Content-Length: 264281 | pFad | https://github.com/modelscope/3D-Speaker/tree/main/egs/cnceleb/sv-ecapa

12 3D-Speaker/egs/cnceleb/sv-ecapa at main · modelscope/3D-Speaker · GitHub
Skip to content

Latest commit

 

History

History

sv-ecapa

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ECAPA-TDNN

Training config

  • Feature: 80-dim fbank, mean normalization, speed perturb
  • Training: lr [0.0001, 0.2], batch_size 256, 4 gpus(Tesla V100), additive angular margin
  • Metrics: EER(%), MinDCF

CNCeleb results

  • Train set: CNCeleb-dev + CNCeleb2, 2973 speakers
  • Test set: CNCeleb-eval
Model Params EER(%) MinDCF
ECAPA-TDNN 20.8M 8.01 0.445

Pretrained model

Pretrained models are accessible on ModelScope.

Here is a simple example for directly extracting embeddings. It downloads the pretrained model from ModelScope and extracts embeddings.

# Install modelscope
pip install modelscope
# ECAPA-TDNN trained on CNCeleb
model_id=damo/speech_ecapa-tdnn_sv_zh-cn_cnceleb_16k
# Run inference
python speakerlab/bin/infer_sv.py --model_id $model_id --wavs $wav_path

Citations

If you are using ECAPA-TDNN model in your research, please cite:

@article{desplanques2020ecapa,
  title={Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification},
  author={Desplanques, Brecht and Thienpondt, Jenthe and Demuynck, Kris},
  journal={arXiv preprint arXiv:2005.07143},
  year={2020}
}








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: https://github.com/modelscope/3D-Speaker/tree/main/egs/cnceleb/sv-ecapa

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy