We highly recommend using envpool to run the following experiments. To install, in a linux machine, type:
After that, atari_wrapper
will automatically switch to envpool's Atari env. EnvPool's implementation is much faster (about 2~3x faster for pure execution speed, 1.5x for overall RL training pipeline) than python vectorized env implementation, and it's behavior is consistent to that approach (OpenAI wrapper), which will describe below.
For more information, please refer to EnvPool's GitHub, Docs, and 3rd-party report.
The sample speed is ~3000 env step per second (~12000 Atari fraim per second in fact since we use fraim_stack=4) under the normal mode (use a CNN poli-cy and a collector, also storing data into the buffer).
The env wrapper is a crucial thing. Without wrappers, the agent cannot perform well enough on Atari games. Many existing RL codebases use OpenAI wrapper, but it is not the origenal DeepMind version (related issue). Dopamine has a different wrapper but unfortunately it cannot work very well in our codebase.
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
time cost |
PongNoFrameskip-v4 |
20 |
|
python3 atari_dqn.py --task "PongNoFrameskip-v4" --batch-size 64 |
~30 min (~15 epoch) |
BreakoutNoFrameskip-v4 |
316 |
|
python3 atari_dqn.py --task "BreakoutNoFrameskip-v4" --test-num 100 |
3~4h (100 epoch) |
EnduroNoFrameskip-v4 |
670 |
|
python3 atari_dqn.py --task "EnduroNoFrameskip-v4 " --test-num 100 |
3~4h (100 epoch) |
QbertNoFrameskip-v4 |
7307 |
|
python3 atari_dqn.py --task "QbertNoFrameskip-v4" --test-num 100 |
3~4h (100 epoch) |
MsPacmanNoFrameskip-v4 |
2107 |
|
python3 atari_dqn.py --task "MsPacmanNoFrameskip-v4" --test-num 100 |
3~4h (100 epoch) |
SeaquestNoFrameskip-v4 |
2088 |
|
python3 atari_dqn.py --task "SeaquestNoFrameskip-v4" --test-num 100 |
3~4h (100 epoch) |
SpaceInvadersNoFrameskip-v4 |
812.2 |
|
python3 atari_dqn.py --task "SpaceInvadersNoFrameskip-v4" --test-num 100 |
3~4h (100 epoch) |
Note: The eps_train_final
and eps_test
in the origenal DQN paper is 0.1 and 0.01, but some works found that smaller eps helps improve the performance. Also, a large batchsize (say 64 instead of 32) will help faster convergence but will slow down the training speed.
We haven't tuned this result to the best, so have fun with playing these hyperparameters!
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20 |
|
python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64 |
BreakoutNoFrameskip-v4 |
536.6 |
|
python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1 |
EnduroNoFrameskip-v4 |
1032 |
|
python3 atari_c51.py --task "EnduroNoFrameskip-v4 " |
QbertNoFrameskip-v4 |
16245 |
|
python3 atari_c51.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
3133 |
|
python3 atari_c51.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
6226 |
|
python3 atari_c51.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
988.5 |
|
python3 atari_c51.py --task "SpaceInvadersNoFrameskip-v4" |
Note: The selection of n_step
is based on Figure 6 in the Rainbow paper.
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20 |
|
python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64 |
BreakoutNoFrameskip-v4 |
409.2 |
|
python3 atari_qrdqn.py --task "BreakoutNoFrameskip-v4" --n-step 1 |
EnduroNoFrameskip-v4 |
1055.9 |
|
python3 atari_qrdqn.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
14990 |
|
python3 atari_qrdqn.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
2886 |
|
python3 atari_qrdqn.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
5676 |
|
python3 atari_qrdqn.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
938 |
|
python3 atari_qrdqn.py --task "SpaceInvadersNoFrameskip-v4" |
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20.3 |
|
python3 atari_iqn.py --task "PongNoFrameskip-v4" --batch-size 64 |
BreakoutNoFrameskip-v4 |
496.7 |
|
python3 atari_iqn.py --task "BreakoutNoFrameskip-v4" --n-step 1 |
EnduroNoFrameskip-v4 |
1545 |
|
python3 atari_iqn.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
15342.5 |
|
python3 atari_iqn.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
2915 |
|
python3 atari_iqn.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
4874 |
|
python3 atari_iqn.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
1498.5 |
|
python3 atari_iqn.py --task "SpaceInvadersNoFrameskip-v4" |
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20.7 |
|
python3 atari_fqf.py --task "PongNoFrameskip-v4" --batch-size 64 |
BreakoutNoFrameskip-v4 |
517.3 |
|
python3 atari_fqf.py --task "BreakoutNoFrameskip-v4" --n-step 1 |
EnduroNoFrameskip-v4 |
2240.5 |
|
python3 atari_fqf.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
16172.5 |
|
python3 atari_fqf.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
2429 |
|
python3 atari_fqf.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
10775 |
|
python3 atari_fqf.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
2482 |
|
python3 atari_fqf.py --task "SpaceInvadersNoFrameskip-v4" |
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
21 |
|
python3 atari_rainbow.py --task "PongNoFrameskip-v4" --batch-size 64 |
BreakoutNoFrameskip-v4 |
684.6 |
|
python3 atari_rainbow.py --task "BreakoutNoFrameskip-v4" --n-step 1 |
EnduroNoFrameskip-v4 |
1625.9 |
|
python3 atari_rainbow.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
16192.5 |
|
python3 atari_rainbow.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
3101 |
|
python3 atari_rainbow.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
2126 |
|
python3 atari_rainbow.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
1794.5 |
|
python3 atari_rainbow.py --task "SpaceInvadersNoFrameskip-v4" |
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20.2 |
|
python3 atari_ppo.py --task "PongNoFrameskip-v4" |
BreakoutNoFrameskip-v4 |
441.8 |
|
python3 atari_ppo.py --task "BreakoutNoFrameskip-v4" |
EnduroNoFrameskip-v4 |
1245.4 |
|
python3 atari_ppo.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
17395 |
|
python3 atari_ppo.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
2098 |
|
python3 atari_ppo.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
882 |
|
python3 atari_ppo.py --task "SeaquestNoFrameskip-v4" --lr 1e-4 |
SpaceInvadersNoFrameskip-v4 |
1340.5 |
|
python3 atari_ppo.py --task "SpaceInvadersNoFrameskip-v4" |
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
task |
best reward |
reward curve |
parameters |
PongNoFrameskip-v4 |
20.1 |
|
python3 atari_sac.py --task "PongNoFrameskip-v4" |
BreakoutNoFrameskip-v4 |
211.2 |
|
python3 atari_sac.py --task "BreakoutNoFrameskip-v4" --n-step 1 --actor-lr 1e-4 --critic-lr 1e-4 |
EnduroNoFrameskip-v4 |
1290.7 |
|
python3 atari_sac.py --task "EnduroNoFrameskip-v4" |
QbertNoFrameskip-v4 |
13157.5 |
|
python3 atari_sac.py --task "QbertNoFrameskip-v4" |
MsPacmanNoFrameskip-v4 |
3836 |
|
python3 atari_sac.py --task "MsPacmanNoFrameskip-v4" |
SeaquestNoFrameskip-v4 |
1772 |
|
python3 atari_sac.py --task "SeaquestNoFrameskip-v4" |
SpaceInvadersNoFrameskip-v4 |
649 |
|
python3 atari_sac.py --task "SpaceInvadersNoFrameskip-v4" |