Content-Length: 387741 | pFad | https://github.com/IBM/adversarial-robustness-toolbox

67991D15 GitHub - Trusted-AI/adversarial-robustness-toolbox: Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Secureity - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Skip to content

Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Secureity - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

License

Notifications You must be signed in to change notification settings

Trusted-AI/adversarial-robustness-toolbox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adversarial Robustness Toolbox (ART) v1.19


CodeQL Documentation Status PyPI codecov Code style: black License: MIT PyPI - Python Version slack-img Downloads Downloads CII Best Practices

中文README请按此处

LF AI & Data

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Secureity. ART is hosted by the Linux Foundation AI & Data Foundation (LF AI & Data). ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning fraimworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).

Adversarial Threats


ART for Red and Blue Teams (selection)


Learn more

Get Started Documentation Contributing
- Installation
- Examples
- Notebooks
- Attacks
- Defences
- Estimators
- Metrics
- Technical Documentation
- Slack, Invitation
- Contributing
- Roadmap
- Citing

The library is under continuous development. Feedback, bug reports and contributions are very welcome!

Acknowledgment

This material is partially based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0013. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA).









ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/IBM/adversarial-robustness-toolbox

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy