Content-Length: 267159 | pFad | https://github.com/GitiHubi/deepAD

03 GitHub - GitiHubi/deepAD: Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks - A lab we prepared for the KDD'19 Workshop on Anomaly Detection in Finance that will walk you through the detection of interpretable accounting anomalies using adversarial autoencoder neural networks. The majority of the lab content is based on Jupyter Notebook, Python and PyTorch.
Skip to content

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks - A lab we prepared for the KDD'19 Workshop on Anomaly Detection in Finance that will walk you through the detection of interpretable accounting anomalies using adversarial autoencoder neural networks. The majority of the lab content is based on J…

Notifications You must be signed in to change notification settings

GitiHubi/deepAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks

License: GPL v3

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks - A lab we prepared for the 2nd KDD'19 Workshop on Anomaly Detection in Finance that will walk you through the detection of interpretable accounting anomalies using adversarial autoencoder neural networks. The majority of the lab content is based on Jupyter Notebook, Python and PyTorch.

The workshop details are available via the KDD'19 workshop webpage under the following external link.

Running the Notebook

Open In Colab

Reference

Autoencoder

The lab is inspired by our work "Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks" by Marco Schreyer, Timur Sattarov, Christian Schulze, Bernd Reimer and Damian Borth.

The publication is available via arXiv under the following link: https://arxiv.org/abs/1908.00734 .

Questions?

Please feel free to get in touch by opening an issue report, submitting a pull request, or sending us an email.

Disclaimer

Opinions expressed in this work are solely those of the authors, and do not necessarily reflect the view of Deutsche Bundesbank or PricewaterhouseCoopers (PwC) International Ltd. and its network firms.

About

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks - A lab we prepared for the KDD'19 Workshop on Anomaly Detection in Finance that will walk you through the detection of interpretable accounting anomalies using adversarial autoencoder neural networks. The majority of the lab content is based on J…

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/GitiHubi/deepAD

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy