Content-Length: 267576 | pFad | https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-eres2netv2

EC 3D-Speaker/egs/3dspeaker/sv-eres2netv2 at main · modelscope/3D-Speaker · GitHub
Skip to content

Latest commit

 

History

History

sv-eres2netv2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ERes2Net

Training config

  • Feature: 80-dim fbank, mean normalization, speed perturb
  • Training: lr [0.00005, 0.2], batch_size 512, 8 gpu(Tesla V100), additive angular margin, speaker embeddding=192
  • Metrics: EER(%), MinDCF(p-target=0.01)

3D-Speaker results

  • Train set: 3D-Speaker-train
  • Test set: 3D-Speaker-test
Model Params Cross-Device Cross-Distance Cross-Dialect
ECAPA-TDNN 20.8M 8.87% 12.26% 14.53%
ERes2Net-base 6.61M 7.06% 9.95% 12.76%
ERes2Net-large 22.46M 6.55% 9.45% 11.01%
ERes2NetV2-lm 17.8M 6.52% 8.88% 11.34%

Pretrained model

Pretrained models are accessible on ModelScope.

Here is a simple example for directly extracting embeddings. It downloads the pretrained model from ModelScope and extracts embeddings.

# Install modelscope
pip install modelscope
# ERes2Net trained on 3D-Speaker
model_id=damo/speech_eres2net_large_sv_zh-cn_3dspeaker_16k
# ERes2Net trained on 200k labeled speakers
model_id=damo/speech_eres2net_sv_zh-cn_16k-common
# Run inference
python speakerlab/bin/infer_sv.py --model_id $model_id --wavs $wav_path

Citations

If you are using ERes2Net model in your research, please cite:

@article{eres2net,
  title={An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification},
  author={Yafeng Chen, Siqi Zheng, Hui Wang, Luyao Cheng, Qian Chen, Jiajun Qi},
  booktitle={Interspeech 2023},
  year={2023},
  organization={IEEE}
}








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-eres2netv2

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy