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ABSTRACT

Ahydrostatic global weather predictionmodel based on an icosahedral horizontal grid and a hybrid terrain-

following/isentropic vertical coordinate is described. The model is an extension to three spatial dimensions

of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution

and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the

atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked

shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible

inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

1. Introduction

The invention of the fast Fourier transform (Cooley

and Tukey 1965) has allowed spectral global circulation

models to gain widespread acceptance in the last half

century. However, the drawbacks of suchmodels in terms

of operations count and communications overhead at

high spatial resolution have led, in recent years, to the

development of gridpoint global models discretized on

geodesic grids, commonly based on either the cube or the

icosahedron (Tomita et al. 2001; Staniforth and Thuburn

2012). The main attraction of geodesic grids lies in their

fairly uniform spatial resolution and in the absence of the

two pole singularities found in spherical coordinates.

Icosahedral grids are generated by projecting an ico-

sahedron onto its enclosing sphere and iteratively sub-

dividing the 20 resulting spherical triangles until a desired

spatial resolution is reached. For example, nine recursive

bisections of triangle sides yield a mesh of roughly 2.6

million vertices spaced approximately 15km apart.

While the term ‘‘finite volume’’ was not used at the

time, early attempts to solve the barotropic vorticity

equation on an icosahedral mesh (Williamson 1968;

Sadourny et al. 1968) already embraced the finite-volume

concept because Laplace and Jacobian operators had to

be evaluated, for global conservation reasons, as line in-

tegrals along the perimeter of grid cells formed around

each triangle vertex. The authors mentioned chose to

define integration paths for the Laplace operator by what

we today call Voronoi tessellation: the process of con-

structing grid cells by stringing together orthogonal bi-

sectors of the triangle sides. The resulting ‘‘dual’’ mesh

(dual to the triangular mesh) consists of mostly hexagons

plus a dozen pentagons.

Experimentation with fluid models formulated on

icosahedral grids resumed in the 1980s. Models built in

the last three decades include, among others,

d a shallow-water model (SWM) in vorticity–divergence

form (Masuda and Ohnishi 1987);
d an SWM in vorticity–divergence form (Heikes and

Randall 1995a);
d a three-dimensional extension of the above, offering a

choice of vertical coordinates (Randall et al. 2000;

Ringler et al. 2000);

* Current affiliation: NASA Goddard Institute for Space Stud-

ies, New York, New York.

Corresponding author address: Rainer Bleck, NOAA/Earth

System Research Laboratory, Global Systems Division, 325

Broadway, Boulder, CO 80305.

E-mail: rainer.bleck@noaa.gov

2386 MONTHLY WEATHER REV IEW VOLUME 143

DOI: 10.1175/MWR-D-14-00300.1

� 2015 American Meteorological Society

mailto:rainer.bleck@noaa.gov


d an SWM using potential vorticity as the prognostic

variable (Thuburn 1997);
d the operational global weather prediction model of

the German Weather Service (Majewski et al. 2002);
d a nonhydrostatic general circulation model on a mesh

fine enough for cloud-permitting simulations (Tomita

et al. 2004; Satoh et al. 2008);
d a nonhydrostatic model permitting clustering of grid

points in one particular region of the globe (Ringler

et al. 2011; Skamarock et al. 2012); and
d a nonhydrostatic model (Gassmann 2013; Zängl et al.
2015) designed to be a unified tool for both weather

prediction and climate simulation.

Some of these models solve the momentum equations

while others solve the vorticity and divergence equa-

tions. A common feature (virtually obligatory in un-

structured-grid models) is the use of finite-volume

numerics on the dual pentagonal/hexagonal grid. The

three-dimensional models in the above list, with the

exception of the isentropic coordinate model described

by Randall et al. (2000), use various combinations of

terrain-following and isobaric vertical coordinates. A

hybrid-isentropic coordinate version of the Ringler

et al. (2000) model is referenced in Lauritzen et al.

(2010), and an isentropic upper atmosphere extension

of the Thuburn (1997) model is referenced in Pulido

and Thuburn (2006).

This article describes a model—named the Flow-

Following Icosahedral Model (FIM)—that has been de-

veloped at the Earth System Research Laboratory of the

U.S. National Oceanic and Atmospheric Administration.

The groundwork for FIM was laid in an SWM developed

by Lee and MacDonald (2009), Lee et al. (2010), and

MacDonald et al. (2011). Some aspects of the expansion of

the SWM into a full-fledged medium-range weather pre-

diction tool are described in Bleck et al. (2010). The up-

grade from two to three spatial dimensions brought with it

the attribute ‘‘flow following’’ to characterize FIM’s pre-

dominantly Lagrangian vertical coordinate.

Specifically, FIM is a ‘‘stacked shallow-water model’’

in which vertical resolution is provided by a combination

of quasi-Lagrangian isentropic layers in the free atmo-

sphere and terrain-following (s coordinate) layers near

the ground. With its adaptive, arbitrary Lagrangian–

Eulerian (ALE; Hirt et al. 1974)-like attributes, this

vertical coordinate is similar to a coordinate used suc-

cessfully in weather and ocean models such as the Rapid

Update Cycle (RUC; Bleck and Benjamin 1993;

Benjamin et al. 2004) and Hybrid Coordinate Ocean

Model (HYCOM; Bleck 2002).

The primary purpose of using a near-isentropic ver-

tical coordinate in a circulation model is to assure

that momentum and mass field constituents (potential

temperature, moisture, chemical compounds, etc.) are

dispersed in the model in a manner emulating reality,

namely, along neutrally buoyant surfaces.

Lateral dispersion occurs in a model not only because of

the action of explicit horizontal eddy mixing terms but also

because of truncation errors arising during lateral trans-

port. By confining both types of dispersion to neutrally

buoyant surfaces, isentropic modeling offers a path toward

reducing the cold bias in conventional general circulation

models that Johnson (1997) has shown to be a consequence

of entropy generation by nonphysical, diabatic lateral

mixing. There is considerable evidence by now (Zhu and

Schneider 1997; Webster et al. 1999; Schaack et al. 2004;

Chen and Rasch 2012) that isentropic coordinate models

are in fact capable of reducing this bias.

Numerically induced vertical dispersion likewise is re-

duced if layer interfaces act like material surfaces, as isen-

tropic surfaces do on short time scales, during the passage of

internal gravity waves. Figure 9 in Benjamin et al. (2004)

demonstrates the overall reduction of interlayer transport

velocity (and, by implication, its dispersive effects) achiev-

able in an isentropic coordinate model.

Physical parameterizations in FIM match those used

operationally by the Global Spectral Model in the

Global Forecast System (GFS) of the National Centers

for Environmental Prediction (NCEP). FIM is being

validated on the basis of extended-range, real data

forecasts using GFS initial conditions.

We split the description of FIM into two parts. Part I

(this article) describes the dynamic equations and the

numerical algorithms used to solve them, as well as re-

sults from an idealized model test. Part II will primarily

deal with real data applications.

2. Basic equations

Following tradition, we express the model equations in a

local coordinate system (x, y, s), where x, ymeasure distances

along Earth’s surface, and s is an arbitrary but monotonic

function of height, subject only to the requirement that the

bottom and top of the model atmosphere are s surfaces.

The physical dimensions of s are arbitrary; in fact, s can be

chosen to be a continuous extension of the layer index.

An important point to note is that, regardless of the def-

inition of s, coordinate surfaces x 5 const and y 5 const

continue to be vertical surfaces. This implies that the hori-

zontal velocity vector v5 ( _x, _y) measures speed along a

geopotential surface and that the intersections of x, y sur-

faces, marking the direction in which the hydrostatic equa-

tion is solved, continue to point in the direction of gravity.

Stated differently, the momentum equation solved

in generalized vertical coordinate models retains the
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component form it would have in x, y, z coordinate

models. The decomposition into Cartesian vector com-

ponents is essential for separating the gravitational force

from the much weaker inertial forces. The s coordinate

only enters when it comes to deducing the horizontal

pressure gradient from data residing on s surfaces.

Let $s be the 2D gradient operator at s 5 const;

P5 cp(p/p0)
R/cp the Exner function; T the virtual tem-

perature; u5 cpT/P the potential virtual temperature;

f5 gz the geopotential; M5f1Pu the Montgomery

potential; z the relative vorticity (i.e., the vertical or k

component of the velocity curl vector); _u the net diabatic

heating rate; and F the sum of frictional forces. The set

of dynamic equations solved in FIM can then be for-

mulated as follows [see Kasahara (1974) and Bleck

(1978) for detailed derivations]:
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Momentum conservation:
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Hydrostatic equation:

›M

›u
5P . (4)

Conservation equations for mass field constituents

(tracers for short), such as gaseous, liquid, frozen water,

and chemical compounds, have the same form as (2).

Source and sink terms in these equations—the analogs

of _u›p/›s—are governed by additional equations ex-

pressing what is commonly called ‘‘model physics.’’

The term F in (3) comprises surface drag and various

kinetic energy dissipation processes, such as stirring by

subgrid-scale motion. It is important to note that explicit

lateralmixing is not needed in FIM for numerical stability

reasons. The dissipative properties of the horizontal nu-

merical discretization scheme (see below) appear to be

sufficient to counteract accumulation of energy on the

grid scale. Nevertheless, slight explicit lateral mixing has

been found to improve forecast accuracy.

Vertical turbulent mixing of u, tracers, and momen-

tum is accounted for in model physics; it affects

resolved-scale model fields via the term _u on the right-

hand side of (2) and the forcing term F in (3).

Discretization in the vertical is accomplished in FIM

by integrating prognostic variables, as well as their

governing equations, over individual layers bounded by

s surfaces. FIM actually goes one step further. Following

the shallow-water paradigm, it views the atmospheric

state as one in which most variables are piecewise con-

stant in the vertical with discontinuities across s surfaces.

Introducing the stairstep discretization of u in the

hydrostatic equation [(4)] implies that M is vertically

constant in each coordinate layer. Since $su is vertically

constant by definition as well, the pressure force terms in

(3), if formulated with a midlayer value for P, do not

create vertical shear within a coordinate layer. Thus,

there is no need to distinguish v from its layer average v.

The layer-averaged momentum conservation equation

[(3)] can therefore be written as
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Here, indices 1 and 2 denote the upper and lower in-

terface, respectively, of the layer in question, and Dp 5
p2 2 p1. The vertical advection terms, that is, those in-

volving _s, have been arrived at by integrating

1

Dp

ð�
_s
›p

›s

�
›v

›p
dp

by parts. They involve velocity values on interfaces,

denoted here by v̂. Since v is allowed to be discontinuous

at interfaces, the definition of v̂ is to some extent arbi-

trary and in practice depends on the choice of vertical

advection scheme.

The layer-integrated mass and thermal energy con-

servation equations [(1), (2)] assume the forms
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�
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�
_s
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›s
û

�
2

2

�
_s
›p
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û

�
1

5 _uDp .

(7)

As in (5), the caret denotes interface values needed

in the vertical transport terms. The method by

which they are constructed (upstream, centered, . . .)
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determines properties such as monotonicity and diffu-

siveness of vertical advection in the model. Equations

for other mass field tracers (moisture, etc.) have the

same form as (7).

Regardless of whether u represents potential tem-

perature or another mass field tracer, it is generally

necessary to retrieve its value (which represents tracer

mixing ratio) from the product uDp representing the

amount of u per unit area in the given layer. This oper-

ation becomes ill-conditioned if Dp at the end of a time

step is much smaller, by one or more orders of magni-

tude, than at the beginning. In FIM, we avoid generating

spurious values when dividing Dp into uDp by requiring

that the new u value remain within the range spanned by

the old u values at the grid point in question and its

neighbors.

Unfortunately, this introduces an element of non-

conservation into the transport process for which a

number of ‘‘engineering’’ remedies are available, such

as distributing the u amount gained or lost among

neighboring grid cells. Since this problem only arises

during the rare occasions when a cell exports most

(but not all) of its mass during a single time step, the u

amount in question tends to be small and redis-

tributing it is generally not worth the computational

effort.

3. The dynamic core

a. Time differencing

Given right-hand side values for the generic differ-

ential equation ut 5F(u, x, t) at three consecutive time

levels n 2 2, n 2 1, n, and u at time level n, the third-

order Adams–Bashforth scheme (Durran 1991) ex-

presses u at time level n 1 1 as

un115 un 1
Dt

12
(23Fn 2 16Fn21 1 5Fn22) , (8)

where Dt is the model time step. The Adams–Bashforth

scheme is an explicit scheme and requires only one

evaluation of F per time step. Previous studies

(MacDonald et al. 2000) have shown that it is an accu-

rate and efficient scheme for numerical weather pre-

diction models.

b. The icosahedral horizontal mesh

The icosahedron has 20 equilateral triangular faces.

When each triangle side is replaced by a geodesic

curve on the enclosing sphere, we obtain a perfect

spherical mesh. However, as we recursively subdivide

the triangles and project the newly formed vertices

onto the sphere, most of the resulting spherical

subtriangles lose their regularity and uniform size.

Additional steps are usually taken to reduce the de-

gree of imperfection.

Two criteria measure the numerical quality of an

icosahedral grid on the sphere. One is its uniformity,

which affects the maximum time step allowed for

solving the prognostic equations; the other is the reg-

ularity of its dual Voronoi cell mesh, which affects the

accuracy of numerical solutions (Heikes and Randall

1995b; Tomita et al. 2001; Du et al. 2003; Peixoto and

Barros 2013). It appears that one cannot optimize both

simultaneously. The present FIM grid is based on a

modified recursive generation algorithm described in

Wang and Lee (2011). This algorithm produces icosa-

hedral grids with better uniformity and regularity

compared to grids based on the standard recursive

construction method of Baumgardner and Frederickson

(1985).

An important point to note is that the governing equa-

tions in FIM are not solved in spherical coordinates but in

stereographic projections of each icosahedral grid cell onto

its local tangent plane (Lee and MacDonald 2009).

c. Horizontal finite-volume operators

Owing to its heritage (Lee and MacDonald 2009),

variables in FIM are horizontally unstaggered. The

governing equations are solved using finite-volume

techniques (van Leer 1977; Lin et al. 1994) that de-

fine model variables as mean quantities over each

grid cell. As already mentioned, the need to build

conservation laws for various quantities into the finite-

difference equations on unstructured grids (the icosa-

hedral grid, despite its regularity, is ‘‘unstructured’’ in

this context) requires that grid-cell averages of vor-

ticity, divergence, and gradient be expressed by line

integrals along the grid cell perimeter:

z5A21

þ
v � ds; $ � v5A21

þ
v � dn;

$p5A21

þ
p dn . (9)

Here, ds is an infinitesimal vector increment along the

horizontal curve circumscribing the grid cell of area A,

and dn5 ds3 k, where k is the vertical unit vector. The

hexagonally and pentagonally shaped elements of the

icosahedral mesh are well suited for approximating such

line integrals.

The recipe for evaluating the line integrals [(9)] in

FIM is to sum up integrals taken along the five or six

individual edge segments, each one approximated by the

trapezoidal rule. The required vertex values of the in-

tegrand are computed as unweighted averages of their
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respective three surrounding cell values. (Preserving

second-order accuracy of this interpolation scheme in

the case of distorted grid cells requires nonuniform av-

eraging weights. Such a scheme has been developed but

is not used at this time.)

As mentioned, adding explicit lateral mixing terms to

some or all prognostic equations is not required for

maintaining numerical stability but may still be advis-

able to suppress computational modes that occasionally

make their presence known on FIM’s horizontally un-

staggered grid. We presently rely on weak biharmonic

lateral momentum mixing to dampen these modes.

Specifically, the stress term F in (5), which originally

encompassed surface friction, turbulent vertical mixing,

and Rayleigh damping of gravity waves near the model

top, now also includes the term

1

Dp
$ � [nDp$(2A=2v)] ,

where n is an eddy viscosity. We presently hold n con-

stant except for a ramp-up in the uppermost coordinate

layers to reduce gravity wave reflection at themodel top.

The negative Laplacian 2A=2f ( f being an arbitrary

scalar) is evaluated by subtracting from each gridpoint

value f the average of its five or six surrounding neigh-

bors. This interpretation of the Laplace operator is

based on Gauss’s theorem applied to the integral of =2f

over grid cell area A:

ðð
A
(=2f ) dA5

ðð
A
$ � ($f ) dA5

þ
($f ) � dn .

Numerically approximating the gradient of f normal to

the grid cell perimeter and integrating along the pe-

rimeter leads to the above-mentioned expression for the

Laplacian.

Global constraints like mass conservation, zero net

pressure force, and zero net circulation require exact

cancellation of integral segments evaluated in the two

cells bordering a given edge segment. In FIM, which

solves equations on local stereographic projections (Lee

andMacDonald 2009), exact mass conservation is easily

achieved by evaluating mass fluxes on projection planes

centered on cell edges, but the two other constraints

mentioned cannot be satisfied exactly.

The root of the problem is the requirement that the edge

vectors ds in (9) form a polygon—otherwise the gradient

of a constant field would not be zero. This can only be

achieved by representing the vectors circumscribing a

given grid cell on a projection plane centered on this cell.

Even if tangential velocity components needed for com-

puting vorticity are represented on edge-centered pro-

jection planes, which render them equal and opposite

when viewed from the two adjoining cells, the product

(v � ds) does not cancel because the increments ds are

defined on two different stereographic maps.

Line integrals yielding pressure gradients, likewise,

must use edge vectors expressed in a cell-centered co-

ordinate system, which again precludes exact global

cancellation. The error involved is small but neverthe-

less may lead to biases in the model climatology. To

ready FIM for a possible future role as a component in

anEarth systemmodel, we therefore intend tomove line

integrations from local stereographic projections back

to the sphere.

[Additional constraints, such as the requirement that

there be no barotropic spinup over a flat bottom, may

not be achievable on the unstructured icosahedral mesh.

This particular constraint must be applied to the nu-

merical rendition of the pressure torque (Arakawa and

Lamb 1977) that, being a line integral of a line integral,

cannot be manipulated as easily as conventional finite-

difference expressions on a logically rectangular grid.]

Accurate evaluation of the horizontal pressure gra-

dient force (PGF) in the momentum equation is known

to be numerically challenging on steeply inclined co-

ordinate surfaces where the term r21$zp becomes the

residual of two large opposing contributions, r21$sp and

$sf. This is not an issue in FIM’s u-coordinate sub-

domain because the PGF expression shown in (5),

$sM2P$su, reduces to $sM as s/u. To retain the

advantage of a single-term PGF expression in the

s-coordinate subdomain where $su can be large, we

optionally use in the lower part of the model domain a

scheme proposed by Janjic (1977) that expresses the

PGF as $pf and finds f at neighboring grid points by

performing additional hydrostatic integrations to the

appropriate pressure level.

Terrain height is derived from a dataset of 10-km

resolution that in turn is based on the 30-s GTOPO30

dataset. Interpolation to the FIM grid is via unweighted

averaging of data points falling within a circle of radius

1.25 3 mesh size.

d. Flux-corrected transport

The term layer model describes a class of models in

which the vertical spacing of layer interfaces is variable

in space and time, with interface movement controlled

primarily by the convergence and divergence of hori-

zontal mass fluxes within each layer. FIM belongs to this

class of vertically quasi-Lagrangian models. To assure

the numerical integrity of a layer model, mass fluxes

must be constructed with strong emphasis on positive

definiteness and monotonicity of the layer thickness

field. The scheme chosen for this purpose in FIM is

known as flux-corrected transport (FCT; Boris and
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Book 1973; Zalesak 1979). The multistep operation is

numerically complex and results in a fairly large hori-

zontal stencil, as illustrated in Fig. 1 for the case of a

hexagonal grid and space-centered flux expressions of

second-order accuracy.

Given a transport equation of the type ut 52Fx, where

F represents the flux of the variable u in x direction, the

FCT scheme proceeds in two steps. In step 1, the u field is

advanced in time using an upstream, forward-in-time (low

order) scheme for computing Fx that because of its diffu-

sive character is known to maintain positive definiteness

and monotonicity. In step 2, antidiffusive fluxes based on

more accurate (high order) approximations are added to

the diffusive fluxes. Inwhat constitutes the essence of FCT,

these antidiffusive fluxes are locally reduced or ‘‘limited’’

just enough to avoid violating the positive definiteness

constraint and creating new extrema in u.

In contrast to the usual practice of forming high-order

fluxes from space-centered fourth- or sixth-order finite-

difference expressions, high-order fluxes are con-

structed in FIM in the spirit of the (at best) second-order

piecewise linear method (PLM) scheme (van Leer 1974;

Colella and Woodward 1984). In one spatial dimension,

PLM is monotonicity preserving. It may be possible,

with some effort, to preserve this property even in the

present case where each cell exchanges mass with five or

six neighbors. We have not yet explored this possibility,

relying instead on FCT-type flux limiting. The spatial

average of the transported variable in the slab upstream

of a cell edge is computed by assuming that the variable

changes linearly between neighboring cell centers.

To adapt the low-order transport scheme and the flux-

limiting algorithm, both of which are inherently two

time level schemes, to the four time level scheme [(8)],

we proceed as follows:

1) Low-order fluxes from three consecutive time levels

are combined as shown in (8) to generate a low-order

solution at time level n 1 1.

2) The flux-limiting process is based on ‘‘worst-case’’

tendencies of the transported variable, obtained by

selectively bundling high-order incoming and out-

going fluxes. These tendencies are computed in FIM

by combining, in the manner of the right-hand side

of (8), the current unclipped high-order flux Fn with

the ‘‘final,’’ that is, low-order plus clipped antidif-

fusive, fluxes from the previous two time levels:

Fn21, Fn22.

3) The clipped antidiffusive fluxes are combined with

the low-order ones to form final fluxes Fn; these are

then used in (8) to compute the final value of un11.

Horizontal transports of u and tracers are handled

analogously. The prototype transport term for these

variables is $ � (uvDp) in (7). Antidiffusive fluxes are

limited in this case on the basis of extrema in the

transported variable u itself, not extrema in the

product uDp. This is to say that we enforce monoton-

icity in the tracer mixing ratio field, not in the tracer

amount.

Potentially more accurate transport schemes, such as

the one by Dubey et al. (2014), are under consideration

for future use. However, the trade-off between accuracy

and computational effort remains an issue.

e. Vertical mesh

As already mentioned, FIM is a layer or stacked

shallow-water model, meaning that the thickness of in-

dividual coordinate layers—in other words, the spacing

of grid points in the vertical—can change in space and

time. Hence, FIM output contains an extra three-

dimensional field, layer thickness, not found in tradi-

tional three-dimensional circulation models.

Layer thickness is not a ‘‘new’’ prognostic variable

requiring an additional prognostic equation. Hydro-

static models in general solve the shallow-water form of

the continuity equation to determine material vertical

motion. They then split this motion up in various ways

into motion of the coordinate surface and motion rela-

tive to the coordinate surface. The split is particularly

trivial in the two limiting cases of a material vertical

coordinate and a fixed vertical grid where 100% of the

material motion is assigned to one or the other term,

respectively. In FIM, the splitting algorithm is more

elaborate because grid points in the isentropic sub-

domain follow the air motion (in the absence of diabatic

heating or cooling, that is), while grid points in the lower

part of the atmosphere are placed according to the rules

for terrain-following coordinates.

FIG. 1. (left) Stencil of grid cells affecting the outcome of

thickness change calculations in the central cell marked by X.

(right) Stencil of grid cells affecting the calculation of mass fluxes

across the central hexagonal edge segment marked by X. Note that

these are composite stencils; individual passes through the grid

involve interactions with nearest neighbors only.
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We refer to the algorithm regulating vertical spacing

of grid points as the grid generator. It continually re-

stores layers to their assigned ‘‘target’’ u values, while at

the same time keeping an eye on minimum thickness

constraints.

The grid generator is described in detail in sections 4 and

5 of Bleck et al. (2010).As presently formulated, it does not

enforce a minimum layer thickness constraint in the isen-

tropic domain. A special scheme that diffuses mass among

layers and thereby reduces layer-to-layer thickness con-

trasts, but does so without changing u in the participating

layers, is used to prevent layer collapse in the isentropic

subdomain. The scheme is based on one developed for

oceanic use by McDougall and Dewar (1998).

f. Long time step tracer transport

The use of the numerically complex FCT scheme

makes lateral transport costly in FIM. If the model were

to be used to simulate the evolution of O(100) inter-

acting chemical species, execution time would be pro-

hibitive. One approach to reducing the amount of time

spent in the FCT routine is to carry out tracer transport

intermittently, using a longer time step. This split ap-

proach is possible because the time step in FIM dy-

namics is controlled by the speed of gravity and Lamb

waves, not by the typically much smaller wind speed that

governs transport processes. In other words, advecting

tracers using a time step geared toward maintaining

numerical stability in gravity wave transmission is not

very cost-effective.

Because of the fluctuating height of grid cells, tracer

conservation during long time step transport is not easily

achieved in layer models if vertical mass fluxes are in-

volved. [Lin (2004) describes a scheme for the simpler

case of a vertically Lagrangian mesh.] Since the trans-

port equations in layer models are formulated in flux

form, transport with a time step longer than Dt, say, JDt,
where J . 1, must be based (Sun and Bleck 2006) on a

rigorously time-integrated form of the mass continuity

function (6):

Dpn1J 2Dpn

JDt
1$s � vDp

J
1

�
_s
›p

›s

J�
2

2

�
_s
›p

›s

J�
1

5 0,

(10)

where the overbar denotes integration over J time steps.

To assure that the equation is exactly satisfied in the

model, the layer thickness and velocity fields in FIM

must already have been stepped forward from time level

n to n 1 J. At that instant, both the tendency term and

the horizontal flux divergence term [terms 1 and 2 in

(10)] can be determined; the latter can be done by

summing up the instantaneous fluxes over the past J time

steps. The time-integrated vertical flux terms (terms 3

and 4) can then be obtained by vertically summing up

(10), using _s5 0 at the top or bottom of the column as a

starting point.

By combining (10) with the equation dQ/dt5 0, ex-

pressing conservation of a tracer Q during transport

(sources and sinks ofQ can be evaluated separately), we

arrive at the transport equation

(QDp)n1J 2 (QDp)n

JDt
1$s � (QvDp

J
)

1

�
_s
›p

›s

J

Q̂

�
2

2

�
_s
›p

›s

J

Q̂

�
1

5 0, (11)

which can be solved for the tracer amount QDp at time

level n1 J. The meaning of the caret and the method by

which QDp is converted to the tracer mixing ratio Q

were discussed in the context of (7).

Equation (11) is solved by flux-corrected transport.

Details are as follows:

1) Vertical Q fluxes are based on the piecewise para-

bolic method (PPM; Colella and Woodward 1984).

To avoid numerical stability problems posed by

combinations of large vertical velocities and thin

layers, integration of Q over the slab upstream of a

given interface must be allowed to extend over

multiple layers.

2) The vertical PPM-based fluxes are used in conjunc-

tion with horizontal upstream fluxes to arrive at a

low-order solution for Q.

3) High-order horizontal fluxes are of second-order

accuracy; that is, they involve averages of Q over

two neighboring grid cells.

4) The limiters applied to the antidiffusive (high minus

low order) fluxes to assuremonotonicity are based on

the maxima and minima of ‘‘old’’ Q values in (i) the

cell in question, (ii) its lateral neighbors, and (iii) the

upstream slab(s) above or below the cell.

Comparisons of tracer fields advected over long and

short time steps indicate that J 5 10 works well in gen-

eral, the single exception encountered so far being late

winter major stratospheric warming events when winds

in the meso- and upper stratosphere can reach speeds.
150ms21. In those few cases, J had to be reduced to 5 to

yield meaningful results.

Note that (6) is solved using the three time level

Adams–Bashforth time differencing scheme, whereas

transport in (11) is carried out in forward-in-time mode.

To achieve consistency between the thickness tendency

term and the horizontal mass flux divergence, mass
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fluxes from three consecutive time levels must therefore

be combined in the manner indicated in (8) before they

are added to the flux time integral.

While three-dimensional transport is the dominant

process by which tracers are redistributed in the at-

mosphere, other processes such as subgrid-scale tur-

bulent mixing cannot be neglected, especially if tracers

advected by (11) are to evolve consistently with the

primary mass field variables that in FIM are subjected

to subgrid-scale vertical mixing. At the end of each long

transport step, the relevant ‘‘physics’’ equations

therefore are solved for each tracer in question, using

JDt as time step.

4. Model physics

a. Brief summary of GFS physics for FIM

To facilitate comparison of FIM to existing opera-

tional NWP models, and in particular the GFS, column

physics parameterizations have been taken directly from

the 2011 version of the GFS (most current at that time).

Additional information can be found in the references

provided in the section below, from the GFS website

(www.emc.ncep.noaa.gov/GFS/impl.php) and from pre-

sentations at the 2013 NOAA Environmental Modeling

System (NEMS)/GFS Summer School website (www.

earthsystemcog.org/projects/gfsmodelingschool/). The

description below corresponds to the GFS physics

configuration implemented in the operational GFS

model in 2011.

The physics routines are typically not executed at every

dynamical time step. An individual physics routine pro-

duces tendencies (e.g., ›u/›t) from the particular process

being represented. The tendencies can either be used to

increment the state variables instantaneously (and hence

intermittently) or they can be passed to the dynamical

equations where they are applied at each dynamical time

step. The former option is presently taken.

Both longwave (LW) and shortwave (SW) radiation

schemes make use of the rapid radiative transfer model

(RRTM;Mlawer et al. 1997). Both LW and SW schemes

account for the presence of a climatological distribution

of atmospheric aerosols. The LW scheme includes ef-

fects of ozone, water vapor, and carbon dioxide as well

as less radiatively important constituents such as meth-

ane, NOx, and up to four types of halocarbons. Effects of

clouds are either from a cloud fraction specification

based on static stability and relative humidity or in-

corporated directly through a computed cloud liquid or

ice path and an assumed effective radius for condensate

produced by the microphysics scheme (see below). A

maximum random cloud overlap scheme (Iacono et al.

2000) is used.

Land surface processes are simulated by the NCEP

Noah land surface model (LSM); see Koren et al.

(1999) and Ek et al. (2003) for an approximate de-

scription of the version of the Noah LSM im-

plemented in the operational GFS in 2011. The Noah

scheme uses four soil layers having lower boundaries

at 10-, 40-, 100-, and 200-cm depth. Surface emissivity

is reduced by 5% over snow, taking into account the

snow-cover fraction. The surface latent heat flux has

three components: flux from bare soil, evaporation of

water from the vegetation canopy, and transpiration.

The canopy resistance in evapotranspiration depends

on solar radiation, temperature, humidity, and soil

moisture. Monin–Obukhov similarity is used in the

GFS surface layer scheme to calculate stability-

dependent friction velocities and exchange co-

efficients over land surfaces. These variables are

passed into the land surface model for calculating surface

momentum fluxes as well as sensible and latent heat

fluxes. Surface parameters are based on theMODIS land

cover classification.

Turbulent mixing above the surface layer is parame-

terized following Hong and Pan (1996) based on Troen

and Mahrt (1986) but with modifications to better ac-

count for enhanced cloud top–driven mixing when low

clouds are present (Han and Pan 2011).

Gravity wave drag in the GFS physics package is pa-

rameterized based on Alpert et al. (1988), with en-

hancements to account for wind direction and subgrid

terrain effects following Kim and Arakawa (1995).

The effects of moist convection on the explicitly pre-

dicted variables are incorporated through either a shal-

low or a deep parameterization scheme (Han and Pan

2011). Both schemes are mass flux schemes, with updrafts

and downdrafts represented as entraining and detraining

plumes. If conditional instability is limited in vertical

extent, the parameterized convection is assumed to be

‘‘shallow’’ (cloud thickness , 150hPa for shallow con-

vection) with a large entrainment and detrainment rate

for the updraft, and cloud top is constrained to be near or

below the level where pressure is approximately 70% of

surface pressure. The updraft mass flux at cloud base in

the shallow convection scheme is proportional to the

convective velocity scale w*. For deeper instability, the

so-called simplified Arakawa–Schubert (SAS) parame-

terization of deep convection is used. The SAS has been

changed extensively (Han and Pan 2006, 2011), sub-

sequent to the Grell (1993) modification of the original

Arakawa and Schubert (1974) formulation, and now as-

sumes that updraft entrainment decreases with height

above cloud base, while detrainment extends through the

depth of the updraft instead of occurring only near the

cloud top. Unlike many shallow convection schemes,
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light precipitation is also allowed to occur from the pa-

rameterized shallow convection.

For reasons of computational efficiency, grid-scale cloud

condensate for both water and ice is combined in GFS

(and FIM) into a total cloud condensate variable, which is

advected as a tracer in FIM. At present, it, like u, is ad-

vected at every model time step. The treatment of cloud

condensate and grid-scale precipitation follows closely

Zhao and Carr (1997). Cloud condensate has two sources:

detrainment of condensate from (parameterized) shallow

and deep convection updrafts and grid-scale condensation,

which is allowed to occur at relative humidity values

slightly under 100%. The sinks of cloud condensate are

grid-scale conversion of cloud to precipitation and evap-

oration. Precipitation processes are assumed to be appro-

priate for ice (Zhao and Carr 1997) or liquid (Sundqvist

et al. 1989) depending on temperature.

b. Discussion

In the course of importing the GFS physics into FIM,

no changes have been made to any code or parameters.

This allows for a clean comparison regarding the dy-

namic cores used inGFS and FIM. To properly link FIM

toGFS physics, three additional 3D prognostic variables

had to be added to FIM, namely, mixing ratios of water

vapor, condensate, and ozone.

Within the GFS, the physics routines operate on in-

dividual grid columns, independently of adjacent col-

umns, with the vertical discretization being determined

by the GFS vertical coordinate. In our application of the

GFS physics, we use FIM’s ALE discretization di-

rectly, rather than interpolating back and forth be-

tween two grids. Within the isentropic portion of the

grid domain, that is, well above the surface except in

very cold areas, the hybrid vertical coordinate can

possess much larger variability in layer thickness than

the GFS because of static stability variations in the

vertical and the particular distribution of the target u

values. The thickness of individual model layers typi-

cally also varies horizontally, particularly as these

layers encounter upper fronts or the tropopause. This

circumstance has not led to systematic errors in FIM of

which we are aware, as will be shown in Part II of this

paper. However, we did discover a vulnerability in the

shallow and deep convection codes stemming from the

variability in thickness of the ALE coordinate: with

their assumed constant updraft detrainment rates and

decreasing entrainment rates with height, the updrafts

could, in effect, ‘‘run out of mass’’ upon encountering

a thick isentropic layer. With concurrence from

S. Moorthi (NCEP, 2011, personal communication), we

introduced a generalization into the GFS code to deal

with this issue in a physically consistent fashion.

c. T–u conversion and midlayer pressure definition

Temperature is not a prognostic variable in FIM and

hencemust be inferred from u and pwhen needed. Since

model ‘‘dynamics’’ in FIM are formulated in terms of u

while model physics are formulated predominantly in

terms of T, the u/T conversion takes place frequently

and in both directions. To avoid numerical degradation

during this frequent back and forth, we define T, like u,

as a layer variable and solve physics equations in layers,

not on interfaces.

There appears to be considerable freedom in how to

define a ‘‘layer’’ pressure or layer Exner function,

needed for relating u to T. One particularly compelling

and widely used choice [e.g., Sela 1980, their Eq. (10);

Arakawa and Lamb 1977, their Eq. (250)] is based on

the notion that the column integral for the sum of po-

tential and internal energy should not depend on

whether it is evaluated numerically in terms of u or in

terms of T. The two forms of the integral (with the effect

of water vapor only captured approximately) are

cp

g

ð
T dp5

cpp0

g(11 k)

ð
ud

�
p

p0

�11k
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in each model layer. This condition is met if the Exner

function value relating u to T in a model layer is defined

as a finite-difference analog of

cp

11 k

›(p/p0)
11k

›(p/p0)
.

By satisfying (12), the model correctly translates tem-

perature changes resulting from, for example, radiation

or water phase changes into available potential energy

changes in the dynamics part of FIM where they are

represented in terms of u.

5. Sequence of operations

Variables are updated during each model time step in

the following order:

1) Starting from momentum vn and layer thickness Dpn

at time level n, preliminary values at time level n 1 1

are obtained in each layer by solving (5) and (6) under

the assumption that all interfaces are material ( _s5 0).

We refer to the resulting values as vn11
sw , Dpn11

sw where
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subscript sw stands for shallow water, a reminder that

the two-dimensional versions of the respective prog-

nostic equations have been used.

2) Thermal energy (uDp) is advanced in time by solving

(7), once again with _s set to zero, and with the right-

hand side set to zero. The outcome of this process is

(uDp)n11
sw .

3) Values of un11
sw are obtained by dividing (uDp)n11

sw

resulting from step 2 by Dpn11
sw . Safeguards are

applied to avoid indeterminacies in the limit of zero

layer thickness.

4) Diabatic forcing due to radiation, surface fluxes,

release of latent heat, and so on are evaluated using

the GFS physical parameterization module based on

un11
sw , Dpn11

sw , and other state variables at time level

n 1 1. These calculations yield updated state vari-

ables, including un11
phy , where phy stands for model

physics.

5) Fields of un11
phy , Dp

n11
sw are fed to the grid generator

that decides on the magnitude of interface fluxes

_s›p/›s at each grid point. These flux values are used

to evaluate the missing vertical advection terms

in (5), (6), and (7), yielding final values

vn11, Dpn11, un11, and other state variables.

Other variables carried by the model to define the

physical state of the atmosphere (mixing ratio of water

vapor and hydrometeors, etc.) are advanced in time like

the variable u. This is to say that transport takes place in

flux form analogously to (7), source terms are evaluated

as in step 4, and the variables are advected vertically as

part of step 5.

Vertical advection of model variables, only necessary

in regions where pn11
sw 6¼ pn11, is implemented as a ver-

tical remapping of the stairstep profiles resulting from the

preliminary shallow-water integration. To remain stable

in situations where layer thickness approaches zero while

_s›p/›s remains finite, the remapping algorithms PCM,

PLM, and PPM available in FIM are formulated to allow

(vertical) Courant numbers. 1. However, in the interest

of computational efficiency, we no longer allow grid

points to migrate outside the interval spanned by the psw
values immediately above and below. This is equivalent

to limiting the Courant number to 1.

6. Model initialization and postprocessing

Initial conditions for FIM are presently based on fields

provided by NOAA’s Global Forecast System. The state

of the atmosphere is represented in that system by layer

averages of virtual temperature, humidity, ozone mixing

ratio, and horizontal velocity components plus interface

values of pressure and geopotential. The data describe

conditions in 64 hybrid s–p layers on a Gaussian grid in

the formof spherical spectral coefficients. These fields are

transformed to the physical domain and are processed as

follows:

1) Terrain height, interface pressure, and interface

geopotential as well as layer averages of humidity,

wind, and ozone mixing ratio are interpolated

horizontally to the icosahedral grid using an effi-

cient spherical linear interpolation scheme (Wang

2013).

2) Virtual potential temperature in the s–p layers on

the icosahedral grid is deduced from pressure and

geopotential, using the hydrostatic equation in the

form

›f/›P52u . (13)

Deriving u from f minimizes the risk of introducing

hydrostatic inconsistencies during horizontal inter-

polation.

3) In each grid column on the icosahedral grid, the

stairstep profile defined in terms of u and P in the

s–p system, to be referred to as uin(P), is converted

into a new stairstep profile uout(P) in which the

‘‘risers’’ are the prescribed u coordinate values. The

elevations of the ‘‘landings,’’ carpenter’s term for

the horizontal sections in uout(P), are the unknowns

in this problem.

The transformation,whichwe refer to as ‘‘restepping’’

and which is described more fully in Bleck et al.

(2010), can result in the formation of one or more

zero thickness layers at the top and bottom of the

column. Those will be inflated in the next step.

Tominimize truncation problemswhile converting

one stairstep profile into another, the restepping

process is broken into two steps. First, the piecewise

constant profile uin(P) is converted into a continu-

ous, piecewise linear profile using an extension of the

integral-conserving method described in Bleck

(1984). The linear segments are then integrated

piecewise to form a stairstep profile with risers in

the desired places.

Use of the Exner function P as opposed to p as

vertical coordinate guarantees that the height
Ð
udP of

the input column is preserved during each step of the

vertical coordinate transform. Without this constraint,

large-amplitude external gravity waves would likely be

excited in the model at the beginning of the forecast.

4) The grid generator is invoked to inflate zero

thickness layers at the surface and the top that

may have been generated while transforming the

original s–p layers to isentropic layers. The piece-

wise linear u profile in the column is then integrated
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over the newly formed layers to generate layer mean

values.

5) Moisture, ozone mixing ratio, and velocity compo-

nents are expanded into piecewise linear profiles and

then integrated over the hybrid s–u coordinate

layers resulting from the previous step.

6) Fields of Montgomery potential are obtained by

integrating the hydrostatic equation [(4)]. Integra-

tion starts with M defined in the lowest layer as

M1 5Psfcu1 1fsfc, where u1 is the virtual potential

temperature in layer one and sfc stands for values at

ground level.

For display purposes and other offline processing,

forecast fields are interpolated to p coordinates and to a

standard latitude–longitude mesh. The vertical in-

terpolation scheme takes into account the fact that most

variables are treated by the model numerics as piecewise

constant with discontinuities at layer interfaces. The dis-

continuities are reduced prior to vertical interpolation by

replacing the risers in the stairstep profiles by slanted

segments whose slopes are constrained to avoid saw-

toothlike overshoots.

The geopotential on p surfaces is obtained by hydro-

static integration from the nearest interface, using (13).

The integral
Ð
udP is evaluated using slanted u risers

that therefore must be constructed in Exner function

space for hydrostatic consistency.

7. A simple illustration of model performance:
Rossby wave breaking

As stated earlier, emphasis in Part I of this paper is on

model documentation, while Part II will focus on the

performance of FIM in real data forecasting. However,

for the convenience of readers not particularly interested

in real data applications, we include here results from a

model test developed by Jablonowski and Williamson

(2006, hereinafter JW06) that deals with baroclinic in-

stability in zonal flow on the sphere.

Emphasis will be on the impact of FIM’s hybrid-

isentropic vertical coordinate—the feature that sets FIM

apart from most other models, more so than the icosa-

hedral horizontal grid. Our aim is to explore, in admit-

tedly cursory fashion, the sensitivity of the test solution

to the choice of vertical coordinate.

The basic state used in this test, representing baro-

clinically unstable midlatitude zonal flow in both hemi-

spheres, is documented in the JW06 article for the case

of 26 model layers. Following Ullrich et al. (2012), we

increased the number of layers to 30 and chose an ico-

sahedral grid of roughly 120-km mesh size. Figure 2

shows the salient aspects of the initial fields in the lati-

tude range of interest for the 30-layer model configu-

ration. The figure also illustrates the placement of the

hybrid s–u coordinate layers and shows the u target

value assigned to each coordinate layer.

Rossby waves owe their existence to lateral gradients

of potential vorticity (PV) in the ambient flow field. (In

the simplest case, the planetary b effect provides the PV

gradient.) Baroclinic instability is one of several possible

mechanisms exciting Rossby waves. When these waves

become large enough, they often are observed to break

(McIntyre and Palmer 1985), at which stage the associ-

ated cyclones and anticyclones, the trademark of baro-

clinic instability, cease to develop and acquire an

equivalent-barotropic character.

FIG. 2. Zonally symmetric initial conditions in baroclinic wave test. The meridional sections extend from 608N (left

edge) across the pole to 108N (right edge) and from 1050 to 100 hPa in the vertical. Contours accentuated by blue

striping: (left) velocity and (right) potential vorticity (contours . 5 ppvu omitted). Rainbow colors indicate potential

temperature (K). Also shown are layer interfaces (solid) and target u values (numbers ending on K) in each layer.
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The process of Rossby wave breaking is of interest

because the resulting regional homogenization of PV

creates a favorable environment for longer-lived

eddies, such as those contributing to atmospheric

blocking of midlatitude flow (Rex 1950; Pelly and

Hoskins 2003).

Given the importance of PV, we show its initial dis-

tribution in Fig. 2 and conclude, as do JW06, that the

pattern is sufficiently realistic. PV is defined here as the

hydrostatic rendition of ‘‘Ertel’’ PV:

PV5

�
›u

›p

�
(zu1 f ) (14)

and is expressed in practical PV units (1 ppvu 5
1026 KPa21 s21).

Converting vorticity diagnosed in nonisentropic co-

ordinates to zu has been found to introduce noise in the

PV plots that viewers are likely to find distracting.

Therefore, we approximate zu in (14) by the vorticity zs
evaluated on the native grid. This approximation is

FIG. 3. Potential temperature (K) on the PV 5 2 ppvu surface on days 10–12. Mesh size is 120 km and 30 layers.

(left) Hybrid s–u coordinate simulation; (right) pure s coordinate simulation.
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insignificant compared to the much larger truncation

error associated with evaluating the stratification factor

›u/›p in nonisentropic coordinates.

Rossby wave breaking is best illustrated by the evo-

lution of the u field on a tropopause-level PV surface

(e.g., Pelly and Hoskins 2003; Masato et al. 2012).

Plotting u on a PV surface, rather than PV on a u surface,

has the practical advantage of displaying conditions on a

surface that tends to track the tropopause and hence

approximates at most latitudes the level where Rossby

waves in an equivalent-barotropic atmosphere reach

their maximum amplitude.

Steps taken to prevent ambiguities in columns where

the PV field is not vertically monotonic, a frequent oc-

currence in highly resolved isentropic grids (as well as in

nature), are outlined in the appendix.

Baroclinic development of the JW06 test is triggered

by a localized barotropic perturbation of the zonal wind

field. This perturbation is unlikely to project well onto

any unstable baroclinic mode of the background flow.

Consequently, the model needs more than one week to

sort things out, that is, develop a perturbation with a

vertical phase lag appropriate for baroclinic growth.

From that stage on, development is rapid, with surface

cyclones deepening by as much as 50 hPa.

We focus on days 10–12 of the simulation. The in-

stability process at this time has created a series of sur-

face cyclones and anticyclones in various stages of

development (not shown here). Aloft, we see in the left-

hand panels of Fig. 3 a corresponding train of breaking

Rossby waves. (Continental outlines have been added to

these figures to provide a real-world context to the JW06

simulation; they do not imply a land–sea contrast in

surface boundary conditions.)

Space limitations only permit a brief look at another

simulation in which the standard FIM coordinate was

FIG. 4. Potential temperature (K) on the PV 5 2 ppvu surface over the Pacific at 24-h intervals in a forecast

initialized at 0000 UTC 28 Mar 2014. Hybrid s–u coordinate simulation, mesh size is 15 km and 64 layers.
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replaced by a pure s coordinate, using the 30 s values

prescribed in Table XVIII of Ullrich et al. (2012).

Tropopause-level features corresponding timewise to

those in the left-hand panels of Fig. 3 are shown in the

right-hand panels. As one would expect, the wave

breaking process is simulated more cleanly in the simu-

lation benefitting from isentropic coordinate representa-

tion (left panels). Explicit, and by virtue of the vertical

isentropic grid fairly accurate, prediction of the inverse of

the stratification term ›u/›p in (14) [see (1)] very likely

enhances the fidelity of the PV field and its evolution.

Spiraling of high PV streamers (depicted here as low u

streamers) during wave breaking is clearly visible in the

lower panels on the left side of Fig. 3. In real data sim-

ulations conducted with higher-resolution versions of

FIM (64 layers on 15- or 30-kmmeshes), we occasionally

see such streamers making two or more full revolutions.

A striking example is shown in Fig. 4.

Note that the unstaggered grid used in FIM does not

allow construction of finite-difference operators mim-

icking exact conservation of quantities like PV during

transport. Nevertheless, the temporal coherence of low

u filaments encircling the vortex in Fig. 4 suggests that in

the isentropic coordinate subdomain FIM comes fairly

close to being PV conserving.

The process of Rossby wave breaking creates the fa-

miliar ‘‘extrusions’’ of lower-stratospheric air into the

upper troposphere (Reed and Danielsen 1958; Shapiro

et al. 1980).We show in Fig. 5 an example taken from the

hybrid s–u coordinate simulation. It is worth noting that

no vertical motion is needed to create these extrusions;

they are a consequence of the lateral stirring process

depicted in Fig. 3.

8. Conclusions

A hydrostatic global weather prediction model based

on an icosahedral horizontal grid and an adaptive, pri-

marily isentropic vertical grid has been described. The

primitive equations are discretized in the model on the

icosahedral equivalent of the A grid. The vertical grid

continually adapts to maximize the portion of the at-

mosphere represented by isentropic coordinates. In the

lower troposphere, the grid defaults to terrain-following

(s) coordinates. At the highest model levels, the grid

likewise reverts to an isobaric grid; the intent here is to

better control the damping of vertically propagating

gravity waves in the meso- and upper stratosphere.

Horizontal finite-difference operations in FIM are

based on the unstructured grid paradigm; this is to say

that a lookup table is used to tell each grid cell who its

neighbors are. While dividing the icosahedral grid into

10 logically rhomboidal areas makes it possible, in

principle, to employ a direct addressing scheme inside

each rhombus (Majewski et al. 2002), such an approach

requires separate treatment of rhombus edges and of the

12 pentagons marking the corners of the icosahedron.

The decision to treat the icosahedral grid as un-

structured is largely based on tests by MacDonald et al.

(2011) that indicated that the time penalty for indirect

addressing is inconsequential, at least in three-dimensional

simulations. While table lookup does add a layer of

complexity, the computer code for solving the prog-

nostic equations in (5)–(7) ends up being more robust

and transparent because the same finite-difference logic

is used at all points on the sphere; furthermore, this

approach permits easy implementation of different

memory layouts for cache blocking, distributed memory

parallelism, and load balancing. (In this context it is

worth noting that horizontal grid resolution in FIM—

that is, the number of icosahedral refinement steps—is

user selectable at run time.)

We have shown a few results from an idealized test

simulating baroclinic instability on the sphere to give the

FIG. 5. Sample meridional section taken from day 11 of the hy-

brid s–u simulation of the JW06 test case, showing two strato-

spheric extrusions generated in the course of the baroclinic

instability process. See Fig. 2 for other details. Location of cross

section is indicated by heavy line in bottom panel.
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reader a cursory impression of the model’s capabilities.

More test cases, as well as material relating to FIM’s

performance in the real data forecast realm, will be

presented in Part II. Experimental, twice-daily,

medium-range weather forecasts at 15- and 30-km hor-

izontal grid resolution, which permit a detailed look at

FIM’s performance on a day-to-day basis, are posted

online (http://fim.noaa.gov).

One issue discussed by JW06, Lauritzen et al. (2010),

and Skamarock et al. (2012), among others, is the zonal

variation of mesh size on cube- and icosahedron-based

geodesic grids. In the icosahedral case, this variation

imparts a miniscule but nonzero wavenumber-5 signal

on the prescribed zonal flow. (Near the equator, there is

also wavenumber-10 variability.) Planetary waves of

that length are common in the atmosphere and are

baroclinically unstable in the JW06 test. Given the long

lead time required to convert the initially prescribed

barotropic velocity perturbation into a proper unstable

mode, it should not come as a surprise that these spu-

rious waves appear in the solution. In fact, only in the 7–

15-day time window are they overshadowed by the de-

liberately induced cyclogenesis event.

As shown in Fig. 6, unstable waves of wavenumber 5

(and to a lesser extent 10) have reached an amplitude of

4–5 hPa by day 9 in the JW06 baroclinic wave test. At

that particular time, the amplitude is slightly higher in

the s–u simulation, but the reverse is true for some other

times and choices of target u values we have ex-

perimented with. These results are commensurate with

results obtained by other icosahedral models [see

Lauritzen et al. (2010) and www.earthsystemcog.org/

projects/dcmip-2012/]. We plan to further investigate

the sensitivity of the wavenumber-5 growth rate on the

choice of vertical coordinate (including choice of target

u values) by applying the method of Trevisan et al.

(1988), which finds the fastest-growing linear mode in a

numerical model, to a linearized version of the FIM

dynamic core used in the JW06 test.
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APPENDIX

Diagnosing Potential Temperature on Folding PV
Surfaces

Much of the spatial variability of the three-dimensional

PV field is due to variations in the stratification factor

›u/›p in (14). Spatial details in ›u/›p captured in u co-

ordinates often yield PV fields that are multivalued in the

vertical, particularly at tropopause level (tropopause

folds). The scheme described in the following has been

proven capable of generatingmeaningful values of u(PV)

when PV equals the chosen reference value PVo at more

than one elevation.

With PV typically being small in the troposphere and

large in the stratosphere, a judicious choice of PVo will

yield at least one level in the column where PV(p) 5
PVo. To detect situations where several such levels exist,

the algorithm determines the lowest and highest pres-

sures, plo and phi, where PV(p) matches PVo. If Dp 5
phi 2 plo . 0, indicating multivaluedness, the intervals

where PV(p) . PVo and PV(p) , PVo inside the range

(plo, phi) are summed up separately. This process yields

two pressure subrangesDp1,Dp2 that add up toDp. The
weighted pressure

po 5
D1phi 1D2plo

Dp

is then taken as the level where PV 5 PVo. The

weighting assures that po varies continuously among

neighboring columns, thereby avoiding lateral u(po)

discontinuities in the vicinity of PV surface folds.

FIG. 6. Surface pressure (hPa) at day 9 in cylindrical equidistant projection. (left) Hybrid s–u simulation; (right)

pure s simulation. Mesh size is 120 km.
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