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Basic functionality

Getting started

This vignette explains basic and more advanced functions of the spict package. The package is installed
from gihtub using the devtools package:

devtools::install_github("DTUAqua/spict/spict")

installs the stable version of spict. When loading the package the user is greeted and the installed version is
shown:

library(spict)

The printed version follows the format ver@SHA, where ver is the spict version number and SHA is a unique
github commit on github. The content of this vignette pertains to the version printed above that can be
found here.

A specific version of spict can be installed using the following:

devtools::install_github("DTUAqua/spict/spict", ref = "v1.3.8")

Loading built-in example data

The package contains the catch and index data analysed in Polacheck, Hilborn, and Punt (1993) that can be
loaded using

data(pol)

Data on three stocks are contained in this dataset: South Atlantic albacore, northern Namibian hake, and
New Zealand rock lobster. Here focus will be on the South Atlantic albacore data. This dataset contains the
following
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pol$albacore
$obsC
[1] 15.9 25.7 28.5 23.7 25.0 33.3 28.2 19.7 17.5 19.3 21.6 23.1 22.5 22.5 23.6

[16] 29.1 14.4 13.2 28.4 34.6 37.5 25.9 25.3

$timeC
[1] 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

[16] 1982 1983 1984 1985 1986 1987 1988 1989

$obsI
[1] 61.89 78.98 55.59 44.61 56.89 38.27 33.84 36.13 41.95 36.63 36.33 38.82

[13] 34.32 37.64 34.01 32.16 26.88 36.61 30.07 30.75 23.36 22.36 21.91

$timeI
[1] 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

[16] 1982 1983 1984 1985 1986 1987 1988 1989

Note that data are structured as a list containing the entries obsC (catch observations), timeC (time of catch
observations), obsI (index observations), and timeI (time of index observations). If times are not specified it
is assumed that the first observation is observed at time 1 and then sequentially onward with a time step of
one year. It is therefore recommended to always specify observation times.

Each catch observation relates to a time interval. This is specified using dtc. If dtc is left unspecified (as is
the case here) each catch observation is assumed to cover the time interval until the next catch observation.
For this example with annual catches dtc therefore is

inp <- check.inp(pol$albacore)
inp$dtc

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

It is important to specify dtc if the default assumption is not fulfilled.

Note that the index observations for all data sets analysed in Polacheck, Hilborn, and Punt (1993) represent
commercial CPUE data and the respective times (inp$timeI) should thus correspond to the middle of the
year, e.g. 1988.50, rather than the beginning of the year, e.g. 1988.00. The ‘incorrect’ times of the commercial
CPUE observations were kept only for reasons of consistency regarding previous studies using models which
were not implemented in ‘continuous time’. We emphasise the importance of correct times of the index
observations, which should most accurately correspond to the timing of the survey or to the middle of the
year in case of commercial CPUE.

Plotting data

The data can be plotted using the command

plotspict.data(pol$albacore)
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Note that the number of catch and index observations are given in the respective plot headers. Furthermore,
the color of individual points shows when the observation was made and the corresponding colors are shown
in the color legend in the top right corner. For illustrative purposes let’s try shifting the biomass index data
a bit

inpshift <- pol$albacore
inpshift$timeC <- inpshift$timeC
inpshift$timeI <- inpshift$timeI + 0.8
plotspict.data(inpshift)
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Now the colours show that the index takes place in autumn.

Advanced data plotting

There is also a more advanced function for plotting data, which at the same time does some basic model
fitting (linear regression) and shows the results

plotspict.ci(pol$albacore)
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The two top plots come from plotspict.data, with the dashed horizontal line representing a guess of MSY.
This guess comes from a linear regression between the index and the catch divided by the index (middle row,
left). This regression is expected to have a negative slope. A similar plot can be made showing catch versus
catch/index (middle row, right) to approximately find the optimal effort (or effort proxy). The proportional
increase in the index as a function of catch (bottom row, right) should show primarily positive increases
in index at low catches and vice versa. Positive increases in index at large catches could indicate model
violations. In the current plot these are not seen.

Fitting the model

The model is fitted to data by running
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res <- fit.spict(pol$albacore)

Here the call to fit.spict is wrapped in the system.time command to check the time spent on the
calculations. This is obviously not required, but done here to show that fitting the model only takes a few
seconds. The result of the model fit is stored in res, which can either be plotted using plot or summarised
using summary.

The results are returned as a list that contains output as well as input. The content of this list is

names(res)
[1] "value" "sd" "cov" "par.fixed"
[5] "cov.fixed" "pdHess" "gradient.fixed" "par.random"
[9] "diag.cov.random" "env" "inp" "obj"

[13] "opt" "pl" "Cp" "report"
[17] "computing.time"

Many of these variables are generated by TMB::sdreport(). In addition to these spict includes the list of
input values (inp), the object used for fitting (obj), the result from the optimiser (opt), the time spent on
fitting the model (computing.time), and more less useful variables.

Interpreting summary of results

The results are summarised using

summary(res)

[1] "Convergence: 0 MSG: relative convergence (4)"
[2] "Objective function at optimum: 2.0654937"
[3] "Euler time step (years): 1/16 or 0.0625"
[4] "Nobs C: 23, Nobs I1: 23"
[5] ""
[6] "Priors"
[7] " logn ~ dnorm[log(2), 2^2]"
[8] " logalpha ~ dnorm[log(1), 2^2]"
[9] " logbeta ~ dnorm[log(1), 2^2]"

[10] ""
[11] "Model parameter estimates w 0.95 % CI "
[12] " estimate cilow ciupp log.est "
[13] " alpha 8.5381049 1.2233145 59.5915709 2.1445391 "
[14] " beta 0.1212590 0.0180695 0.8137344 -2.1098262 "
[15] " r 0.2556015 0.1010611 0.6464616 -1.3641355 "
[16] " rc 0.7435358 0.1445758 3.8239150 -0.2963384 "
[17] " rold 0.8180032 0.0019102 350.2949906 -0.2008891 "
[18] " m 22.5827677 17.0682739 29.8789088 3.1171871 "
[19] " K 201.4754010 138.1203391 293.8910914 5.3056673 "
[20] " q 0.3512548 0.1942710 0.6350919 -1.0462434 "
[21] " n 0.6875299 0.0636729 7.4238412 -0.3746500 "
[22] " sdb 0.0128136 0.0018407 0.0891983 -4.3572484 "
[23] " sdf 0.3673760 0.2673623 0.5048024 -1.0013694 "
[24] " sdi 0.1094038 0.0808977 0.1479547 -2.2127093 "
[25] " sdc 0.0445477 0.0073372 0.2704703 -3.1111956 "
[26] " "

6



[27] "Deterministic reference points (Drp)"
[28] " estimate cilow ciupp log.est "
[29] " Bmsyd 60.7442667 15.4035002 239.547239 4.1066727 "
[30] " Fmsyd 0.3717679 0.0722879 1.911957 -0.9894856 "
[31] " MSYd 22.5827677 17.0682739 29.878909 3.1171871 "
[32] "Stochastic reference points (Srp)"
[33] " estimate cilow ciupp log.est rel.diff.Drp "
[34] " Bmsys 60.73662 15.403659 239.484436 4.1065468 -1.259605e-04 "
[35] " Fmsys 0.37178 0.072281 1.912265 -0.9894529 3.257870e-05 "
[36] " MSYs 22.58066 17.062739 29.883028 3.1170939 -9.324958e-05 "
[37] ""
[38] "States w 0.95% CI (inp$msytype: s)"
[39] " estimate cilow ciupp log.est "
[40] " B_1989.94 56.6971159 30.1359483 106.6687173 4.0377233 "
[41] " F_1989.94 0.4464499 0.2145076 0.9291863 -0.8064282 "
[42] " B_1989.94/Bmsy 0.9334915 0.2961564 2.9423855 -0.0688234 "
[43] " F_1989.94/Fmsy 1.2008441 0.2864363 5.0343707 0.1830247 "
[44] ""
[45] "Predictions w 0.95% CI (inp$msytype: s)"
[46] " prediction cilow ciupp log.est "
[47] " B_1991.00 54.3059314 27.8530542 105.881896 3.9946335 "
[48] " F_1991.00 0.4464501 0.1573061 1.267069 -0.8064276 "
[49] " B_1991.00/Bmsy 0.8941218 0.2498623 3.199578 -0.1119133 "
[50] " F_1991.00/Fmsy 1.2008447 0.2390672 6.031894 0.1830252 "
[51] " Catch_1990.00 24.7359915 15.3329650 39.905477 3.2082593 "
[52] " E(B_inf) 49.9856298 NA NA 3.9117356 "

Here is a line-by-line description of the summary:

• Line 1: Convergence of the model fit, which has code 0 if the fit was succesful. If this is not the case
convergence was not obtained and reported results should not be used. In case of non-convergence
results will still be reported to aid diagnosis of the problem.

• Line 2: Objective function value at the optimum. The objective function is the likelihood function if
priors are not used and the posterior density function if priors are used.

• Line 3: The Euler time step used in the calculation.
• Line 4: Number of observations for the time series used.
• Line 6-9: Summary of the priors used in the fit. The priors shown here are the default priors that are

applied when priors are unspecified. These are relatively uninformative and are applied because most
data-limited situations do not allow simultaneous estimation of all noise parameters and logn. The
default priors can be disabled (see the section on priors).

• Line 11-25: Summary of the parameter estimates and their 95% CIs. These can be extracted as a data
frame with sumspict.parest(res).

• Line 27-31: Estimates of deterministic reference points with 95% CIs. These are the reference points
one would derive if stochasticity were ignored. Can be extracted with sumspict.drefpoints(res).

• Line 32-36: Estimates of stochastic reference points with 95% CIs. These are the reference points of
the stochastic model. The column ´rel.diff.Drp´ shows the relative difference when compared to the
deterministic reference points. The information can be extracted with sumspict.srefpoints(res).

• Line 38-43: State estimates in the final year where data were available. The states of the model are
biomass (B) and fishing mortality (F) with the year of the estimates appended. The year is shown as a
decimal number as estimates within year are possible. Both absolute (B and F) and relative estimates
(B/Bmsy and F/Fmsy) are shown. The relative estimates are calculated using the type of reference points
given by msytype (line 38), where s is stochastic and d is deterministic. Here msytype is ´s´. This
information can be extracted using sumspict.states(res).
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• Line 45-52: Predictions of absolute and relative biomass and fishing mortality at the time indicated
by inp$timepredi, here 1990 (line 47-50). In addition, predicted catch at the time indicated by
inp$timepredc (line 51). Finally, the equilibrium biomass, indicated by E(B_inf), if current conditions
remain constant. There predictions or forecasts are calculated under the fishing scenario given by
inp$ffac. See the section on forecasting for more information. The prediction summary can be
extracted using sumspict.predictions(res).

Interpreting plots of results

spict comes with several plotting abilities. The basic plotting of the results is done using the generic function
plot that produces a multipanel plot with the most important outputs.

plot(res)
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Some general comments can be made regarding the style and colours of these plots:

• Estimates (biomass, fishing mortality, catch, production) are shown using blue lines.
• 95% CIs of absolute quantities are shown using dashed blue lines.
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• 95% CIs of relative biomass and fishing mortality are shown using shaded blue regions.
• Estimates of reference points (BMSY , FMSY , MSY ) are shown using black lines.
• 95% CIs of reference points are shown using grey shaded regions.
• The end of the data range is shown using a vertical grey line.
• Predictions beyond the data range are shown using dotted blue lines.
• Data are shown using points colored by season. Different index series use different point characters (not

shown here).

The individual plots can be plotted separately using the plotspict.* family of plotting functions; all
functions are summarised in Table 1 and their common arguments that control their look in Table 2:

Table 1: Available plotting functions.

Function Plot
Data
plotspict.ci Basic data plotting (see section )
plotspict.data Advanced data plotting (see section )
Estimates
plotspict.bbmsy Relative biomass B/BMSY estimates with uncertainty
plotspict.biomass Absolute (and relative) biomass estimates with uncertainty
plotspict.btrend Expected biomass trend
plotspict.catch Catch data and estimates
plotspict.f Absolute (and relative) fishing mortality F
plotspict.fb Kobe plot of relative fishing mortality over biomass estimates
plotspict.ffmsy Relative fishing mortality F/FMSY

plotspict.priors Prior-posterior distribution of all parameters that are estimated using priors
plotspict.production Production over B/K
plotspict.season Seasonal pattern of fishing mortality F
Diagnostics & extras
plotspict.diagnostic OSA residual analysis to evaluate the fit
plotspict.osar One-step-ahead residual plots, one for data time-series
plotspict.likprof Profile likelihood of one or two parameters
plotspict.retro Retrospective analysis
plotspict.retro.fixed Retrospective analysis of fixed effects
plotspict.infl Influence statistics of observations
plotspict.inflsum Summary of influence of observations
plotspict.tc Time to BMSY under different scenarios about F

Table 2: Common arguments in the plotspict.* family of funtions

Argument Value Result
logax logical If TRUE, the y-axis is in log scale
main string The title of the plot
ylim numeric vector The limits of the y-axis
plot.obs logical If TRUE (default) the observations are shown
qlegend logical If TRUE (default) the color legend is shown
xlab, ylab string The x and y axes labels
stamp string Adds a “stamp” at the bottom right corner of the plotting area

Default is the version and SHA hash of spict.
An empty string removes the stamp.

We will now look at them one at a time. The top left is the plot of absolute biomass
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plotspict.biomass(res)
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Note that this plot has a y-axis on the right side related to the relative biomass (Bt/BMSY ). The shaded
95% CI region relates to this axis, while the dashed blue lines relate to the left y-axis indicating absolute
levels. The dashed lines and the shaded region are shown on the same plot to make it easier to assess whether
the relative or absolute levels are most accurately estimated. Here, the absolute are more accurate than the
relative. Later, we will see examples of the opposite. The horizontal black line is the estimate of BMSY with
95% CI shown as a grey region.

The plot of the relative biomass is produced using

plotspict.bbmsy(res)
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This plot contains much of the same information as given by plotspict.biomass, but without the information
about absolute biomass and without the 95% CI around the BMSY reference point.

The plots of fishing mortality follow the same principles

plotspict.f(res, main='', qlegend=FALSE, rel.axes=FALSE, rel.ci=FALSE)
plotspict.ffmsy(res, main='', qlegend=FALSE)
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The estimate of FMSY is shown with a horizontal black line with 95% CI shown as a grey region (left plot).
The 95% CI of FMSY is very wide in this case. As shown here it is quite straightforward to remove the
information about relative levels from the plot of absolute fishing mortality. Furthermore, the argument
main='' removes the heading and qlegend=FALSE removes the colour legend for data points.

The plot of the catch is produced using
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plotspict.catch(res)
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This plot shows estimated catches (blue line) versus observed catches (points) with the estimate of MSY
plotted as a horizontal black line with its 95% CI given by the grey region.

A phase plot (or kobe plot) of fishing mortality versus biomass is plotted using

plotspict.fb(res, ylim=c(0, 1.3), xlim=c(0, 300))

12



0 50 150 250

0.
0

0.
4

0.
8

1.
2

Bt

F
t

0 1 2 3 4 5
Bt BMSY

0
1

2
3

F
t

F
M

S
Y

E(B∞)

1967

1990

spict_v1.3.8

The plot shows the development of biomass and fishing mortality since the initial year (here 1967) indicated
with a circle until the terminal year (here 1990) indicated with a square. The yellow diamond indicates the
mean biomass over a long period if the current (1990) fishing pressure remains. This point can be interpreted
as the fished equilibrium and is denoted E(B∞) in the legend as a statistical way of expressing the expectation
of the biomass as t → ∞. As the current fishing mortality is close to FMSY the expected long term biomass
is close to BMSY .

A vertical dashed red line at Bt = 0 indicates the biomass level below which the stock has crashed. The grey
shaded banana-shaped area indicates the 95% confidence region of the pair FMSY , BMSY . This region is
important to visualise jointly as the two reference points are highly (negatively) correlated.

Residuals and diagnostics

Before proceeding with the results for an actual assessment it is very important that the model residuals
are checked and possible model deficiencies identified. Residuals can be calculated using calc.osa.resid().
OSA stands for one-step-ahead, which are the proper residuals for state-space models. More information
about OSA residuals is contained in Pedersen and Berg (2017). To calculate and plot residuals and diagnostics
do

res <- calc.osa.resid(res)
plotspict.diagnostic(res)
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The first column of the plot contains information related to catch data and the second column contains
information related to the index data. The rows contain

1. Log of the input data series.
2. OSA residuals with the p-value of a test for bias (i.e. that the mean of the residuals is different from

zero) in the plot header. If the header is green the test was not significant, otherwise the header would
be red.

3. Empirical autocorrelation of the residuals. Two tests for significant autocorrelation is performed. A
Ljung-Box simultaneous test of multiple lags (here 4) with p-value shown in the header, and tests for
individual lags shown by dashed horizontal lines in the plot. Here no violation is identified.

4. Tests for normality of the residuals both as a QQ-plot and with a Shapiro test with p-value shown in
the plot header.
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This data did not have any significant violations of the assumptions, which increases confidence in the results.
For a discussion of possible violations and remedies the reader is referred to Pedersen and Berg (2017).

Process residuals

The function calc.process.resid() calculates and adds the process residuals as a data.frame. It
takes the fitted object and dt as arguments. dt has by default the same resolution as the input data,
i.e. 1/inp$nseasons.

Function plotspict.diagnostic.process() plots the process residuals for the the biomass and fishing
mortality processes. The plot is similar to that produced by plotspict.diagnostic, see above for the
description.

res <- calc.process.resid(res)
plotspict.diagnostic.process(res)
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Extracting parameter estimates

To extract an estimated quantity, here logBmsy use

get.par('logBmsy', res)
ll est ul sd cv

logBmsy 2.734605 4.106547 5.478488 0.6999831 0.1704554

This returns a vector with ll being the lower 95% limit of the CI, est being the estimated value, ul being
the upper 95% limit of the CI, sd being the standard deviation of the estimate, and cv being the coefficient
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of variation of the estimate. The estimated quantity can also be returned on the natural scale (as opposed to
log scale) by running

get.par('logBmsy', res, exp=TRUE)
ll est ul sd cv

logBmsy 15.40366 60.73662 239.4844 0.6999831 0.7951589

This essentially takes the exponential of ll, est and ul of the values in log, while sd is unchanged as it is
the standard deviation of the quantity on the scale that it is estimated (here log). When transforming using
exp=TRUE the CV =

√
eσ2 − 1. Most parameters are log-transformed under estimation and should therefore

be extracted using exp=TRUE.

For a standard fit (not using robust observation error, seasonality etc.), the quantities that can be extracted
using this method are

list.quantities(res)
[1] "Bm" "Bmsy" "Bmsy2"
[4] "BmsyB0" "Bmsyd" "Bmsys"
[7] "Cp" "Emsy" "Emsy2"

[10] "Fmsy" "Fmsyd" "Fmsys"
[13] "gamma" "isdb2" "isdc2"
[16] "isde2" "isdf2" "isdi2"
[19] "K" "logalpha" "logB"
[22] "logBBmsy" "logbeta" "logbkfrac"
[25] "logBl" "logBlBmsy" "logBlK"
[28] "logBm" "logBmBmsy" "logBmK"
[31] "logBmsy" "logBmsyd" "logBmsyPluslogFmsy"
[34] "logBmsys" "logBp" "logBpBmsy"
[37] "logBpK" "logCp" "logCpred"
[40] "logEmsy" "logEmsy2" "logEp"
[43] "logF" "logFFmsy" "logFFmsynotS"
[46] "logFl" "logFlFmsy" "logFlFmsynotS"
[49] "logFm" "logFmFmsy" "logFmFmsynotS"
[52] "logFmsy" "logFmsyd" "logFmsys"
[55] "logFnotS" "logFp" "logFpFmsy"
[58] "logFpFmsynotS" "logFs" "logIp"
[61] "logIpred" "logK" "logm"
[64] "logMSY" "logMSYd" "logMSYs"
[67] "logn" "logq" "logq2"
[70] "logr" "logrc" "logrold"
[73] "logsdb" "logsdc" "logsdf"
[76] "logsdi" "m" "MSY"
[79] "MSYd" "MSYs" "p"
[82] "q" "r" "rc"
[85] "rold" "sdb" "sdc"
[88] "sde" "sdf" "sdi"
[91] "seasonsplinefine"

These should be relatively self-explanatory when knowing that reference points ending with s are stochastic
and those ending with d are deterministic, quantities ending with p are predictions and quantities ending
with l are estimates in the final year. If a quantity is available both on natural and log scale, it is preferred
to transform the quantity from log as most quantities are estimated on the log scale.
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Extracting correlation between parameter estimates

The covariance between the model parameters (fixed effects) can be extracted from the results list

res$cov.fixed
logm logK logq logn logsdb

logm 0.0204039157 -0.005706842 0.026834631 -0.156739841 0.032239968
logK -0.0057068418 0.037105158 -0.038075151 -0.011341936 -0.021784067
logq 0.0268346313 -0.038075151 0.091311499 -0.227633882 0.040958483
logn -0.1567398407 -0.011341936 -0.227633882 1.473734412 -0.190011437
logsdb 0.0322399683 -0.021784067 0.040958483 -0.190011437 0.980090490
logsdf 0.0014253331 -0.002407442 0.003270286 -0.006648007 -0.002144168
logsdi -0.0007603661 -0.002521063 0.002848536 0.007158184 0.010535657
logsdc 0.0015534796 0.001300449 -0.008392720 0.001998026 0.137919959

logsdf logsdi logsdc
logm 0.0014253331 -0.0007603661 0.001553480
logK -0.0024074422 -0.0025210626 0.001300449
logq 0.0032702864 0.0028485361 -0.008392720
logn -0.0066480073 0.0071581839 0.001998026
logsdb -0.0021441678 0.0105356569 0.137919959
logsdf 0.0262881625 -0.0002784344 -0.035159250
logsdi -0.0002784344 0.0237200081 0.005885894
logsdc -0.0351592502 0.0058858943 0.846809015

It is however easier to interpret the correlation rather than covariance. The correlation matrix can be
calculated using

cov2cor(res$cov.fixed)
logm logK logq logn logsdb logsdf

logm 1.00000000 -0.207406292 0.62169323 -0.90388469 0.22798420 0.06154312
logK -0.20740629 1.000000000 -0.65412652 -0.04850209 -0.11423225 -0.07708300
logq 0.62169323 -0.654126516 1.00000000 -0.62053254 0.13691406 0.06674872
logn -0.90388469 -0.048502089 -0.62053254 1.00000000 -0.15810188 -0.03377550
logsdb 0.22798420 -0.114232253 0.13691406 -0.15810188 1.00000000 -0.01335813
logsdf 0.06154312 -0.077083002 0.06674872 -0.03377550 -0.01335813 1.00000000
logsdi -0.03456277 -0.084978502 0.06120707 0.03828563 0.06909890 -0.01115027
logsdc 0.01181833 0.007336409 -0.03018195 0.00178854 0.15139143 -0.23564963

logsdi logsdc
logm -0.03456277 0.011818329
logK -0.08497850 0.007336409
logq 0.06120707 -0.030181948
logn 0.03828563 0.001788540
logsdb 0.06909890 0.151391431
logsdf -0.01115027 -0.235649625
logsdi 1.00000000 0.041530036
logsdc 0.04153004 1.000000000

For this data most parameters are well separated, i.e. relatively low correlation, perhaps with the exception of
logm and logn, which have a correlation of −0.9. Note that logr is absent from the covariance matrix. This
is because the model is parameterised in terms of logm, logK, and logn from which logr can be derived.
The estimate of logr is reported using TMB’s sdreport() function and can be extracted using get.par().
The covariance between random effects (biomass and fishing mortality) is not reported automatically, but can
be obtained by setting inp$getJointPrecision to TRUE (this entails longer computation time and memory
requirement).
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The covariance between sdreported values (i.e. the values reported in res$value) are given in res$cov. As
this matrix is typically large, the function get.cov() can be used to extract the covariance between two
scalar quantities

cov2cor(get.cov(res, 'logBmsy', 'logFmsy'))
[,1] [,2]

[1,] 1.0000000 -0.9982507
[2,] -0.9982507 1.0000000

This reveals that for this data set the estimates of log Fmsy and log Bmsy are highly correlated. This is often
the case and the reason why the model is reparameterised.

Comparison plots

The function plotspict.compare() can be used to make comparison plots of one or more spict runs. The
function is able to show biomass and fishing mortality (absolute and relative), catch, and production curve.
You can use the varname argument to select which of those plots to produce, default is all of them (c("B",
"F", "C", "BBmsy", "FFmsy", "P")).

As an example we show below the comparison of two runs with and without logbkfrac prior.

data(pol)
inp <- pol$hake
rep1 <- fit.spict(inp)
inp$priors$logbkfrac <- c(log(0.3), 0.1, 1)
rep2 <- fit.spict(inp)
plotspict.compare(list(def = rep1, bkprior = rep2))
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Advanced functionality

Retrospective plots

Retrospective plots are sometimes used to evaluate the robustness of the model fit to the introduction of new
data, i.e. to check whether the fit changes substantially when new data becomes available. Such calculations
and plotting thereof can be performed using retro() as shown here

## res <- fit.spict(pol$albacore)
res <- retro(res, nretroyear = 4, mc.cores = 1)
plotspict.retro(res)
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By default retro creates 5 scenarios with catch and index time series which are shortened by the 1 to 5 last
observations. The number of scenarios and thus observations which are removed can be changed with the
argument nretroyear in the function retro. The graphs show the different peels with different colors. For
the relative biomass and fishing mortality, the Mohn’s rho are shown inside the corresponding plots. Mohn’s
rho for other quantities can be calculated using the function mohns_rho.

## res <- fit.spict(pol$albacore)
## res <- retro(res)
mohns_rho(res, what = c("FFmsy", "BBmsy"))

FFmsy BBmsy
0.4668503 -0.2441031

The function plotspict.retro.fixed makes a plot of the paramter estimates, with corresponding 95%
confidence intervals for each of the retrospective runs.

## res <- fit.spict(pol$albacore)
## res <- retro(res)
plotspict.retro.fixed(res)
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Estimation using two or more biomass indices

The estimation can be done using more than one biomass index, for example when scientific surveys are
performed more than once every year or when there are both commercial and survey CPUE time-series
available. The following example emulates a situation where a long but noisy first quarter index series and a
shorter and less noisy second quarter index series are available with different catchabilities

set.seed(123)
inp <- list(timeC=pol$albacore$timeC, obsC=pol$albacore$obsC)
inp$timeI <- list(pol$albacore$timeI, pol$albacore$timeI[10:23]+0.25)
inp$obsI <- list()
inp$obsI[[1]] <- pol$albacore$obsI * exp(rnorm(23, sd=0.1)) # Index 1
inp$obsI[[2]] <- 10*pol$albacore$obsI[10:23] # Index 2
res <- fit.spict(inp)
sumspict.parest(res)

estimate cilow ciupp log.est
alpha1 5.54953281 0.94907993 32.4496532 1.7137137
alpha2 3.45424303 0.58225750 20.4922993 1.2396033
beta 0.12057032 0.01913001 0.7599159 -2.1155222
r 0.18601585 0.08916105 0.3880831 -1.6819234
rc 1.20960483 0.19388362 7.5465058 0.1902937
rold 0.26864004 0.05297139 1.3623857 -1.3143829
m 24.30175989 17.98207989 32.8424486 3.1905488
K 220.56430343 148.87830752 326.7676316 5.3961893
q1 0.35403668 0.22557324 0.5556598 -1.0383548
q2 3.60405904 2.32439321 5.5882290 1.2820607
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n 0.30756467 0.03135919 3.0165330 -1.1790699
sdb 0.02006319 0.00372284 0.1081248 -3.9088686
sdf 0.36879350 0.26948920 0.5046905 -0.9975184
sdi1 0.11134131 0.08158825 0.1519445 -2.1951549
sdi2 0.06930312 0.04587601 0.1046936 -2.6692653
sdc 0.04446555 0.00764514 0.2586198 -3.1130406

plotspict.biomass(res)
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The model estimates seperate observation noises and finds that the first index (sdi1) is more noisy than the
second (sdi2). It is furthermore estimated that the catchabilities are different by a factor 10 (q1 versus q2).
The biomass plot shows both indices, with circles indicating the first index and squares indicating the second
index (the two series can also be distinguished by their colours). It is possible to force the model to assume
that two or more index time-series have the same level of observation noise (CV). For example, to assume
that sdi1 equals sdi2 one must add inp$mapsdi <- c(1,1) before calling fit.spict(inp). The length of
mapsdi should equal the number of indices. In case of 3 index series one could for example use inp$mapsdi
<- c(1, 1, 2) to have series 1 and 2 share sdi and have a separate sdi for series 3.

Using effort data instead of commercial CPUE

It is possible to use effort data directly in the model instead of calculating commercial CPUE and inputting
this as an index. It is beyond the scope of this vignette to discuss all problems associated with indices based
on commercial CPUEs, however it is intuitively clear that using the same information twice (catch as catch
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and catch in catch/effort) induces a correlation, which the model does not account for. These problems are
easily avoided by putting catch and effort seperately

inpeff <- list(timeC=pol$albacore$timeC, obsC=pol$albacore$obsC,
timeE=pol$albacore$timeC, obsE=pol$albacore$obsC/pol$albacore$obsI)

repeff <- fit.spict(inpeff)
sumspict.parest(repeff)

estimate cilow ciupp log.est
beta 0.07385346 0.01464765 0.37236915 -2.6056724
r 0.23822940 0.10657014 0.53254358 -1.4345212
rc 1.14399161 0.21452947 6.10040587 0.1345236
rold 0.40826821 0.03851530 4.32770711 -0.8958309
m 24.16376097 18.62127019 31.35593535 3.1848540
K 189.53177049 132.49614344 271.11952914 5.2445567
qf 0.41117182 0.25562854 0.66135911 -0.8887441
n 0.41648801 0.04180373 4.14944479 -0.8758976
sdb 0.01430671 0.00236760 0.08645135 -4.2470267
sdf 0.37625012 0.27938938 0.50669124 -0.9775012
sde 0.09820098 0.06985386 0.13805153 -2.3207391
sdc 0.02778737 0.00568278 0.13587329 -3.5831736

par(mfrow=c(2, 2))
plotspict.bbmsy(repeff)
plotspict.ffmsy(repeff, qlegend=FALSE)
plotspict.catch(repeff, qlegend=FALSE)
plotspict.fb(repeff)
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Here the model runs without an index of biomass and instead uses effort as an index of fishing mortality
Note that index observations are missing from the biomass plot, but effort observations are present in the
plot of fishing mortality. Note also that q is missing from the summary of parameter estimates and instead
qf is present, which is the commercial catchability.

Overall for this data set the results in terms of stock status etc. do not change much, and this will probably
often be the case, however using effort data directly instead of commercial CPUE is cleaner and avoids
inputting the same data twice.

Scaling the uncertainty of individual data points

It is not always appropriate to assume that the observation noise of a data series is constant in time. Knowledge
that certain data points are more uncertain than others can be implemented using stdevfacC, stdevfacI,
and stdevfacE, which are vectors containing factors that are multiplied onto the standard deviation of the
data points of the corresponding observation vectors. An example where the first 10 years of the biomass
index are considered uncertain relative to the remaining time series and therefore are scaled by a factor 5.

inp <- pol$albacore
res1 <- fit.spict(inp)
inp$stdevfacC <- rep(1, length(inp$obsC))
inp$stdevfacC[1:10] <- 5
res2 <- fit.spict(inp)
par(mfrow=c(2, 1))
plotspict.catch(res1, main='No scaling')
plotspict.catch(res2, main='With scaling', qlegend=FALSE)

25



1970 1975 1980 1985 1990

15
25

35

No scaling

Time

C
at

ch

Jan
Apr
Jul
Oct

1970 1975 1980 1985 1990

15
25

35

With scaling

Time

C
at

ch

From the plot it is noted that the scaling factor widens the 95% CIs of the initial ten years of catch data,
while narrowing the 95% CIs of the remaining years.

Simulating data

The package has built-in functionality for simulating data, which is useful for testing.

Annual data

Data are simulated using an input list, e.g. inp, containing parameter values specified in inp$ini. To
simulate data using default parameters run

inp <- check.inp(pol$albacore)
sim <- sim.spict(inp)
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The stabilise option was used for fitting / is specified in the input list (inp$stabilise). This activates six very vague priors. Acknowledging these priors when simulating is not yet implemented.
Additional priors were used for fitting / are specified in the input list (inp$priors): logn, logalpha, logbeta. Acknowledging these priors when simulating is not yet implemented.

plotspict.data(sim)
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This will generate catch and index data of same length as the input catch and index time series (here 23 of
each) at the time points of the input data. Note when plotting simulated data, the true biomass and fishing
mortality are also included in the plot.

Another simple example is

inp <- list(ini=list(logK=log(100), logm=log(10), logq=log(1)))
sim <- sim.spict(inp, nobs=50)

The stabilise option was used for fitting / is specified in the input list (inp$stabilise). This activates six very vague priors. Acknowledging these priors when simulating is not yet implemented.
Additional priors were used for fitting / are specified in the input list (inp$priors): logn, logalpha, logbeta. Acknowledging these priors when simulating is not yet implemented.

plotspict.data(sim)
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Here the required parameters are specified (the rest use default values), and the number of observations is
specified as an argument to sim.spict().

A more customised example including model fitting is

set.seed(31415926)
inp <- list(ini=list(logK=log(100), logm=log(10), logq=log(1),

logbkfrac=log(1), logF0=log(0.3), logsdc=log(0.1),
logsdf=log(0.3)))

sim <- sim.spict(inp, nobs=30)
The stabilise option was used for fitting / is specified in the input list (inp$stabilise). This activates six very vague priors. Acknowledging these priors when simulating is not yet implemented.
Additional priors were used for fitting / are specified in the input list (inp$priors): logn, logalpha, logbeta. Acknowledging these priors when simulating is not yet implemented.

res <- fit.spict(sim)
sumspict.parest(res)

estimate true cilow ciupp true.in.ci log.est
alpha 1.04607706 -9.0 0.31605054 3.4623488 -9 0.04504703
beta 0.13191759 -9.0 0.02269952 0.7666352 -9 -2.02557789
r 1.07672249 -9.0 0.35062210 3.3064982 -9 0.07392170
rc 0.63474119 -9.0 0.34468649 1.1688778 -9 -0.45453794
rold 0.45001541 -9.0 0.22253267 0.9100411 -9 -0.79847345
m 14.48076842 10.0 10.46879070 20.0302652 0 2.67282145
K 76.02606873 100.0 46.11361199 125.3417999 1 4.33107629
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q 1.19617690 1.0 0.85014237 1.6830583 1 0.17913055
n 3.39263471 2.0 1.36227805 8.4490610 1 1.22160682
sdb 0.19525936 0.2 0.08858085 0.4304115 1 -1.63342653
sdf 0.34363005 0.3 0.25198877 0.4685987 1 -1.06818963
sdi 0.20425634 0.2 0.12167035 0.3428991 1 -1.58837950
sdc 0.04533085 0.1 0.00814495 0.2522895 1 -3.09376752

par(mfrow=c(2, 2))
plotspict.biomass(res)
plotspict.f(res, qlegend=FALSE)
plotspict.catch(res, qlegend=FALSE)
plotspict.fb(res)
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Here the ratio between biomass in the initial year relative to K is set using logbkfrac, the initial fishing
mortality is set using logF0, process noise of F is set using logsdf, and finally observation noise on catches
is specified using logsdc.

When printing the summary of the parameter estimates the true values are included as well as a check
whether the true value was inside the 95% CIs. Similarly, the true biomass, fishing mortality, and reference
points are included in the results plot using a yellow/orange colour.
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Seasonal data

It is possible to simulate seasonal data (most often quarterly). Additional variables must be specified
in the input list that define the type of seasonality to be used. Spline based seasonality is shown first
(inp$seasontype = 1). This is the default and therefore does not need to be explicitly specified. It is
required that number of seasons is specified using nseasons (4 indicates quarterly), the order of the spline
must be specified using splineorder (3 for quarterly data), time vectors for catch and index containing
subannual time points must be specified, and finally the spline parameters (logphi) must be set. With four
seasons logphi must be a vector of length 3, where each value in the vector gives the log fishing intensity
relative to level in season four, which is log(1). An example of simulating seasonal data using a spline is

set.seed(1234)
inp <- list(nseasons=4, splineorder=3)
inp$timeC <- seq(0, 30-1/inp$nseasons, by=1/inp$nseasons)
inp$timeI <- seq(0, 30-1/inp$nseasons, by=1/inp$nseasons)
inp$ini <- list(logK=log(100), logm=log(20), logq=log(1),

logbkfrac=log(1), logsdf=log(0.4), logF0=log(0.5),
logphi=log(c(0.05, 0.1, 1.8)))

seasonsim <- sim.spict(inp)
The stabilise option was used for fitting / is specified in the input list (inp$stabilise). This activates six very vague priors. Acknowledging these priors when simulating is not yet implemented.
Additional priors were used for fitting / are specified in the input list (inp$priors): logn, logalpha, logbeta. Acknowledging these priors when simulating is not yet implemented.

plotspict.data(seasonsim)
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The data plot shows clear seasonality in the catches. To simulate seasonal data using the coupled SDE
approach seasontype must be set to 2 and nseasons to 4.
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set.seed(432)
inp <- list(nseasons=4, seasontype=2)
inp$timeC <- seq(0, 30-1/inp$nseasons, by=1/inp$nseasons)
inp$timeI <- seq(0, 30-1/inp$nseasons, by=1/inp$nseasons)
inp$ini <- list(logK=log(100), logm=log(20), logq=log(1),

logbkfrac=log(1), logsdf=log(0.4), logF0=log(0.5))
seasonsim2 <- sim.spict(inp)

The stabilise option was used for fitting / is specified in the input list (inp$stabilise). This activates six very vague priors. Acknowledging these priors when simulating is not yet implemented.
Additional priors were used for fitting / are specified in the input list (inp$priors): logn, logalpha, logbeta. Acknowledging these priors when simulating is not yet implemented.

plotspict.data(seasonsim2)
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Estimation using quarterly data

Catch information available in sub-annual aggregations, e.g. quarterly catch, can be used to estimate the
seasonal pattern of the fishing mortality. The user can choose between two types of seasonality by setting
seasontype to 1, 2 or 3:

1. using cyclic B-splines.
2. using coupled stochastic differential equations (SDEs).
3. combination of a cyclic spline (fixed seasonal pattern) and mean-zero autoregressive process

Technical description of the first two season types is found in Pedersen and Berg (2017). The third is described
by the following equation:
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Ft = StGt exp(Aq(t)) (1)
d log Gt = σF dVt (2)

• St is a cyclic spline and Gt is diffusion process.

• Aq(t) = φAAq(t−1) + εA,q(t) is a discrete time mean zero autoregressive process , and q maps t to a
quarter.

Here, an example of a spline-based model fitted to quarterly data simulated in section is shown

seasonres <- fit.spict(seasonsim)
plotspict.biomass(seasonres)
plotspict.f(seasonres, qlegend=FALSE)
plotspict.season(seasonres)
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The model is able to estimate the seasonal variation in fishing mortality as seen both in the plot of F and in
the plot of the estimated spline, where blue is the estimated spline, orange is the true spline, and green is the
spline if time were truly continuous (it is discretised with the Euler steps shown by the blue line).
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To fit the coupled SDE model run

seasonres2 <- fit.spict(seasonsim2)
sumspict.parest(seasonres2)

estimate true cilow ciupp true.in.ci log.est
alpha 1.1638023 -9.0 0.67490899 2.0068420 -9 0.1516925
beta 0.4961820 -9.0 0.30347472 0.8112590 -9 -0.7008125
r 0.8526430 -9.0 0.26693949 2.7234637 -9 -0.1594144
rc 0.8468345 -9.0 0.56021629 1.2800926 -9 -0.1662500
rold 0.8411047 -9.0 0.42324332 1.6715141 -9 -0.1730391
m 22.6501792 20.0 18.08395655 28.3693790 1 3.1201678
K 106.7057716 100.0 61.53788312 185.0262167 1 4.6700753
q 1.1111248 1.0 0.81097417 1.5223647 1 0.1053729
n 2.0137180 2.0 0.84869975 4.7779677 1 0.6999827
sdb 0.1619837 0.2 0.10231809 0.2564425 1 -1.8202597
sdu 0.1259182 0.1 0.07102503 0.2232368 1 -2.0721226
sdf 0.3565349 0.4 0.25806034 0.4925867 1 -1.0313233
sdi 0.1885170 0.2 0.15969214 0.2225448 1 -1.6685672
sdc 0.1769062 0.2 0.13548624 0.2309887 1 -1.7321358
lambda 0.1032635 0.1 0.02267910 0.4701841 1 -2.2704712

plotspict.biomass(seasonres2)
plotspict.f(seasonres2, qlegend=FALSE)
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Two parameters related to the coupled SDEs are estimated (sdu and lambda) as evident from the summary
of estimated parameters. In the plot of fishing mortality it is noted that the amplitude of the seasonal pattern
varies over time. This is a property of the coupled SDE model, which is not possible to obtain with the spline
based seasonal model. The spline based model has a fixed amplitude and phases, which will lead to biased
estimates and autocorrelation in residuals if in reality the seasonal pattern shifts a bit. This is illustrated by
fitting a spline based model to data generated with a coupled SDE model

inp2 <- list(obsC=seasonsim2$obsC, obsI=seasonsim2$obsI,
timeC=seasonsim2$timeC, timeI=seasonsim2$timeI,
seasontype=1, true=seasonsim2$true)

rep2 <- fit.spict(inp2)
rep2 <- calc.osa.resid(rep2)
plotspict.diagnostic(rep2)

35



0 5 10 15 20 25 30

0.
0

1.
5

Catch

Time

lo
g 

ca
tc

h 
da

ta

0 5 10 15 20 25 30

2.
0

3.
0

4.
0

Index 1

Time

lo
g 

in
de

x 
1 

da
ta

0 5 10 15 20 25 30

−
3

−
1

1

Bias p−val: 0.6694

Time

C
at

ch
 O

S
A

 r
es

id
ua

ls

Jan
Apr
Jul
Oct

0 5 10 15 20 25 30

−
2

0
2

Bias p−val: 0.7232

Time
In

de
x 

1 
O

S
A

 r
es

id
ua

ls

0 1 2 3 4

−
0.

2
0.

4
1.

0

Lag

C
at

ch
 A

C
F

LBox p−val: 0.0012

lag.signf: 2,4

0 1 2 3 4

−
0.

2
0.

4
0.

8

Lag

In
de

x 
1 

A
C

F

LBox p−val: 0.8548

−2 −1 0 1 2

−
3

−
1

1

Shapiro p−val: 0.8474

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
2

0
2

Shapiro p−val: 0.3209

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

spict_v1.3.8

From the diagnostics it is clear that autocorrelation is present in the catch residuals.

Setting initial parameter values

Initial parameter values used as starting guess of the optimiser can be set using inp$ini. For example, to
specify the initial value of logK set

inp <- pol$albacore
inp$ini$logK <- log(100)
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This procedure generalises to all other model parameters. If initial values are not specified they are set to
default values. To see the default initial value of a parameter, here logK, run

inp <- check.inp(pol$albacore)
inp$ini$logK

[1] 5.010635

This can also be done posterior to fitting the model by printing res$inp$ini$logK.

Checking robustness to initial parameter values

It is prudent to check that the same parameter estimates are obtained if using different initial values. If the
optimum of the objective function is poorly defined, i.e. possibly containing multiple optima, it is possible
that different parameter estimates will be returned depending on the initial values. To check whether this is
the case run

set.seed(123)
check.ini(pol$albacore, ntrials=4)

Checking sensitivity of fit to initial parameter values...
Trial 1 ... model fitted!
Trial 2 ... model fitted!
Trial 3 ... model fitted!
Trial 4 ... model fitted!

$propchng
logm logK logq logn logsdb logsdf logsdi logsdc

Trial 1 -1.41 0.26 -0.12 -2.75 -1.26 1.30 -0.08 -1.12
Trial 2 0.34 -0.04 0.62 0.34 -0.51 -0.21 1.14 -1.14
Trial 3 -1.69 -0.42 -0.23 -3.26 -1.11 -0.55 -0.40 -1.41
Trial 4 1.03 0.19 0.06 -0.68 0.60 1.01 -1.32 -1.15

$inimat
Distance logn logK logm logq logsdb logsdf logsdi logsdc

Basevec 0.00 0.69 5.01 3.41 -0.64 -1.61 -1.61 -1.61 -1.61
Trial 1 4.22 -0.29 6.34 2.99 1.12 0.42 -3.70 -1.48 0.20
Trial 2 3.48 0.93 4.81 5.51 -0.86 -0.79 -1.27 -3.44 0.23
Trial 3 4.52 -0.48 2.90 2.61 1.45 0.18 -0.72 -0.96 0.67
Trial 4 3.64 1.41 5.97 3.61 -0.21 -2.58 -3.23 0.52 0.24

$resmat
Distance m K q n sdb sdf sdi sdc

Basevec 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 1 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 2 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 3 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 4 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
$obsC
[1] 15.9 25.7 28.5 23.7 25.0 33.3 28.2 19.7 17.5 19.3 21.6 23.1 22.5 22.5 23.6

[16] 29.1 14.4 13.2 28.4 34.6 37.5 25.9 25.3

$timeC
[1] 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

[16] 1982 1983 1984 1985 1986 1987 1988 1989
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$obsI
[1] 61.89 78.98 55.59 44.61 56.89 38.27 33.84 36.13 41.95 36.63 36.33 38.82

[13] 34.32 37.64 34.01 32.16 26.88 36.61 30.07 30.75 23.36 22.36 21.91

$timeI
[1] 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

[16] 1982 1983 1984 1985 1986 1987 1988 1989

$check.ini
$check.ini$propchng

logm logK logq logn logsdb logsdf logsdi logsdc
Trial 1 -1.41 0.26 -0.12 -2.75 -1.26 1.30 -0.08 -1.12
Trial 2 0.34 -0.04 0.62 0.34 -0.51 -0.21 1.14 -1.14
Trial 3 -1.69 -0.42 -0.23 -3.26 -1.11 -0.55 -0.40 -1.41
Trial 4 1.03 0.19 0.06 -0.68 0.60 1.01 -1.32 -1.15

$check.ini$inimat
Distance logn logK logm logq logsdb logsdf logsdi logsdc

Basevec 0.00 0.69 5.01 3.41 -0.64 -1.61 -1.61 -1.61 -1.61
Trial 1 4.22 -0.29 6.34 2.99 1.12 0.42 -3.70 -1.48 0.20
Trial 2 3.48 0.93 4.81 5.51 -0.86 -0.79 -1.27 -3.44 0.23
Trial 3 4.52 -0.48 2.90 2.61 1.45 0.18 -0.72 -0.96 0.67
Trial 4 3.64 1.41 5.97 3.61 -0.21 -2.58 -3.23 0.52 0.24

$check.ini$resmat
Distance m K q n sdb sdf sdi sdc

Basevec 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 1 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 2 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 3 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04
Trial 4 0 22.58 201.48 0.35 0.69 0.01 0.37 0.11 0.04

The argument ntrials set the number of different initial values to test for. To keep it simple only few trials
are generated here, however for real data cases more should be used, say 30. The propchng contains the
proportional change of the new randomly generated initial value relative to the base initial value, inimat
contains the new randomly generated initial values, and resmat contains the resulting parameter estimates
and a distance from the estimated parameter vector to the base parameter vector. The distance should
preferably be close to zero. If that is not the case further investigation is required, i.e. inspection of objective
function values, differences in results and residual diagnostics etc. should be performed. The example
shown here looks fine in that all converged runs return the same parameter estimates. One trial did not
converge, however non-converging trials are to some extent expected as the initial parameters are generated
independently from a wide uniform distribution and may thus by chance be very inappropriately chosen.

Phases and how to fix parameters

The package has the ability to estimate parameters in phases. Users familiar with AD model builder will know
that this means that some parameters are held constant in phase 1, some are then released and estimated in
phase 2, more are released in phase 3 etc. until all parameters are estimated. Per default all parameters are
estimated in phase 1. As an example the standard deviation on the biomass process, logsdb, is estimated in
phase 2:
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inp <- pol$albacore
inp$phases$logsdb <- 2
res <- fit.spict(inp)

Estimating - phase 1
Estimating - phase 2

Phases can also be used to fix parameters to their initial value by setting the phase to -1. For example

inp <- pol$albacore
inp$phases$logsdb <- -1
inp$ini$logsdb <- log(0.1)
res <- fit.spict(inp)
summary(res)

Convergence: 0 MSG: relative convergence (4)
Objective function at optimum: 5.8647408
Euler time step (years): 1/16 or 0.0625
Nobs C: 23, Nobs I1: 23

Priors
logn ~ dnorm[log(2), 2ˆ2]

logalpha ~ dnorm[log(1), 2ˆ2]
logbeta ~ dnorm[log(1), 2ˆ2]

Fixed parameters
fixed.value

sdb 0.1

Model parameter estimates w 0.95 % CI
estimate cilow ciupp log.est

alpha 1.0503613 0.6791573 1.6244527 0.0491342
beta 0.1713918 0.0256782 1.1439720 -1.7638031
r 0.3471988 0.1465267 0.8226963 -1.0578579
rc 1.7791120 0.2676182 11.8274426 0.5761143
rold 0.5694637 0.0689506 4.7032055 -0.5630603
m 27.4846393 18.9164856 39.9337073 3.3136273
K 144.5708271 82.7920750 252.4483661 4.9737695
q 0.4966500 0.2541128 0.9706762 -0.6998696
n 0.3903057 0.0392963 3.8766587 -0.9408250
sdf 0.3738950 0.2594031 0.5389198 -0.9837802
sdi 0.1050361 0.0679157 0.1624453 -2.2534509
sdc 0.0640825 0.0113806 0.3608403 -2.7475832

Deterministic reference points (Drp)
estimate cilow ciupp log.est

Bmsyd 30.897032 6.2840156 151.913464 3.4306601
Fmsyd 0.889556 0.1338091 5.913721 -0.1170328
MSYd 27.484639 18.9164856 39.933707 3.3136273

Stochastic reference points (Srp)
estimate cilow ciupp log.est rel.diff.Drp

Bmsys 30.8170236 6.3482980 149.597411 3.4280673 -0.0025962352
Fmsys 0.8901021 0.1349423 5.871261 -0.1164191 0.0006135517
MSYs 27.4303399 18.8038684 40.014296 3.3116497 -0.0019795390
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States w 0.95% CI (inp$msytype: s)
estimate cilow ciupp log.est

B_1989.94 44.7251083 21.9038498 91.323458 3.8005351
F_1989.94 0.5737431 0.2575356 1.278197 -0.5555735
B_1989.94/Bmsy 1.4513117 0.3383892 6.224506 0.3724678
F_1989.94/Fmsy 0.6445813 0.1047014 3.968286 -0.4391543

Predictions w 0.95% CI (inp$msytype: s)
prediction cilow ciupp log.est

B_1991.00 45.2794307 20.9341261 97.937064 3.8128529
F_1991.00 0.5737434 0.1907893 1.725367 -0.5555730
B_1991.00/Bmsy 1.4692993 0.3184910 6.778340 0.3847856
F_1991.00/Fmsy 0.6445816 0.0900523 4.613825 -0.4391539
Catch_1990.00 25.8407665 15.9510708 41.862093 3.2519533
E(B_inf) 45.9908947 NA NA 3.8284434

Priors

SPiCT is a generalisation of previous surplus production models in the sense that stochastic noise is included
in both observation and state processes of both fishing and biomass. Estimating all model parameters is
only possible if data contain sufficient information, which may not be the case for short time series or time
series with limited contrast. The basic data requirements of the model are limited to only catch and biomass
index time series. More information may be available, which can be used to improve the model fit. This
is particularly advantageous if the model is not able to converge with only catch and index time series.
Additional information can then be included in the fit via prior distributions for model parameters.

Default priors and how to disable them

Quantities that are traditionally difficult to estimate are logn, and the noise ratios logalpha and logbeta
where logalpha = logsdi - logsdb and logbeta = logsdc - logsdf, respectively. Therefore, to gener-
ally stabilise estimation default semi-informative priors are imposed on these quantities that inhibit them
from taking extreme and unrealistic values. If informative data are available these priors should have limited
effect on results, if informative data are not available estimates will reduce to the priors.

If informative data are available and the default priors therefore are unwanted they can be disabled using

inp <- pol$albacore
inp$priors$logn <- c(1, 1, 0)
inp$priors$logalpha <- c(1, 1, 0)
inp$priors$logbeta <- c(1, 1, 0)
fit.spict(inp)

Convergence: 0 MSG: relative convergence (4)
Objective function at optimum: 5.0598269
Euler time step (years): 1/16 or 0.0625
Nobs C: 23, Nobs I1: 23

No priors are used

Model parameter estimates w 0.95 % CI
estimate cilow ciupp log.est

alpha 39.0515854 0.0402405 3.789782e+04 3.6648835
beta 0.0245072 0.0000265 2.268976e+01 -3.7087885

40



r 0.1955746 0.0313382 1.220535e+00 -1.6318133
rc 1.2604846 0.0097773 1.625003e+02 0.2314962
rold 0.2835716 0.0024030 3.346292e+01 -1.2602908
m 24.3112585 12.0983563 4.885269e+01 3.1909396
K 210.4517437 123.9798147 3.572351e+02 5.3492564
q 0.3842439 0.2070728 7.130025e-01 -0.9564777
n 0.3103166 0.0004171 2.308855e+02 -1.1701624
sdb 0.0028039 0.0000029 2.728229e+00 -5.8767274
sdf 0.3809117 0.2827823 5.130932e-01 -0.9651878
sdi 0.1094986 0.0812454 1.475768e-01 -2.2118440
sdc 0.0093351 0.0000103 8.474455e+00 -4.6739763

Deterministic reference points (Drp)
estimate cilow ciupp log.est

Bmsyd 38.5744642 0.5970164 2492.37608 3.652591
Fmsyd 0.6302423 0.0048887 81.25014 -0.461651
MSYd 24.3112585 12.0983563 48.85269 3.190940

Stochastic reference points (Srp)
estimate cilow ciupp log.est rel.diff.Drp

Bmsys 38.5743443 0.5970259 2492.32055 3.6525874 -3.108538e-06
Fmsys 0.6302434 0.0048887 81.24965 -0.4616493 1.767817e-06
MSYs 24.3112241 12.0982046 48.85317 3.1909381 -1.414937e-06

States w 0.95% CI (inp$msytype: s)
estimate cilow ciupp log.est

B_1989.94 52.6709906 29.3008927 94.6808440 3.9640648
F_1989.94 0.4858021 0.2429986 0.9712142 -0.7219539
B_1989.94/Bmsy 1.3654410 0.0268855 69.3470267 0.3114774
F_1989.94/Fmsy 0.7708167 0.0077214 76.9497075 -0.2603047

Predictions w 0.95% CI (inp$msytype: s)
prediction cilow ciupp log.est

B_1991.00 51.2819174 28.0681883 93.694507 3.9373382
F_1991.00 0.4858023 0.1724966 1.368165 -0.7219535
B_1991.00/Bmsy 1.3294307 0.0231032 76.499531 0.2847508
F_1991.00/Fmsy 0.7708171 0.0072436 82.025601 -0.2603042
Catch_1990.00 25.2158724 15.5409044 40.913978 3.2274737
E(B_inf) 49.5039157 NA NA 3.9020518

The model is able to converge without priors, however the estimates of alpha, beta and n are very uncertain
indicating that limited information is available about these parameters.

Setting a prior

The model parameters to which priors can be applied can be listed using

list.possible.priors()
[1] "logn" "logalpha" "logbeta" "logr" "logK" "logm"
[7] "logq" "logqf" "logbkfrac" "logB" "logF" "logBBmsy"

[13] "logFFmsy" "logsdb" "logsdf" "logsdi" "logsde" "logsdc"
[19] "logsdm" "logpsi" "mu" "BmsyB0" "logngamma"

A prior is set using
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inp <- pol$albacore
inp$priors$logK <- c(log(300), 2, 1)
fit.spict(inp)

Convergence: 0 MSG: relative convergence (4)
Objective function at optimum: 3.6972089
Euler time step (years): 1/16 or 0.0625
Nobs C: 23, Nobs I1: 23

Priors
logK ~ dnorm[log(300), 2ˆ2]
logn ~ dnorm[log(2), 2ˆ2]

logalpha ~ dnorm[log(1), 2ˆ2]
logbeta ~ dnorm[log(1), 2ˆ2]

Model parameter estimates w 0.95 % CI
estimate cilow ciupp log.est

alpha 8.5541387 1.2276474 59.6044822 2.1464152
beta 0.1213066 0.0180843 0.8137052 -2.1094339
r 0.2543932 0.0999840 0.6472628 -1.3688740
rc 0.7408800 0.1423292 3.8565753 -0.2999166
rold 0.8120644 0.0018385 358.6840766 -0.2081756
m 22.5701062 17.0284025 29.9152957 3.1166263
K 202.2161203 138.7005283 294.8176176 5.3093370
q 0.3499363 0.1930357 0.6343668 -1.0500041
n 0.6867327 0.0623534 7.5633732 -0.3758102
sdb 0.0127865 0.0018399 0.0888582 -4.3593675
sdf 0.3672884 0.2672952 0.5046883 -1.0016080
sdi 0.1093773 0.0808917 0.1478939 -2.2129522
sdc 0.0445545 0.0073421 0.2703737 -3.1110419

Deterministic reference points (Drp)
estimate cilow ciupp log.est

Bmsyd 60.92783 15.2916984 242.759228 4.1096901
Fmsyd 0.37044 0.0711646 1.928288 -0.9930638
MSYd 22.57011 17.0284025 29.915296 3.1166263

Stochastic reference points (Srp)
estimate cilow ciupp log.est rel.diff.Drp

Bmsys 60.9201702 15.2918950 242.695044 4.109564 -1.257930e-04
Fmsys 0.3704521 0.0711578 1.928599 -0.993031 3.268231e-05
MSYs 22.5680073 17.0228324 29.919519 3.116533 -9.300393e-05

States w 0.95% CI (inp$msytype: s)
estimate cilow ciupp log.est

B_1989.94 56.9259673 30.1898050 107.3397378 4.0417516
F_1989.94 0.4446516 0.2131880 0.9274211 -0.8104642
B_1989.94/Bmsy 0.9344355 0.2946969 2.9629416 -0.0678127
F_1989.94/Fmsy 1.2002944 0.2841527 5.0701835 0.1825668

Predictions w 0.95% CI (inp$msytype: s)
prediction cilow ciupp log.est

B_1991.00 54.5233252 27.9289532 106.441261 3.9986286
F_1991.00 0.4446518 0.1564571 1.263702 -0.8104637
B_1991.00/Bmsy 0.8949963 0.2487066 3.220736 -0.1109357
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F_1991.00/Fmsy 1.2002950 0.2373802 6.069202 0.1825674
Catch_1990.00 24.7355104 15.3287800 39.914819 3.2082399
E(B_inf) 50.1633799 NA NA 3.9152853

This imposes a Gaussian prior on logK with mean log(300) and standard deviation 2. The third entry
indicates that the prior is used (1 means use, 0 means do not use). From the summary it is evident that the
default priors were also imposed.

Priors on random effects

Priors can be applied to random effects of the model, i.e. logB, logF, logBBmsy, (which is log(B/Bmsy))
logFFmsy (which is log(F/Fmsy)). An additional argument is required to specify these priors

inp <- pol$albacore
inp$priors$logB <- c(log(80), 0.1, 1, 1980)
par(mfrow=c(1, 2), mar=c(5, 4.1, 3, 4))
plotspict.biomass(fit.spict(pol$albacore), ylim=c(0, 500))
plotspict.biomass(fit.spict(inp), qlegend=FALSE, ylim=c(0, 500))
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This imposes a Gaussian prior on logB with mean log(80), standard deviation 0.1 (very informative), the
third entry in the vector indicates that the prior is used, the fourth entry indicates the year to which the
prior should be applied, here 1980.

It is clear from the plots that the prior influences the results significantly. Furthermore, it is not only the
biomass in the year 1980 that is affected, but the information propagates forward and backward because all
estimates are correlated. In reality such an informative prior is rarely available, however it may be possible to
derive information about the absolute biomass from acoustic survey and swept area estimates. It is, however,
critical that the standard deviation used reflects the quality of the information.

Setting priors on the standard deviation of multiple indices

It is possible to set a prior for on some or all noise terms of multiple biomass indices
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set.seed(123)
inp <- list(timeC=pol$albacore$timeC, obsC=pol$albacore$obsC)
inp$timeI <- list(pol$albacore$timeI, pol$albacore$timeI[10:23]+0.25)
inp$obsI <- list()
inp$obsI[[1]] <- pol$albacore$obsI * exp(rnorm(23, sd=0.1)) # Index 1
inp$obsI[[2]] <- 10*pol$albacore$obsI[10:23] # Index 2
inp$priors$logsdi <- list(c(1, 1, 0), # No prior for index 1

c(log(0.1), 0.2, 1)) # Set a prior on index 2
res <- fit.spict(inp)
sumspict.priors(res)

Priors
logn ~ dnorm[log(2), 2ˆ2]

logalpha ~ dnorm[log(1), 2ˆ2]
logbeta ~ dnorm[log(1), 2ˆ2]
logsdi2 ~ dnorm[log(0.1), 0.2ˆ2]

Fixing parameters using priors

Model parameters can be fixed using phases as described previously. This technique can, however, only be
used to fix model parameters and therefore not derived quantities such as logalpha, logr (which is derived
from logK, logm and logn). Fixing a parameter can be regarded as imposing an highly informative prior to
the parameter

inp <- pol$albacore
inp$priors$logn <- c(log(2), 1e-3)
inp$priors$logalpha <- c(log(1), 1e-3)
inp$priors$logbeta <- c(log(1), 1e-3)
fit.spict(inp)

Convergence: 0 MSG: relative convergence (4)
Objective function at optimum: -13.3777234
Euler time step (years): 1/16 or 0.0625
Nobs C: 23, Nobs I1: 23

Priors
logn ~ dnorm[log(2), 0.001ˆ2] (fixed)

logalpha ~ dnorm[log(1), 0.001ˆ2] (fixed)
logbeta ~ dnorm[log(1), 0.001ˆ2] (fixed)

Model parameter estimates w 0.95 % CI
estimate cilow ciupp log.est

alpha 1.0000039 0.9980459 1.0019658 0.0000039
beta 0.9999976 0.9980396 1.0019595 -0.0000024
r 0.5046213 0.1875615 1.3576486 -0.6839470
rc 0.5046222 0.1875615 1.3576536 -0.6839452
rold 0.5046231 0.1875608 1.3576639 -0.6839434
m 22.0086910 17.0614719 28.3904275 3.0914374
K 174.4568979 74.7565781 407.1241620 5.1616777
q 0.3549422 0.1279007 0.9850140 -1.0358004
n 1.9999964 1.9960803 2.0039201 0.6931454
sdb 0.0966006 0.0704060 0.1325409 -2.3371705
sdf 0.2102260 0.1562934 0.2827692 -1.5595724
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sdi 0.0966010 0.0704064 0.1325411 -2.3371666
sdc 0.2102255 0.1562931 0.2827683 -1.5595748

Deterministic reference points (Drp)
estimate cilow ciupp log.est

Bmsyd 87.2283875 37.3782181 203.5621809 4.468530
Fmsyd 0.2523111 0.0937808 0.6788268 -1.377092
MSYd 22.0086910 17.0614719 28.3904275 3.091437

Stochastic reference points (Srp)
estimate cilow ciupp log.est rel.diff.Drp

Bmsys 86.1721720 37.1712866 199.7682593 4.456347 -0.01225704
Fmsys 0.2500268 0.0921878 0.6781096 -1.386187 -0.00913625
MSYs 21.5429415 16.5473970 28.0466063 3.070048 -0.02161959

States w 0.95% CI (inp$msytype: s)
estimate cilow ciupp log.est

B_1989.94 54.8231823 17.4451855 172.287152 4.0041131
F_1989.94 0.4313749 0.1433961 1.297694 -0.8407778
B_1989.94/Bmsy 0.6362052 0.3800251 1.065080 -0.4522342
F_1989.94/Fmsy 1.7253144 0.9443708 3.152056 0.5454093

Predictions w 0.95% CI (inp$msytype: s)
prediction cilow ciupp log.est

B_1991.00 50.1747640 14.1661714 177.712585 3.9155122
F_1991.00 0.4313751 0.1324968 1.404446 -0.8407773
B_1991.00/Bmsy 0.5822618 0.2912706 1.163965 -0.5408351
F_1991.00/Fmsy 1.7253153 0.8254232 3.606287 0.5454098
Catch_1990.00 22.6023879 14.8442486 34.415210 3.1180556
E(B_inf) 20.7048450 NA NA 3.0303677

The summary indicates that the priors are so informative that the quantities are essentially fixed. It is also
noted that the estimates of these quantities are very close to the mean of their respective priors.

Pitfalls when fixing parameters and specifying priors

Particular caution is required when fixing a parameter that is highly correlated with other parameters because
this will to some extent restrict the estimates of the correlated parameters. This could also be a problem
when specifying priors depending on the amount of a priori information available.

Robust estimation (reducing influence of extreme observations)

The presence of extreme observations may inflate estimates of observation noise and increase the general
uncertainty of the fit. To reduce this effect it is possible to apply a robust estimation scheme, which is less
sensitive to extreme observations. An example with an extreme observation in the catch series is

inp <- pol$albacore
inp$obsC[10] <- 3*inp$obsC[10]
res1 <- fit.spict(inp)
inp$robflagc <- 1
res2 <- fit.spict(inp)
sumspict.parest(res2)

estimate cilow ciupp log.est
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alpha 8.01383384 1.14068245 56.30097371 2.0811693
beta 0.13903418 0.02002496 0.96532028 -1.9730355
r 0.25685421 0.10125244 0.65158021 -1.3592466
rc 0.73334983 0.13979381 3.84710863 -0.3101324
rold 0.85759781 0.00140626 522.99836520 -0.1536200
m 22.57344297 16.94368698 30.07375714 3.1167741
K 202.06196124 137.06165231 297.88810724 5.3085744
q 0.34766877 0.18846324 0.64136419 -1.0565050
n 0.70049573 0.06409210 7.65608056 -0.3559670
sdb 0.01371149 0.00196492 0.09568067 -4.2895209
sdf 0.37086361 0.26568724 0.51767565 -0.9919209
sdi 0.10988163 0.08106946 0.14893367 -2.2083516
sdc 0.05156272 0.00843522 0.31519203 -2.9649564
pp 0.95304961 0.72887564 0.99351802 3.0105755
robfac 20.83563432 2.67338472 236.12368966 2.9874800

par(mfrow=c(1, 2))
plotspict.catch(res1, main='Regular fit')
plotspict.catch(res2, qlegend=FALSE, main='Robust fit')
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It is evident from the plot that the presence of the extreme catch observation generally inflates the uncertainty
of the estimated catches, while the robust fit is less sensitive. Robust estimation can be applied to index and
effort data using robflagi and robflage respectively.

Robust estimation is implemented using a mixture of light-tailed and a heavy-tailed Gaussian distribution
as described in Pedersen and Berg (2017). This entails two additional parameters (pp and robfac) that
require estimation. This may not always be possible given the increased model complexity. In such cases
these parameters should be fixed by setting their phases to -1.

Forecasting and management scenarios

All quantities estimated by SPiCT can be forecasted into the future. By default, the forecast period starts
one time step after the last observation, which can be defined by the last index observation or by the end

46



of the last catch or effort interval. Forecasting catch, fishing mortality, and biomass is a crucial step in
fisheries management that allows determining future yields and risk of overfishing under current or alternative
management scenarios. The following provides details to the forecasting and management functionality of
SPiCT and includes examples based on the South Atlantic albacore data set of Polacheck, Hilborn, and Punt
(1993), which contains catch and commercial CPUE data from 1967 to 1990.

Forecasting

Producing short-term forecasts entails minimal additional computing time and is part of the model fitting
of SPiCT. The default settings can be altered by specifying the start and end of the forecast interval with
the argument maninterval (= ‘management interval’). For example, if a one year forecast of the catch
during 2021 is of interest, then maninterval is set to represent the start and end of the forecast interval:
c(2021,2022). In addition to the forecast interval, a fishing scenario can be specified. This is done by
specifying a factor (ffac) that is a fishing mortality multiplier at the start of the forecast period by. By
default, the fishing mortality is unaltered and projected forward maintaining potential seasonal patterns.
The time point of the forecasted biomass and fishing mortality can be controlled by setting maneval (=
‘management evaluation’). The code to obtain the forecasted annual catch in the interval starting 1990 under
a management scenario where the fishing pressure is reduced by 25% starting in 1990, and the time point of
forecasted biomass and fishing mortality in 1991 is:

inp <- pol$albacore
inp$maninterval <- c(1990, 1991)
inp$maneval <- 1991
inp$ffac <- 0.75
rep <- fit.spict(inp)

To specifically show forecast results use

sumspict.predictions(rep)
prediction cilow ciupp log.est

B_1991.00 59.6456548 32.5515458 109.291404 4.08842130
F_1991.00 0.3348376 0.1179796 0.950302 -1.09410958
B_1991.00/Bmsy 0.9820378 0.2791407 3.454882 -0.01812545
F_1991.00/Fmsy 0.9006337 0.1793004 4.523921 -0.10465670
Catch_1990.00 19.4447465 11.7527439 32.171055 2.96757693
E(B_inf) 67.1855141 NA NA 4.20745766

These predictions are also shown when using summary(rep) and as with any spict object the results can be
plotted using plot(rep). Here, however, we use a selection of 4 graphs to visualise the change in forecasted
fishing mortality and associated change in forecasted catch more clearly:

plot2(rep)
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The dotted lines in the graph represent the predicted quantities for the forecast interval. Note the clear drop
and subsequent constant fishing mortality representing the 25% reduction in fishing pressure as set with
ffac. The decrease in fishing pressure results in constant (slightly increasing) biomass as opposed to the
expected decrease if fishing effort had remained constant. The larger confidence intervals indicate the larger
uncertainty associated with model predictions without data. Setting ffac (or fcon for changing the fishing
mortality by an absolute value instead of a factor) in the input list affects any SPiCT fit with this input
list. This can be reversed back to the default (continuing the F process) by setting inp$ffac <- NULL. In
the following section, we introduce a range of different functions which make the exploration of different F
factors and other management strategies more straight-forward and do not affect the fitted SPiCT object or
its input list.

Management

In addition to manually changing the forecast period and fishing factor as described above, SPiCT includes a
wide range of functions related to fisheries management. The manage function applies 8 different management
scenarios and allows to explore the effect of different management strategies on the recommended Total
Allowable Catch (TAC), or predicted fishing mortality or biomass. The scenarios include advice rules such
as constant catch, no fishing or the current advice rule recommended by the export group for data limited
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fisheries management in ICES (ICES 2019). The results of this function are appended to the spictcls object,
thus the application is straight-forward:

inp <- pol$albacore
rep <- fit.spict(inp)
rep <- manage(rep)

Selected scenario(s): currentCatch, currentF, Fmsy, noF, reduceF25, increaseF25, msyHockeyStick, ices

where rep is the result of fit.spict() from the code above. The spictcls object fitted in each scenario is
stored in a list called man within rep. The argument scenarios controls which scenarios are included; it is a
vector of scenario numbers, e.g. scenarios = c(1,5,2,8), or scenario names, e.g. scenarios = c("noF",
"ices", "incrF25"). The list of the predefined management scenarios in the manage function with index
and name are:

1. currentCatch: Keep the catch of the current year (i.e. the last observed catch).

2. currentF: Keep the F of the current year.

3. Fmsy: Fish at Fmsy i.e. F=Fmsy.

4. noF: No fishing, reduce to 1% of current F.

5. reduceF25: Reduce F by 25%.

6. increaseF25: Increase F by 25%,

7. msyHockeyStick: Use ICES MSY hockey-stick advice rule [@msycat34].

8. ices: Use ICES MSY 35th hockey-stick advice rule [@wklifeix].

More information about these advice rules and other functionality of the manage function can be found in
the function documentation (?manage).

The results of the management scenarios can be summarised by:

sumspict.manage(rep)
SPiCT timeline:

Observations Management
1967.00 - 1990.00 1990.00 - 1991.00

|-----------------------| ----------------------|

Management evaluation: 1991.00

Predicted catch for management period and states at management evaluation time:

C B/Bmsy F/Fmsy
1. Keep current catch 25.2 0.89 1.23
2. Keep current F 24.7 0.89 1.20
3. Fish at Fmsy 21.3 0.95 1.00
4. No fishing 0.0 1.30 0.00
5. Reduce F by 25% 19.4 0.98 0.90
6. Increase F by 25% 29.5 0.81 1.50
7. MSY hockey-stick rule 21.3 0.95 1.00
8. ICES advice rule 19.3 0.98 0.89
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The summary function prints a timeline as well as the predicted catch during the management interval and
absolute and relative biomass and fishing mortality at the management evaluation time for each scenario.
Additionally, the quantities ‘perc.dB’ and ‘perc.dF’ show the percentage change in biomass and fishing
mortality from the start to the end of the management period for each management scenario, respectively.
The implications of the different management scenarios can also be shown graphically by calling the plot
function or any plotting function of the plotspict. family (e.g. plotspict.ffmsy) on a spict object with a
man element:

plot2(rep)

1970 1975 1980 1985 1990

0
2

4
6

8

Relative biomass

Time

B
t

B
M

S
Y

Jan
Apr
Jul
Oct

1. Keep current catch
2. Keep current F
3. Fish at Fmsy
4. No fishing
5. Reduce F by 25%
6. Increase F by 25%
7. MSY hockey−stick rule
8. ICES advice rule

1970 1975 1980 1985 1990

0
1

2
3

4

Relative fishing mortality

Time

F
t

F
M

S
Y

1970 1975 1980 1985 1990

0
10

20
30

40

Catch

Time

C
at

ch

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Bt

F
t

0 1 2 3 4 5
Bt BMSY

0
0.

5
1

1.
5

2
2.

5
3

F
t

F
M

S
Y

E(B∞)

1967

1990

spict_v1.3.8

If any plotting function of the plotspict. family is called on a SPiCT object which includes management
scenarios (rep$man != NULL), the prediction and confidence intervals of the base scenario (rep) are omitted
from the plot and instead the projections of the different management scenarios are displayed in different
colours. The grey vertical line corresponding to the time of the last observation in the standard plots is
replaced by two lines which corresponds to the start and end of the management interval. In some cases,
there might only be one vertical line displayed in the catch plot or the trajectories of the scenarios might be
missing in the catch plot. Refer to the function documentation if that is the case (help(plotspict.catch)).
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In order to go back to the previous plots, one can remove the management scenarios (see below) or assign
the results of the manage function to a different object, e.g. man <- manage(rep) and have both plotting
functionalities with plot(rep) and plot(man).

The function plotspict.hcr (spict version >= 1.3.4) provides a visual summary of the management scenarios.

plotspict.hcr(rep)
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Assessment and intermediate period Besides defining the assessment period in the input data as
shown above, it can also be changed in the manage function directly using the argument maninterval. The
management period or interval can correspond to any period from a fraction of a year to spanning over
several years (see below for more examples of variable assessment periods). To visualise the management
period the function man.timeline can be applied to an input list:
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man.timeline(inp)
SPiCT timeline:

Observations Management
1967.00 - 1990.00 1990.00 - 1991.00

|-----------------------| ----------------------|

Management evaluation: 1991.00

or to a fitted spict object:

man.timeline(rep)
SPiCT timeline:

Observations Management
1967.00 - 1990.00 1990.00 - 1991.00

|-----------------------| ----------------------|

Management evaluation: 1991.00

As the output shows, the management period period starts right after the time of the last observation, in this
example in 1990. In reality, however, there is often a lag between the data and management period. In fact,
the assessment is often performed within the gap year and the management scenarios are supposed to start
at the beginning of the following year. Thus, it makes sense to distinguish the intermediate period from the
management period. For the albacore data set we could assume a management period starting in 1991, which
would change the time line as follows:

inp$maninterval <- c(1991,1992)
man.timeline(inp)

SPiCT timeline:

Observations Intermediate Management
1967.00 - 1990.00 1990.00 - 1991.00 1991.00 - 1992.00

|-----------------------| ----------------------| ----------------------|

Management evaluation: 1992.00

As can be seen, the timeline includes an additional section called ‘Intermediate’ referring to the intermediate
period. Management scenarios with an intermediate period from 1990 to 1991 and an assessment period can
thus be specified for the albacore data set with:

repIntPer <- manage(rep, scenarios = c(1,2),
maninterval = c(1991,1992), maneval = 1992)

Selected scenario(s): currentCatch, currentF
plotspict.catch(repIntPer)
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It is important to note that defining a management interval a few time steps after the time of the last catch
observation requires the model to make an assumption about the fishing mortality during the intermediate
period. By default, SPiCT continues the fishing mortality process in the intermediate period, i.e. the fishing
mortality corresponds to the estimated F at the time step of the last observation and the estimated seasonal
F process. However, in some cases it might be meaningful to assume a certain catch during this period rather
than continuing the F process. This might be in particular relevant when information about the catch in the
intermediate period is available, for example in form of a TAC which was recommended and implemented
the year before. Therefore, a specific catch can be specified for the intermediate period using the argument
intermediatePeriodCatch.

repIntPerC <- manage(rep, scenarios=c(8), maninterval = c(1991,1992), intermediatePeriodCatch = 20)
Selected scenario(s): ices

par(mfrow=c(1,2))
plotspict.biomass(repIntPerC)
plotspict.catch(repIntPerC)

53



1970 1975 1980 1985 1990

0
10

0
20

0
30

0
40

0
50

0

Absolute biomass

Time

B
t

0
2

4
6

8
B

t
B

M
S

Y

Jan
Apr
Jul
Oct

1. ICES advice rule

1970 1975 1980 1985 1990

15
20

25
30

35
40

Catch

Time
C

at
ch

Jan
Apr
Jul
Oct

1. ICES advice rule

As the graph shows, the catch in the intermediate period has been set to 20t (year 1990). Dotted lines of the
management scenarios reflect the intermediate period, while solid lines reflect the management period. Be
aware that the vertical bars indicating the start and end of the management period might seem off by a year
for the catch plot, however, they correspond to the timing of the catch observations which are drawn at the
beginning of the catch interval they refer to.

Note that the specified catch corresponds to the complete intermediate period, which might be a year, but
could also be quarter of a year or 3 years depending on the time of the last observation and the start of the
management period (see below for examples with variable intermediate periods). Note further, that the catch
used for the scenario ‘currentCatch’ is the last observed catch even though a certain catch is provided in the
intermediate period. The argument intermediatePeriodCatchList allows to specify any number of catch
‘observations’ corresponding to any interval during the intermediate period. It is a list with the elements
‘obsC’, ‘timeC’, ‘dtc’ and the optional element ‘stdevfacC’ (which is equal to 1 if not provided). Find more
information about this and related arguments in the documentation of the manage function.

Custom management scenarios The default management scenarios included in the manage function
are a selection of advice rules that are relevant to managers and stakeholders, in particular, based on our
experience with stocks managed by ICES. However, there is no limitation in terms of custom advice rules
and management scenarios. The function add.man.scenario allows to define a wide range of management
scenarios and creates a new spict object, which can easily be added to exiting scenarios in rep$man (contrary
to manage which overwrites all scenarios in rep$man). For example, to add an additional management scenario
to repIntPer which increases fishing mortality by 50%:

repIntPer <- add.man.scenario(repIntPer, ffac = 1.5)
sumspict.manage(repIntPer)

SPiCT timeline:

Observations Intermediate Management
1967.00 - 1990.00 1990.00 - 1991.00 1991.00 - 1992.00

|-----------------------| ----------------------| ----------------------|

Management evaluation: 1992.00
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Predicted catch for management period and states at management evaluation time:

C B/Bmsy F/Fmsy
1. Keep current catch (@$) 25.2 0.85 1.28
2. Keep current F (@$) 23.9 0.87 1.20
3. customScenario_1 33.9 0.74 1.80
(@) This scenario assumes another management period. Thus, the estimates might not be comparable to the other scenarios.
($) This scenario assumes another management evaluation time. Thus, the estimates might not be comparable to the other scenarios.

plotspict.f(repIntPer)
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Note that the default name of a scenario ‘customScenario_1’ was used for this management scenario, where ‘1’
represents the number of scenarios in rep$man with this default label. By using the argument scenarioTitle
you can specify any label for your scenario. For example, to define a scenario that reduces the last observed
catch by 64% and is labelled ‘reduced_catch’:

repIntPer <- add.man.scenario(repIntPer, cfac = 0.64,
scenarioTitle = "reduced_catch")

names(repIntPer$man)
[1] "currentCatch" "currentF" "customScenario_1" "reduced_catch"

Be aware that management scenarios in the list rep$man can be overwritten if a scenario with the specified
scenarioTitle is already present in the list. A few important arguments of the add.man.scenario function
to customise management scenarios are:
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• ffac: Factor to multiply current fishing mortality by.
• cfac: Factor to multiply current catch by.
• breakpointBBmsy: Breakpoint in terms of B/BMSY for the hockey-stick HCR. By default no

breakpoint is assumed.
• safeguardB: List defining an optional precautionary buffer by means of a biomass reference level

relative to B/BMSY (limitB) and the risk aversion probability (prob):

– limitB: Reference level for the evaluation of the predicted biomass defined as fraction of B/BMSY .
By default the PA buffer is not used. Theoretically, any value smaller than 1 is meaningful, but
an ICES recommended value would be 30% safeguardB$limitB = 0.3 @[wklifeiv].

– prob: Risk aversion probability of the predicted biomass relative to specified reference level
(limitB) for all rules with PA buffer. The default value is 0.95 as recommended by (ICES 2019).

• fractiles: List defining the fractiles of the 3 distributions of catch, bbmsy, and ffmsy:

– catch: Fractile of the predicted catch distribution.
– bbmsy: Fractile of the B/BMSY distribution.
– ffmsy: Fractile of the F/FMSY distribution.

Note that the fractile for the F/FMSY distribution is actually 1 minus the fractile specified. Otherwise, a
larger fractile would be more precautionary than a smaller one, as the current fishing mortality is divided by
the value of this distribution (Fy+1 = Fy

Fy
FMSY

). This allows a consistent setting of fractiles among the different

quantities.

The advice rule recommended by ICES (2019) can thus be defined by the combination of several of these
arguments:

repIntPer <- add.man.scenario(repIntPer, scenarioTitle = "ices",
breakpointB = 0.5,
fractiles = list(catch=0.35, bbmsy=0.35, ffmsy=0.35))

sumspict.manage(repIntPer)
SPiCT timeline:

Observations Intermediate Management
1967.00 - 1990.00 1990.00 - 1991.00 1991.00 - 1992.00

|-----------------------| ----------------------| ----------------------|

Management evaluation: 1992.00

Predicted catch for management period and states at management evaluation time:

C B/Bmsy F/Fmsy
1. Keep current catch (@$) 25.2 0.85 1.28
2. Keep current F (@$) 23.9 0.87 1.20
3. customScenario_1 33.9 0.74 1.80
4. reduced_catch 16.2 1.04 0.73
5. ICES advice rule 15.0 1.06 0.67
(@) This scenario assumes another management period. Thus, the estimates might not be comparable to the other scenarios.
($) This scenario assumes another management evaluation time. Thus, the estimates might not be comparable to the other scenarios.

A detailed description of all arguments of this function can be found in the function documentation (run
?add.man.scenario).

Variable management periods As mentioned above, the management period (and intermediate period)
is not limited to the length of one year nor to the start of a year, but can span half a year, several years or
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start within any point in time within the year (cf. in-year advice ICES (2019)). For example, applying two
default scenarios for a half year period starting in the middle of 1990:

repVarPer <- manage(rep, scenarios = c(1,4), maninterval = c(1990.5,1991))
Selected scenario(s): currentCatch, noF

Scenarios with different management intervals can also be combined, although the functions will print a note
about mismatching periods or assumptions in the intermediate period. For example, to add an advice rule
which reduces the F linearly to zero if the biomass is below 50% of B/BMSY over a management interval of
2 years to the previous scenarios:

repVarPer <- add.man.scenario(repVarPer, maninterval = c(1991, 1993),
breakpointB = 0.5)

plotspict.f(repVarPer)
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Additionally, the summary output will not show percentage differences for F or B (NaN) and the timeline
will only show the period with observations as the intermediate and management period differ between the
scenarios.

sumspict.manage(repVarPer)
SPiCT timeline:

Observations Intermediate Management
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1967.00 - 1990.00 1990.00 - 1990.50 1990.50 - 1991.00
|-----------------------| ----------------------| ----------------------|

Management evaluation: 1991.00

Predicted catch for management period and states at management evaluation time:

C B/Bmsy F/Fmsy
1. Keep current catch (@) 12.6 0.89 1.24
2. No fishing (@) 0.0 1.10 0.00
3. customScenario_1 (@) 41.7 0.89 1.00
(@) This scenario assumes another management period. Thus, the estimates might not be comparable to the other scenarios.

Advanced management settings and functionality Besides selecting scenarios in manage using the
argument scenarios, the function man.select can be used to change the order of scenarios or omit certain
or all scenarios included in rep$man:

names(rep$man)
[1] "currentCatch" "currentF" "Fmsy" "noF"
[5] "reduceF25" "increaseF25" "msyHockeyStick" "ices"

rep <- man.select(rep, scenarios = c(1,3))
Selected scenario(s): currentCatch, Fmsy

One of the important quantities in fisheries management is the predicted catch during the management
interval under given fishing mortality, also called Total Allowable Catch (TAC). The function man.tac allows
to extract a list with the TAC of all scenarios in rep$man:

man.tac(rep)
$currentCatch
[1] 25.23698

$Fmsy
[1] 21.25495

Note that the unit of the TAC corresponds to the catch unit specified in inp$catchunit or the unit of the
catch observations if not specified. If the user is only interested in the TAC of the specified management
scenario (e.f. for the implementation in a management strategy framework (MSE)), the function get.TAC
can be used:

get.TAC(rep, maninterval = c(1990.25, 1991),
safeguardB = list(limitB = 0.3), verbose = TRUE)

Note that the specified management interval: 1990.25 - 1991.00 differs from existing scenarios in rep$man.
[1] 15.73663

After comparing the implications of different management scenarios, it might be of interest to extract a specific
scenario for further analyses, plotting, or reporting. Specific scenarios can be extracted from the SPiCT object
by referencing their names or positioning in the list rep$man, e.g. rep$man[[1]]. However, care has to be
taken, as some scenarios (e.g. ‘constantCatch’ or scenarios with a specified catch in the intermediate period)
might include additional catch observations. Thus, the best way to select certain scenarios is by means of the
function man.select. This function does not only allow to change the order of the management scenarios in
rep$man or make a selection of scenarios, but also allows to extract a certain scenario as a standard SPiCT
object of the class spictcls:
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## selection by index
length(repIntPer$man)

[1] 5
repSelect1 <- man.select(repIntPer, scenarios = c(3,1))

Selected scenario(s): currentCatch, customScenario_1

## selection by scenario name
names(repIntPer$man)

[1] "currentCatch" "currentF" "customScenario_1" "reduced_catch"
[5] "ices"

repSelect2 <- man.select(repIntPer, scenarios = c("currentCatch"))
Selected scenario(s): currentCatch

## selected object as standard spictcls object
repSelect3 <- man.select(repIntPer, scenarios = c("currentCatch"), spictcls = TRUE)

## Plot objects with selected scenarios
opar <- par(mfrow=c(3,1))
plotspict.catch(repSelect1)
plotspict.catch(repSelect2)
plotspict.catch(repSelect3)
par(opar)
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Note the different catch trajectories of the second and third plot. Although, the same scenario was selected,
the first approach still shows the management-type plot, while the second approach (with argument spictcls
= TRUE) shows the default ‘spictcls’ catch plot with predicted uncertainties.

All management related results can easily be removed from the SPiCT object by overwriting the man element:
rep$man = NULL or

rep <- man.select(rep, scenarios = NULL)
All scenarios removed!
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Other model settings and options

catchunit - Define unit of catch observations

This will print the unit of the catches on relevant plots.

Example: inp$catchunit <- "'000 t".

dteuler and eulertype - Temporal discretisation and time step

To solve the continuous-time system an Euler discretisation scheme is used. This requires a time step to be
specified (dteuler). The smaller the time step the more accurate the approximation to the continuous-time
solution, however with the cost of increased memory requirements and computing time. The default value of
dteuler is 1/16, which seems sufficiently fine for most cases, and perhaps too fine for some cases. When
fitting quarterly data and species with fast growth it is important to have a small dteuler. The influence of
dteuler on the results can be checked by using different values and comparing resulting model estimates. If
dteuler <- 1 the model essentially becomes a discrete-time model with one Euler step per year.

There are two possible temporal discretisation schemes which can be set to either eulertype = 'hard'
(default) or eulertype = 'soft'. If eulertype = 'hard' then time is discretised into intervals of length
dteuler. Observations are then assigned to these intervals. For annual and quarterly data dteuler = 1/16
is appropriate, however if fitting to monthly data dteuler should be changed to e.g. 1/24. If eulertype =
'soft' (careful, this feature has not been thoroughly tested), then time is discretised into intervals of length
dteuler and additional time points corresponding to the times of observation are added to the discretisation.
This feature is particularly useful if observations (most likely index series) are observed at odd times during the
year. The model then estimates values of biomass and fishing mortality at the exact time of the observation
instead of assigning the observation to an interval.

msytype - Stochastic and deterministic reference points

As default the stochastic reference points are reported and used for calculation of relative levels of biomass
and fishing mortality. It is, however, possible to use the deterministic reference points by setting inp$msytype
<- 'd'.

do.sd.report - Perform SD report calculations

The sdreport step calculates the uncertainty of all quantities that are reported in addition to the model
parameters. For long time series and with small dteuler this step may have high memory requirements and
a substantial computing time. Thus, if one is only interested in the point estimates of the model parameters
it is advisable to set do.sd.report <- 0 to increase speed.

reportall - Report all derived quantities

If uncertainties of some quantities (such as reference points) are required, but uncertainty on state variables
(biomass and fishing mortality) are not needed, then reportall <- 0 can be used to increase speed.

optim.method - Report all derived quantities

Parameter estimation is per default performed using R’s nlminb() optimiser. Alternatively it is possible to
use optim by setting inp$optim.method <- 'optim'.
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