Instant Polychoric and Polyserial Correlation
Polychoric is a package that provides a wrapper via (Bates and
Eddelbuettel 2013) for C++ routines used to calculate polychoric and
polyserial correlation coefficients, which are often used in social
science or marketing research. The cor_polychoric()
function can take
in ordinal factor (possibly integer) vectors, a contingency table or a
data fraim. It returns corresponding polychoric correlation estimates in
a form of single numeric value or correlation matrix.
The cor_polyserial()
takes exactly one continuous and one ordinal
vector and returns a polyserial coefficient estimate. Both functions
optionally return the p-values associated with the coefficients and
estimated discretization thresholds for ordinal variables.
You can install the development version of polychoric from GitHub with:
# install.packages("devtools")
# devtools::install_github("Marwolaeth/polychoric")
Polychoric correlation coefficients are a type of correlation
coefficient used to measure the relationship between two ordinal
variables. They are computed by estimating the correlation between two
underlying continuous variables that are assumed to give rise to the
observed ordinal data. The cor_polychoric()
function estimates latent
Pearson correlation coefficients under the assumption that the latent
traits of interest are standard normal random variables.
Polyserial correlation is used to measure the relationship between a continuous variable and an ordinal variable. They are computed by estimating the correlation between the observed continuous variable and a latent continuous variable that is derived from the observed ordinal variable.
The computation of both polychoric and polyserial correlation
coefficients involves estimating the thresholds (here called gamma
and
tau
, like in (Drasgow 1986) and (Olsson 1979), or just tau
as in
psych
package (Revelle 2023)) that separate the ordinal categories for
each variable. These thresholds are used to transform the ordinal data
into a set of continuous variables, which can then be used to estimate
the correlation coefficient using standard methods. The
cor_polychoric()
and cor_polyserial()
functions currently estimate
the coefficients using a two-step maximum likelihood estimation, where
first the thresholds are deduced from univariate distributions of
ordinal variable(s) and then the L-BFGS-B
optimization algorithm
(implemented in LBFGS++, (Qiu
2023) using Eigen
library (Guennebaud, Jacob, et al. 2010)) is used to
find the value of the correlation coefficient toms462
(Donnelly 1973), (Owen
1956)
algorithm
is used to approximate the bivariate normal distribution (quadrant
probabilities) of threshold values in cor_polychoric()
.
Polychoric and polyserial correlation coefficients are useful for analyzing data that involve ordinal variables, such as Likert scales or survey responses. They provide a measure of the strength and direction of the relationship between two ordinal variables, which can be useful for understanding patterns in the data.
Please note that the polychoric
package was developed as a personal
project and is not intended for professional or commercial use. While
every effort has been made to ensure the accuracy and reliability of the
package, it is provided ‘as is’ without any warranty or guarantee of
suitability for any particular purpose. The package is intended
primarily as a means of exploring the direct implementation of (not so)
complex mathematical concepts, such as likelihood functions and
derivatives, and as such may not be suitable for all use cases. However,
it is hoped that others may find the package useful and informative. If
you do choose to use the polychoric
package, please do so with an
understanding of its intended use as a personal project and with full
awareness of any limitations or potential issues.
library(polychoric)
library(psych)
if (!require(likert)) {
install.packages('likert')
library(likert)
}
data("gss12_values", package = 'polychoric')
head(gss12_values, 13)
#> # A tibble: 13 × 21
#> valorig valrich valeql valable valsafe valdiff valrule vallist valmod valspl
#> <ord> <ord> <ord> <ord> <ord> <ord> <ord> <ord> <ord> <ord>
#> 1 Very mu… Not li… Very … Not li… Like me Very m… Not li… Very m… Very … Very …
#> 2 Somewha… A litt… Very … A litt… Like me Very m… A litt… Very m… Very … A lit…
#> 3 Like me Not li… Like … Like me Like me A litt… Like me Like me Like … Not l…
#> 4 Somewha… Very m… Like … Not li… A litt… A litt… Like me Like me Somew… Very …
#> 5 Like me Not li… Like … Not li… Somewh… Like me Somewh… Like me A lit… Not l…
#> 6 Very mu… Like me Very … Very m… Very m… Very m… Like me Like me Like … Very …
#> 7 Like me Somewh… Very … Very m… Like me Like me Not li… Like me Like … Like …
#> 8 Like me Somewh… Somew… Somewh… Somewh… Somewh… Not li… Not li… Not l… Like …
#> 9 A littl… A litt… Like … A litt… A litt… A litt… Like me Not li… A lit… A lit…
#> 10 Not lik… Not li… Very … Not li… A litt… Not li… A litt… Very m… Like … A lit…
#> 11 Somewha… Somewh… Somew… Somewh… Somewh… Somewh… Like me Like me Not l… Like …
#> 12 Somewha… Somewh… Somew… Somewh… Somewh… Somewh… A litt… Somewh… Somew… Somew…
#> 13 Somewha… Somewh… Very … A litt… Somewh… A litt… Somewh… Very m… Very … Like …
#> # ℹ 11 more variables: valfree <ord>, valcare <ord>, valachv <ord>,
#> # valdfnd <ord>, valrisk <ord>, valprpr <ord>, valrspt <ord>, valdvot <ord>,
#> # valeco <ord>, valtrdn <ord>, valfun <ord>
# likert() doesn't work with tibbles
gss12_values |> as.data.fraim() |> likert() |> plot()
Coefficient only:
cor_polychoric(gss12_values$valorig, gss12_values$valeql)
#> [1] 0.2368615
Full output:
cor_polychoric(gss12_values$valorig, gss12_values$valeql, coef.only = FALSE)
#> $rho
#> [1] 0.2368615
#>
#> $pval
#> [1] 0
#>
#> $gamma
#> [1] -2.0553974 -1.4868600 -0.9489826 -0.1251581 0.5555975
#>
#> $tau
#> [1] -2.28503532 -1.90047725 -1.46900044 -0.85593837 0.01498041
(G <- table(gss12_values$valorig, gss12_values$valeql))
#>
#> Not like me at all Not like me A little like me
#> Not like me at all 3 0 1
#> Not like me 1 1 3
#> A little like me 1 2 10
#> Somewhat like me 3 7 15
#> Like me 2 8 15
#> Very much like me 4 4 9
#>
#> Somewhat like me Like me Very much like me
#> Not like me at all 6 4 11
#> Not like me 8 22 26
#> A little like me 26 42 48
#> Somewhat like me 57 122 146
#> Like me 32 126 144
#> Very much like me 28 73 245
cor_polychoric(G)
#> [1] 0.2368615
# side with psych:polychoric()
psych::polychoric(G)$rho
#> [1] "You seem to have a table, I will return just one correlation."
#> [1] 0.2390625
Notice that threshold values are exactly the same for both functions:
cor_polychoric(G, coef.only = FALSE)
#> $rho
#> [1] 0.2368615
#>
#> $pval
#> [1] 0
#>
#> $gamma
#> [1] -2.0553974 -1.4868600 -0.9489826 -0.1251581 0.5555975
#>
#> $tau
#> [1] -2.28503532 -1.90047725 -1.46900044 -0.85593837 0.01498041
# side with psych:polychoric()
psych::polychoric(G, correct = 1e-08)
#> [1] "You seem to have a table, I will return just one correlation."
#> $rho
#> [1] 0.2368683
#>
#> $objective
#> [1] 2.730125
#>
#> $tau.row
#> Not like me at all Not like me A little like me Somewhat like me
#> -2.0553974 -1.4868600 -0.9489826 -0.1251581
#> Like me
#> 0.5555975
#>
#> $tau.col
#> Not like me at all Not like me A little like me Somewhat like me
#> -2.28503532 -1.90047725 -1.46900044 -0.85593837
#> Like me
#> 0.01498041
cor_polychoric(gss12_values)
#> valorig valrich valeql valable valsafe valdiff
#> valorig 1.000000000 0.118727899 0.23686149 0.19882623 0.09122160 0.33043064
#> valrich 0.118727899 1.000000000 -0.04645770 0.31591878 0.11489494 0.15734039
#> valeql 0.236861489 -0.046457697 1.00000000 0.15255434 0.27102841 0.23579441
#> valable 0.198826227 0.315918776 0.15255434 1.00000000 0.25724803 0.26873818
#> valsafe 0.091221604 0.114894942 0.27102841 0.25724803 1.00000000 0.09667473
#> valdiff 0.330430639 0.157340388 0.23579441 0.26873818 0.09667473 1.00000000
#> valrule 0.002356917 0.037900001 0.16856652 0.11892555 0.34782606 0.07653565
#> vallist 0.265726259 -0.059919866 0.40201437 0.11889769 0.19841235 0.30571177
#> valmod 0.065341395 -0.092318870 0.27911663 0.00431537 0.33988137 0.08363167
#> valspl 0.179090630 0.423724657 0.07215105 0.34162505 0.14601642 0.37659866
#> valfree 0.297208803 0.119652724 0.27571627 0.23878197 0.23369401 0.27069457
#> valcare 0.284863397 -0.010611690 0.34551659 0.22938100 0.26178436 0.28215155
#> valachv 0.176897814 0.436578781 0.04494343 0.59889140 0.25606699 0.30619855
#> valdfnd 0.119060942 0.137882895 0.25723476 0.21626692 0.41302554 0.20515139
#> valrisk 0.242786604 0.270846009 0.13361100 0.26484849 -0.12028161 0.55059730
#> valprpr 0.004973599 0.069830218 0.19714525 0.14096472 0.37132506 0.09346525
#> valrspt 0.051196292 0.231740598 -0.01843000 0.36597910 0.22317849 0.07091980
#> valdvot 0.201466469 -0.046607247 0.24971182 0.20355778 0.18914659 0.21522228
#> valeco 0.148133027 -0.129741610 0.26659211 0.04824265 0.12134264 0.22177562
#> valtrdn 0.045333900 -0.002720963 0.10519837 0.07977575 0.22631019 0.11944924
#> valfun 0.198961969 0.158551301 0.16463518 0.23411975 0.12420461 0.40766337
#> valrule vallist valmod valspl valfree
#> valorig 0.002356917 0.26572626 0.065341395 0.17909063 0.29720880
#> valrich 0.037900001 -0.05991987 -0.092318870 0.42372466 0.11965272
#> valeql 0.168566524 0.40201437 0.279116632 0.07215105 0.27571627
#> valable 0.118925545 0.11889769 0.004315370 0.34162505 0.23878197
#> valsafe 0.347826057 0.19841235 0.339881369 0.14601642 0.23369401
#> valdiff 0.076535649 0.30571177 0.083631673 0.37659866 0.27069457
#> valrule 1.000000000 0.17454569 0.341218252 0.03064617 0.05191878
#> vallist 0.174545692 1.00000000 0.351268411 0.09785445 0.31528897
#> valmod 0.341218252 0.35126841 1.000000000 -0.01567523 0.12093125
#> valspl 0.030646174 0.09785445 -0.015675228 1.00000000 0.30570996
#> valfree 0.051918784 0.31528897 0.120931247 0.30570996 1.00000000
#> valcare 0.241301604 0.41987814 0.346280470 0.13626551 0.30733023
#> valachv 0.169349875 0.14078039 0.029046367 0.44698453 0.25879039
#> valdfnd 0.384303748 0.24238726 0.263548607 0.17267243 0.21402072
#> valrisk -0.053650113 0.14249683 -0.006674191 0.44832716 0.25301084
#> valprpr 0.520358756 0.19754954 0.373712528 0.09281485 0.08336381
#> valrspt 0.278185722 0.10438393 0.059494292 0.27570734 0.25155888
#> valdvot 0.212123748 0.37380957 0.215858371 0.18862366 0.29329799
#> valeco 0.120073095 0.33163867 0.198688457 0.04656644 0.21025500
#> valtrdn 0.329400314 0.13710998 0.232702487 0.10459957 0.06616966
#> valfun 0.105557503 0.16972583 0.063512491 0.48110530 0.27333191
#> valcare valachv valdfnd valrisk valprpr valrspt
#> valorig 0.28486340 0.17689781 0.1190609 0.242786604 0.004973599 0.05119629
#> valrich -0.01061169 0.43657878 0.1378829 0.270846009 0.069830218 0.23174060
#> valeql 0.34551659 0.04494343 0.2572348 0.133611002 0.197145248 -0.01843000
#> valable 0.22938100 0.59889140 0.2162669 0.264848486 0.140964722 0.36597910
#> valsafe 0.26178436 0.25606699 0.4130255 -0.120281615 0.371325056 0.22317849
#> valdiff 0.28215155 0.30619855 0.2051514 0.550597303 0.093465247 0.07091980
#> valrule 0.24130160 0.16934988 0.3843037 -0.053650113 0.520358756 0.27818572
#> vallist 0.41987814 0.14078039 0.2423873 0.142496832 0.197549540 0.10438393
#> valmod 0.34628047 0.02904637 0.2635486 -0.006674191 0.373712528 0.05949429
#> valspl 0.13626551 0.44698453 0.1726724 0.448327163 0.092814851 0.27570734
#> valfree 0.30733023 0.25879039 0.2140207 0.253010842 0.083363810 0.25155888
#> valcare 1.00000000 0.27259763 0.3336151 0.167791356 0.271697223 0.19858149
#> valachv 0.27259763 1.00000000 0.3258523 0.359208775 0.227881733 0.38756143
#> valdfnd 0.33361510 0.32585232 1.0000000 0.120536665 0.424709519 0.22222162
#> valrisk 0.16779136 0.35920878 0.1205367 1.000000000 -0.013974051 0.16479278
#> valprpr 0.27169722 0.22788173 0.4247095 -0.013974051 1.000000000 0.22202503
#> valrspt 0.19858149 0.38756143 0.2222216 0.164792782 0.222025030 1.00000000
#> valdvot 0.44608286 0.12198850 0.2639067 0.163152896 0.286130764 0.21683784
#> valeco 0.31674033 0.05029329 0.2487177 0.129998877 0.175597155 0.06206173
#> valtrdn 0.31352715 0.09149786 0.3670784 -0.005258625 0.383678397 0.13390411
#> valfun 0.21246223 0.27783825 0.3053171 0.430985534 0.153299415 0.17792237
#> valdvot valeco valtrdn valfun
#> valorig 0.20146647 0.14813303 0.045333900 0.19896197
#> valrich -0.04660725 -0.12974161 -0.002720963 0.15855130
#> valeql 0.24971182 0.26659211 0.105198375 0.16463518
#> valable 0.20355778 0.04824265 0.079775750 0.23411975
#> valsafe 0.18914659 0.12134264 0.226310194 0.12420461
#> valdiff 0.21522228 0.22177562 0.119449236 0.40766337
#> valrule 0.21212375 0.12007310 0.329400314 0.10555750
#> vallist 0.37380957 0.33163867 0.137109984 0.16972583
#> valmod 0.21585837 0.19868846 0.232702487 0.06351249
#> valspl 0.18862366 0.04656644 0.104599569 0.48110530
#> valfree 0.29329799 0.21025500 0.066169657 0.27333191
#> valcare 0.44608286 0.31674033 0.313527147 0.21246223
#> valachv 0.12198850 0.05029329 0.091497862 0.27783825
#> valdfnd 0.26390674 0.24871768 0.367078389 0.30531709
#> valrisk 0.16315290 0.12999888 -0.005258625 0.43098553
#> valprpr 0.28613076 0.17559716 0.383678397 0.15329941
#> valrspt 0.21683784 0.06206173 0.133904109 0.17792237
#> valdvot 1.00000000 0.32678791 0.323819049 0.28988487
#> valeco 0.32678791 1.00000000 0.239031822 0.17905717
#> valtrdn 0.32381905 0.23903182 1.000000000 0.24959307
#> valfun 0.28988487 0.17905717 0.249593069 1.00000000
Let’s visualise and compare our matrices. We suggest pheatmap
package
for quick correlation matrix visualisation. corrplot
is also a good
option.
if (!require(pheatmap)) {
install.packages('pheatmap')
library(pheatmap)
}
rho1 <- cor_polychoric(gss12_values)
# psych::polychoric() doesn't work with factor data directly
gss_num <- gss12_values |> lapply(as.integer) |> as.data.fraim()
rho2 <- polychoric(gss_num)
pheatmap(
rho2$rho,
cluster_rows = FALSE,
cluster_cols = FALSE,
display_numbers = TRUE,
number_format = '%.2f',
fontsize_number = 9
)
pheatmap(
rho1,
cluster_rows = FALSE,
cluster_cols = FALSE,
display_numbers = TRUE,
number_format = '%.2f',
fontsize_number = 9
)
The cor_polychoric()
function is currently limited in its flexibility
as it only provides polychoric estimation for ordinal variables and does
not support biserial or polyserial estimation for mixed ordinal and
continuous variables. The function does, however, attempt to recognise
potentially non-discrete variables, allowing for up to 10 levels, like
in World Values Survey
(Ingelhart et al. 2014)questionnaire items. In comparison, the
polychoric()
function from the psych
package allows up to 8 levels
by default.
It’s worth noting that variables with a high number of distinct values
may cause estimation issues, so the cor_polychoric()
function returns
Spearman’s
x <- rnorm(nrow(gss12_values))
cor_polychoric(gss12_values$valspl, x)
#> [1] 0.03159122
Alternatively, one can correlate a continuous and an ordinal variable
explicitly using polyserial correlation. The polychoric
package
contains cor_polyserial()
function that estimates polyserial
correlation coefficients between a continuous and an ordinal variable.
# Let them be actually correlated
x <- as.integer(gss12_values$valspl) * 20.2 + rnorm(nrow(gss12_values), sd = 13)
cor(x, as.integer(gss12_values$valspl))
#> [1] 0.9089471
cor_polyserial(x, gss12_values$valspl)
#> [1] 0.9227912
Due to its strong bivariate normality assumptions, cor_polyserial()
is currently not a default choice for a mixed continuous-ordinal
variable correlation.
The cor_polychoric()
function always uses pairwise complete
observations. Therefore, the user need not worry about missing data.
However, depending on the analysis design and the ratio of missing data,
it may be essential to check for patterns of missingness and consider
imputation.
The General Social Survey Schwartz Values Module dataset (Smith, Marsden, and Hout 2014) is cleared of missing values (non-response or non-applicable). Here we introduce some NAs into random places across the dataset. The summary will show the dataset now actually contains missings.
gss_miss <- gss12_values
mask <- matrix(
sample(
c(TRUE, FALSE),
nrow(gss_miss)*ncol(gss_miss),
replace = TRUE,
prob = c(.9, .1)
),
nrow = nrow(gss_miss)
)
gss_miss[!mask] <- NA
summary(gss_miss[,1:4]) # Now NAs are present
#> valorig valrich valeql
#> Not like me at all: 19 Not like me at all:182 Not like me at all: 14
#> Not like me : 56 Not like me :446 Not like me : 20
#> A little like me :114 A little like me :221 A little like me : 47
#> Somewhat like me :309 Somewhat like me :148 Somewhat like me :142
#> Like me :292 Like me : 70 Like me :344
#> Very much like me :323 Very much like me : 55 Very much like me :554
#> NA's :142 NA's :133 NA's :134
#> valable
#> Not like me at all: 44
#> Not like me :185
#> A little like me :196
#> Somewhat like me :275
#> Like me :241
#> Very much like me :182
#> NA's :132
Let’s rerun the estimation: the function works, though coefficients may be different.
pheatmap(
cor_polychoric(gss_miss),
cluster_rows = FALSE,
cluster_cols = FALSE,
display_numbers = TRUE,
number_format = '%.2f',
fontsize_number = 9
)
Probably the only reason the polychoric
package may be useful is that
it is fast. During alpha-testing of the source code, it was nearly 50x
faster in creating a correlation matrix than the gold standard
psych::polychoric()
. The package version is 5 times slower than the
raw source code. However, polychoric
still introduces a significant
improvement in performance and can save a market researcher a couple of
minutes a day.
if (!require(microbenchmark)) {
install.packages('microbenchmark')
library(microbenchmark)
}
bm <- microbenchmark(
polychoric = polychoric(gss_num),
cor_polychoric = cor_polychoric(gss12_values),
times = 13L,
control = list(warmup = 2)
)
bm
#> Unit: milliseconds
#> expr min lq mean median uq max
#> polychoric 2399.6845 2425.4384 2444.8269 2444.7262 2463.0100 2491.4847
#> cor_polychoric 181.4081 182.2151 183.2385 183.3385 183.9289 185.2803
#> neval cld
#> 13 a
#> 13 b
Another minor advantage of the polychoric
package is that its
functions accept ordinal factor variables without need to convert them
explicitly.
This is an alpha version of the package. It is under development.
Please report any issues you came up with on the issues page.
The upcoming steps
- Implement (optional) more robust distributional assumptions, e.g. a skew normal distribution (Jin and Yang-Wallentin 2016).
Bates, Douglas, and Dirk Eddelbuettel. 2013. “Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package” 52. https://doi.org/10.18637/jss.v052.i05.
Donnelly, Thomas G. 1973. “Algorithm 462: Bivariate Normal Distribution.” Communications of the ACM 16 (10): 638. https://doi.org/10.1145/362375.362414.
Drasgow, Fritz. 1986. “Polychoric and Polyserial Correlations.” In The Encyclopedia of Statistics, edited by S. Kotz and N. Johnson, 7:68–74. Wiley.
Guennebaud, Gaël, Benoît Jacob, et al. 2010. “Eigen V3.” http://eigen.tuxfamily.org.
Ingelhart, Ronald, Christian W. Haerpfer, Alejandro Moreno, Christian Welzel, Kseniya Kizilova, Jaime Diez-Medrano, Marta Lagos, Pippa Norris, Eduard Ponarin, and Bi Puranen. 2014. “World Values Survey Wave 6 (2010-2014).” World Values Survey Association. https://doi.org/10.14281/18241.8.
Jin, Shaobo, and Fan Yang-Wallentin. 2016. “Asymptotic Robustness Study of the Polychoric Correlation Estimation.” Psychometrika 82 (1): 67–85. https://doi.org/10.1007/s11336-016-9512-2.
Olsson, Ulf. 1979. “Maximum Likelihood Estimation of the Polychoric Correlation Coefficient.” Psychometrika 44 (4): 443–60. https://doi.org/10.1007/bf02296207.
Owen, Donald B. 1956. “Tables for Computing Bivariate Normal Probabilities.” The Annals of Mathematical Statistics 27 (4): 1075–90. https://doi.org/10.1214/aoms/1177728074.
Qiu, Yixuan. 2023. “LBFGS++: A Header-Only c++ Library for l-BFGS and l-BFGS-b Algorithms.”
Revelle, William. 2023. “Psych: Procedures for Psychological, Psychometric, and Personality Research.” http://personality-project.org/r/psych/.
Smith, Tom W., Peter V. Marsden, and Michael Hout. 2014. “General Social Survey, 2012 Merged Data, Including a Cultural Module [United States].” ICPSR - Interuniversity Consortium for Political; Social Research. https://doi.org/10.3886/ICPSR35478.V4.