Content-Length: 5695 | pFad | https://github.com/lipan6461188/AlphaFold-StepByStep/raw/refs/heads/main/run_af2_step2.py

th: 5683 #!/usr/bin/env python #-*- coding:utf-8 -*- # # # AlphaFold2 Step 2 -- Run models 1-5 to produce the unrelaxed models # Usage: run_af2_step2.py [--data_dir AF2_db_dir] /path/to/features.pkl /path/to/output_dir # # import json import os import pathlib import pickle import random import shutil import sys import time import gzip from typing import Dict, Union, Optional import configparser import argparse import inspect os.environ['TF_FORCE_UNIFIED_MEMORY'] = '1' os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '4.0' cur_path = pathlib.Path(__file__).parent.resolve() ini_config = configparser.ConfigParser(allow_no_value=True) assert len(ini_config.read(os.path.join(cur_path, 'config.ini'))) > 0, "Read config.ini failed" sys.path.insert(0, ini_config['ALPHAFOLD2']['alphafold_path']) from alphafold.common import protein from alphafold.common import residue_constants from alphafold.data import pipeline from alphafold.model import config from alphafold.model import model from alphafold.relax import relax from alphafold.model import data import numpy as np parser = argparse.ArgumentParser(description='AlphaFold2 Step 2 -- Run models 1-5 to produce the unrelaxed models') parser.add_argument('input_file', metavar='input_file', type=str, help='The features.pkl file generated by AlphaFold2 step 1') parser.add_argument('output_dir', metavar='output_dir', type=str, help='Path to a directory that will store the results.') parser.add_argument('--params_parent_dir', default=ini_config['DATABASE']['params_parent_dir'], type=str, help="Path to the AlphaFold database, must contain params path") parser.add_argument('--models', default='1,2,3,4,5', type=str, help="Models to run, seperated by comma. (1,2,3 or 1_ptm,2_ptm)") parser.add_argument('--num_recycle', default=3, type=int, help="Number of recycles") parser.add_argument('--num_ensemble', default=1, type=int, help="Number of ensembl") args = parser.parse_args() ###################### ## Util functions ###################### def func_has_agu(func, agu): param_keys = list(inspect.signature(func).parameters.keys()) return agu in param_keys model_names = [f'model_{i}' for i in range(1, 6)] def get_model_runner(i, ptm=False): model_name = model_names[i] if ptm: model_name += "_ptm" model_config = config.model_config(model_name) model_config.data.eval.num_ensemble = args.num_ensemble model_config.model.num_recycle = args.num_recycle #if args.low_memory: # model_config.model.global_config.subbatch_size = 1 # To save memory model_params = data.get_model_haiku_params(model_name=model_name, data_dir=args.params_parent_dir) model_runner = model.RunModel(model_config, model_params) return model_runner, model_params ###################### ## Read features.pkl file ###################### if args.input_file.endswith('.gz'): feature_dict = pickle.load(gzip.open(args.input_file, 'rb')) else: feature_dict = pickle.load(open(args.input_file, 'rb')) print("Input length:", feature_dict['aatype'].shape[0], flush=True) ###################### ## Run model 1-5 sperately ###################### output_dir = args.output_dir assert os.path.exists(output_dir), "Error: --output_dir does not exists" models_to_run = [] models_are_ptm = [] for item in args.models.split(','): if '_' in item: id_, ptm_ = item.split('_') else: id_ = item ptm_ = '' id_ = int(id_) - 1 models_to_run.append(int(id_)) if ptm_ == 'ptm': models_are_ptm.append(True) else: models_are_ptm.append(False) assert 0 <= int(id_) <= 4, "Error: --models should be 1<=model<=5" for i,ptm in zip(models_to_run, models_are_ptm): ptm_token = '_ptm' if ptm else '' unrelaxed_pdb_path = os.path.join(output_dir, f'unrelaxed_{model_names[i]}{ptm_token}.pdb') result_output_path = os.path.join(output_dir, f'result_{model_names[i]}{ptm_token}.pkl.gz') if os.path.exists(unrelaxed_pdb_path) and os.path.exists(result_output_path): print(f"Info: {unrelaxed_pdb_path} and {result_output_path} exists, please delete and try again", flush=True) continue print(f"Start to run model_{i+1}{ptm_token}", flush=True) ########################### ### Get the Runner ############################ model_runner, model_params = get_model_runner(i, ptm) processed_feature_dict = model_runner.process_features(feature_dict, random_seed=None) if func_has_agu(model_runner.predict, 'random_seed'): prediction_result = model_runner.predict(processed_feature_dict, random_seed=0) else: prediction_result = model_runner.predict(processed_feature_dict) # Save memory del model_runner del model_params ########################### ### Save as Protein object ############################ plddt = prediction_result['plddt'] plddt_b_factors = np.repeat(plddt[:, None], residue_constants.atom_type_num, axis=-1) params = { 'features': processed_feature_dict, 'result': prediction_result, 'b_factors': plddt_b_factors, } if func_has_agu(protein.from_prediction, 'remove_leading_feature_dimension'): params['remove_leading_feature_dimension'] = True unrelaxed_protein = protein.from_prediction(**params) ########################### ### Save as PDB file ########################### unrelaxed_pdb = protein.to_pdb(unrelaxed_protein) print(unrelaxed_pdb, file=open(unrelaxed_pdb_path, 'w')) ########################### ### Save as pkl file ########################### pickle.dump(prediction_result, gzip.open(result_output_path, 'wb'), protocol=4)








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/lipan6461188/AlphaFold-StepByStep/raw/refs/heads/main/run_af2_step2.py

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy