Content-Length: 266674 | pFad | https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-cam%2B%2B

BA 3D-Speaker/egs/3dspeaker/sv-cam++ at main · modelscope/3D-Speaker · GitHub
Skip to content

Latest commit

 

History

History

sv-cam++

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CAM++

Training config

  • Feature: 80-dim fbank, mean normalization, speed perturb
  • Training: lr [0.0001, 0.1], batch_size 256, 4 gpu(Tesla V100), additive angular margin
  • Metrics: EER(%), MinDCF

3D-Speaker results

  • Train set: 3D-Speaker-train
  • Test set: 3D-Speaker-test
Model Params Cross-Device Cross-Distance Cross-Dialect
ECAPA-TDNN 20.8M 8.87% 12.26% 14.53%
CAM++ 7.18M 7.75% 11.29% 13.44%

Pretrained model

Pretrained models are accessible on ModelScope.

Here is a simple example for directly extracting embeddings. It downloads the pretrained model from ModelScope and extracts embeddings.

# Install modelscope
pip install modelscope
# CAM++ trained on 3D-Speaker
model_id=damo/speech_campplus_sv_zh-cn_3dspeaker_16k
# CAM++ trained on 200k labeled speakers
model_id=damo/speech_campplus_sv_zh-cn_16k-common
# Run inference
python speakerlab/bin/infer_sv.py --model_id $model_id --wavs $wav_path

Citations

If you are using CAM++ model in your research, please cite:

@article{cam++,
  title={CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking},
  author={Hui Wang and Siqi Zheng and Yafeng Chen and Luyao Cheng and Qian Chen},
  booktitle={Interspeech 2023},
  year={2023},
  organization={IEEE}
}








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-cam%2B%2B

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy