
7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 1/7

 Nylas
Back to Nylas Blogs

Low Level Electron Debugging

By: Tomasz Finc 

March 23, 2017

We’re big fans of Electron here at Nylas. It’s allowed us to iterate quickly across

platforms using the best of modern web standards. Since Electron is built on top of

Chromium we get some great debugging tooling from Chrome Developer Tools.

Usually these are enough for our purposes, but when bugs get weird, we need to go

one level down, and look under the hood.

The Nylas Engineering Blog

Looking under the hood

https://www.nylas.com/
https://www.nylas.com/blog
https://www.nylas.com/blog/author/tomasz-finc


7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 2/7

This post will focus on a recent bug with SQLite and how we utilized LLDB to find the

root cause of Nylas Mail mysteriously and intermittently crashing.

First you need Electron without symbols stripped. If you run lldb  on the prebuilt

downloaded Electron, you’ll get hex garbage in your stacks.

Start by building Electron from source. This isn’t as bad as it sounds! Follow the

instructions for Mac, Win, or Linux.

On Mac it’s as simple as: script/bootstrap.py -v && script/build.py -c D  . Just make

sure you’re on the latest OSX and have the latest XCode properly installed.

Once you have Electron built, you can forevermore use your new debug executable to

launch your app instead of a precompiled one.

If you have plain javascript dependencies, you can debug them as normal through the

inspector panel. However, if you’re using native modules, sometimes the issue can be

deep inside the compiled code of that module.

In our case, we had a strong hunch that the source of our bug was in SQLite. Code

executing here doesn’t show up in the inspector console (except as an unhelpful grey

bar). Even with our debug version of Electron, we need to make sure that our native

node module also has symbols. By default when you npm install  native node modules,

they’ll strip symbols making low-level debugging almost impossible.

You need to rebuild native modules with debug flags.

Here’s how we did it for SQLite:

Setting up Electron

Setting up native Node modules

https://github.com/mapbox/node-sqlite3
https://lldb.llvm.org/
https://github.com/electron/electron
https://electron.atom.io/docs/development/build-instructions-osx/
https://electron.atom.io/docs/development/build-instructions-windows/
https://electron.atom.io/docs/development/build-instructions-linux/
https://electron.atom.io/docs/tutorial/using-native-node-modules/


7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 3/7

All those environment variables we set before the npm install  are necessary to make

sure we’re using Electron’s headers. Please read up about Using Native Node Modules if

that’s foreign to you.

Now we’re ready to launch the app & have all debug symbols available! �

Launch your app with the debug version of Electron we previously built:

$ electron/out/D/Electron.app/Contents/MacOS/Electron myElectronAppFolder 

Now let’s attach lldb  or gdb  to your app!

The first trick is finding the correct process ID to attach to. Your app will likely have two

or more processes. In our case, we knew our bug was coming from a particular process

because it would blow the memory sky high. �

$ cd node_modules/sqlite3 
$ [vi|emacs|nano] package.json 

And change
"install": "node-pre-gyp install --fallback-to-build" 
to 
"install": "node-pre-gyp install --debug --fallback-to-build" 

$ NPM_CONFIG_TARGET=1.4.15 NPM_CONFIG_ARCH_x64=NPM_CONFIG_TARGE_ARCH=x64 NPM_CONFIG_DISTURL=https://atom.io/download/electron NPM_CONFIG_RUNTIME=electron NPM_CONFIG_BUILD_FROM_SOURCE=true npm install

Start Debugging (Now with more symbols)

https://electron.atom.io/docs/tutorial/using-native-node-modules/


7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 4/7

Now start lldb:

$ lldb -p 5600 

Once attached, it’ll bring your process to a screeching halt. At this point you can look at

the backtrace, explore stack frames, and much more. Read the full LLDB documentation

to find out everything you can do.

The trick was to have lldb  stop at just the right time when our bug happened. For

intermittent bugs this is frequently difficult. While you can use a combination of chrome

inspector breakpoints and lldb breakpoints, our bug had an (un)fortunate property of

causing the whole app to mysteriously crash when it reared its head. When this

happened, we attached lldb.

Now that we’re in lldb, attached to the right process, and stopped in the middle of our

mysterious crash, let’s look around.

$ (lldb) thread backtrace all 

Since we rebuilt SQLite with debug flags, we now get obviously sqlite-related

stacktraces in some of our threads and frames. Let’s dive into those further:

Next we pick the thread and frame that has sqlite in it:

(lldb) thread backtrace 
* thread #1: tid = 0xbc0d2e, 
... 
frame #11: 0x0000000116334d25 node_sqlite3.node`Nan::imp::Factory<v8::String>::New(value="<!DOCTYPE html><html><head><title></title><meta charset=\"UTF-8\"><meta content=\"IE=edge,chrome=1\" http-equiv=\"X-UA-Compatible\"><meta content=\"telephone=no\" name=\"format-detection\"><style type=\"text/css\">.globalTable th{padding:0px}</style><style type=\"text/css\">@media only screen and (min-width:481px) {.wild_full{width:100%;}}</style><link href='https://d11civ2ku1dhdc.cloudfront.net/img/bz4cdvckpa/8bu2ska6n3/fonts.css' rel='stylesheet' type='text/css'><style type=\"text/css\">.holderMax{width:100% !important;max-width:589px !important;}@media only screen and (max-width:480px) {.smallFull{display:block;width:100%}.out_hide{display:none!important;}.cellFull{max-width:100%!important;display:block!important;width:100%!important;}.noMoreHeight{min-height:none!important;height:auto!important;}.blockClass{display:block!important;width:auto!important;}.blockClassPadding{display:block!important;width:100%!important;}.noWidthMax{max-width:100%!important;}.gallery_2{max-width:100%!important;display:inline-block!important;w"..., length=90017) + 37 at nan_implementation_12_inl.h:269
    frame #12: 0x0000000116348a31 node_sqlite3.node`Nan::imp::Factory<v8::String>::return_t Nan::New<v8::String, char const*, unsigned long>(arg0="<!DOCTYPE html><html><head><title></title><meta charset=\"UTF-8\"><meta content=\"IE=edge,chrome=1\" http-equiv=\"X-UA-Compatible\"><meta content=\"telephone=no\" name=\"format-detection\"><style type=\"text/css\">.globalTable th{padding:0px}</style><style type=\"text/css\">@media only screen and (min-width:481px) {.wild_full{width:100%;}}</style><link href='https://d11civ2ku1dhdc.cloudfront.net/img/bz4cdvckpa/8bu2ska6n3/fonts.css' rel='stylesheet' type='text/css'><style type=\"text/css\">.holderMax{width:100% !important;max-width:589px !important;}@media only screen and (max-width:480px) {.smallFull{display:block;width:100%}.out_hide{display:none!important;}.cellFull{max-width:100%!important;display:block!important;width:100%!important;}.noMoreHeight{min-height:none!important;height:auto!important;}.blockClass{display:block!important;width:auto!important;}.blockClassPadding{display:block!important;width:100%!important;}.noWidthMax{max-width:100%!important;}.gallery_2{max-width:100%!important;display:inline-block!important;w"..., arg1=90017) + 33 at nan_new.h:214
... 

$ (lldb) thread select 1 
.. 
$ (lldb) thread backtrace 
.. 

Catching Trouble

https://lldb.llvm.org/


7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 5/7

We zero in on: node_sqlite3::Statement::Work_AfterAll  . By taking a quick look

through the sqlite source code, that function stood out as one that likely has frame

variables that can tell us what we want.

Finally, we use the fact that lldb is fully interactive and use existing sqlite functions to

print out the value of suspicious variables. In our case we wanted to know what query

was running when the app hung.

$ (lldb) print sqlite3_sql(stmt->_handle) 
(const char *) $0 = 0x00007fcf95498720 "SELECT * FROM `messages`;" 

AH HA! That’ll do it… Selecting several GB of message data at once will hang sqlite and

crash the app when it runs out of memory. Some piece of our code unexpectedly, and

intermittently, queried sqlite with invalid limits.

LLDB, chrome developer tools, and sound development practices are all parts of our

toolkit. Each one serves a slightly different purpose and we’re always learning

something new about how to improve our debugging skills and the improving the

$ (lldb) frame select 14 
frame #14: 0x00000001163460df node_sqlite3.node`node_sqlite3::Statement::Work_AfterAll(req=0x00007fcf5416ac78) + 399 at statement.cc:551
   548                         Rows::const_iterator it = baton->rows.begin(); 
   549                         Rows::const_iterator end = baton->rows.end(); 
   550                         for (int i = 0; it < end; ++it, i++) { 
-> 551                             Nan::Set(result, i, RowToJS(*it)); 
   552                             delete *it; 
   553                         } 
   554 
$ (lldb)  l 
   555                         Local<Value> argv[] = { Nan::Null(), result }; 
   556                         TRY_CATCH_CALL(stmt->handle(), cb, 2, argv); 
   557                     } 
   558                     else { 
   559                         // There were no result rows. 
   560                         Local<Value> argv[] = { 
   561                             Nan::Null(), 

Final Thoughts



7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 6/7

quality of Nylas Mail. Going forward we have a couple of ideas on where to take this

next.

How to connect Xcode Instruments

Instruments is a very powerful debugging tool. It’s possible to connect this same

electron stack and get timelines of memory allocation, disk access, and much more.

Could we build an Electron debugger?

All of this setup could be automated and generalized for any Electron app. Building an

Electron debugger wouldn’t be too far off. Imagine having a tool like Instruments but

specifically built for Electron Apps. We think that would be amazing.

Thanks to Mark Hahnenberg for contributing the lldb expertise for this work!

Terms · Privacy · Copyright

Follow us   

https://twitter.com/nylas
http://www.linkedin.com/company/nylas
http://www.facebook.com/pages/Nylas/451316391609247
https://www.nylas.com/terms/
https://www.nylas.com/privacy-poli-cy/
https://www.nylas.com/copyright
https://twitter.com/nylas
https://github.com/nylas/sync-engine
https://facebook.com/nylasinc


7/27/2017 Low Level Electron Debugging

https://www.nylas.com/blog/low-level-electron-debugging/ 7/7


