Content-Length: 259543 | pFad | https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-resnet

B0 3D-Speaker/egs/3dspeaker/sv-resnet at main · modelscope/3D-Speaker · GitHub
Skip to content

Latest commit

 

History

History

sv-resnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ResNet

Training config

  • Feature: 80-dim fbank, mean normalization, speed perturb
  • Training: lr [0.00005, 0.2], batch_size 256, 4 gpus(Tesla V100), additive angular margin, speaker embeddding=192
  • Metrics: EER(%), MinDCF(p-target=0.01)

3D-Speaker results

  • Train set: 3D-Speaker-train
  • Test set: 3D-Speaker-test
Model Params Cross-Device Cross-Distance Cross-Dialect
ECAPA-TDNN 20.8 M 8.87% 12.26% 14.53%
ResNet34 6.34 M 7.29% 8.98% 12.81%

Pretrained model

Pretrained models are accessible on ModelScope.

Here is a simple example for directly extracting embeddings. It downloads the pretrained model from ModelScope and extracts embeddings.

# Install modelscope
pip install modelscope
# ResNet34 trained on 3D-Speaker-Dataset
model_id=iic/speech_resnet34_sv_zh-cn_3dspeaker_16k
# Run inference
python speakerlab/bin/infer_sv.py --model_id $model_id --wavs $wav_path








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/modelscope/3D-Speaker/tree/main/egs/3dspeaker/sv-resnet

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy