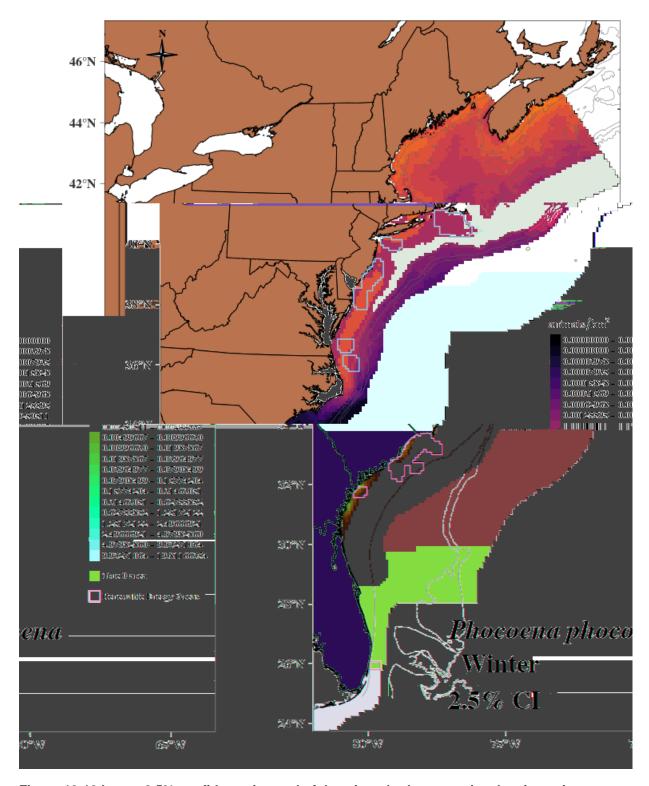
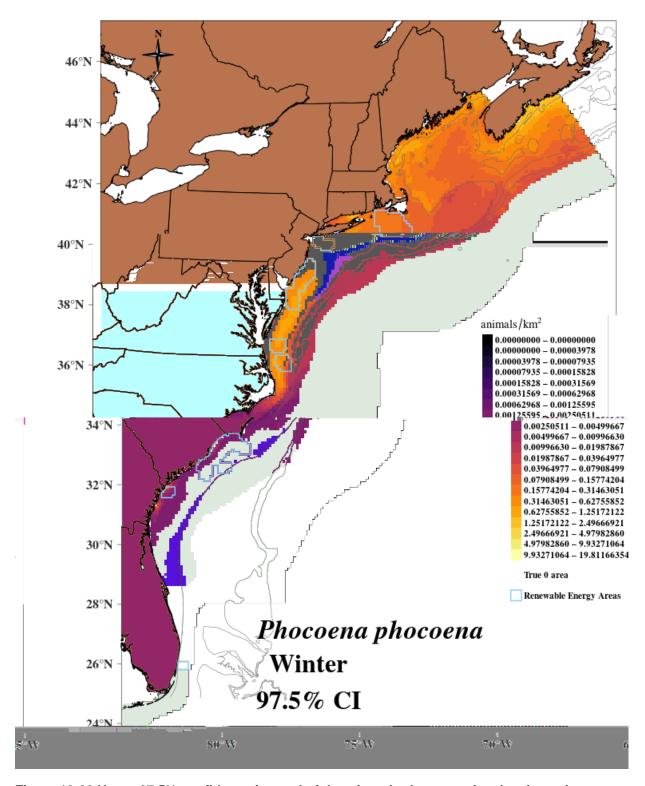




Figure 19-18 Harbor porpoise winter average density estimates

Densities are for grid cells of 10 km x 10 km with the exception of the coastal region. Circles indicate locations of animal sightings. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-19 Lower 2.5% confidence interval of the winter harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

Figure 19-20 Upper 97.5% confidence interval of the winter harbor porpoise density estimatesDensities are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

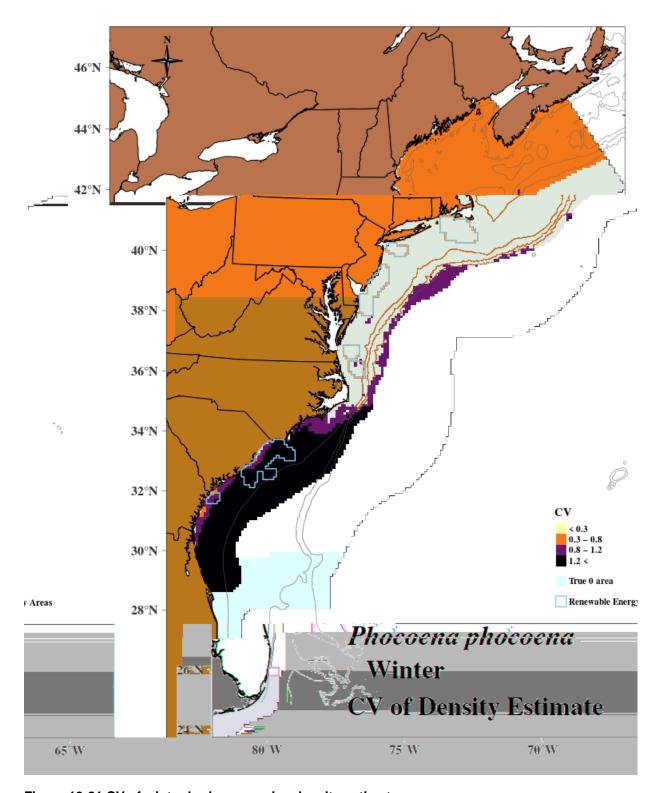


Figure 19-21 CV of winter harbor porpoise density estimates

CV's are for grid cells of 10 km x 10 km with the exception of the coastal region. Light gray lines indicate the 100, 1,000 and 2,000 m depth contours. Blue polygons indicate locations of wind-energy study areas. Light green region indicates the region within the AMAPPS study area where we assumed the density was 0.

19.7 Offshore Energy Development Areas

Table 19-6 Harbor porpoise abundance estimates for wind-energy study areas

Season	Wind-Energy Study Area	Abundance*	CV	95% Confidence Interval*
Spring	RI/MA	837.0	0.52	321.3–2,180.1
(Mar-May)	NY	267.0	0.62	87.2-817.6
	NJ	641.6	0.68	190.6–2,160.0
	DE/MD	389.2	0.72	110.0–1,377.3
	VA	196.7	0.78	50.6-764.0
	NC	148.7	0.74	40.6-543.8
	NC/SC	7.5	1.03	1.4–39.7
Summer	RI/MA	256.8	0.41	118.1–558.3
(Jun-Aug)	NY	16.4	0.48	6.7-40.5
	NJ	6.1	0.66	1.9–19.7
	DE/MD	2.2	0.83	0.5-8.9
	VA	0.1	1.50	0.0-1.2
	NC	0.1	1.86	0.0-0.6
	NC/SC	0.0	4.50	0.0-0.0
Fall	RI/MA	265.3	0.52	102.2-688.4
(Sep-Nov)	NY	61.6	0.65	19.3–196.8
	NJ	193.0	0.74	53-703.5
	DE/MD	148.9	0.79	37.8–586.5
	VA	145.0	0.96	29.8–704.9
	NC	129.7	0.98	25.9–650.9
	NC/SC	0.5	1.48	0.1–4.4
Winter	RI/MA	917.3	0.53	344.4–2,443.0
(Dec-Feb)	NY	309.5	0.59	105.8-905.1
	NJ	968.3	0.62	316.2–2,965.3
	DE/MD	703.7	0.70	203.9–2,428.9
	VA	422.8	0.72	119.0–1,501.8
	NC	312.1	0.76	83.1–1,171.8
	NC/SC	3.9	1.13	0.7–23

^{*} We rounded the mean abundance and 95% confidence interval to the nearest tenth of an animal. If this resulted in a zero for the mean abundance, we calculated the CV using the actual abundance value as estimated by the density-habitat model and then rounded to the nearest tenth. If a wind-energy study area is not included, then we assumed the abundance was zero.

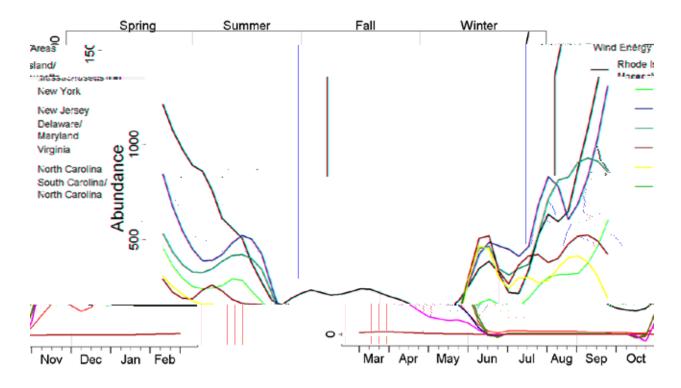


Figure 19-22 Average seasonal abundance of harbor porpoises in the wind-energy study areas

20 References

Hayes SA, Josephson E, Maze-Foley K, Rosel P. eds. 2020. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments–2019. NOAA Tech Memo NMFS NE 264; 479 pp.

The Department of the Interior protects and manages the Nation's natural resources and cultural heritage; provides scientific and other information about those resources; and honors the Nation's trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities.

The mission of the Bureau of Ocean Energy Management is to manage development of U.S. Outer Continental Shelf energy and mineral resources in an environmentally and economically responsible way.

The mission of the Environmental Studies Program is to provide the information needed to predict, assess, and manage impacts from offshore energy and marine mineral exploration, development, and production activities on human, marine, and coastal environments. The proposal, selection, research, review, collaboration, production, and dissemination of each of BOEM's Environmental Studies follows the DOI Code of Scientific and Scholarly Conduct, in support of a culture of scientific and professional integrity, as set out in the DOI Departmental Manual (305 DM 3).