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Abstract. Simple climate models can be valuable if they are
able to replicate aspects of complex fully coupled earth sys-
tem models. Larger ensembles can be produced, enabling
a probabilistic view of future climate change. A simple
emissions-based climate model, FAIR, is presented, which
calculates atmospheric concentrations of greenhouse gases
and effective radiative forcing (ERF) from greenhouse gases,
aerosols, ozone and other agents. Model runs are constrained
to observed temperature change from 1880 to 2016 and pro-
duce a range of future projections under the Representative
Concentration Pathway (RCP) scenarios. The constrained es-
timates of equilibrium climate sensitivity (ECS), transient
climate response (TCR) and transient climate response to cu-
mulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K,
1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1

(median and 5–95 % credible intervals). These are in good
agreement with the likely Intergovernmental Panel on Cli-
mate Change (IPCC) Fifth Assessment Report (AR5) range,
noting that AR5 estimates were derived from a combina-
tion of climate models, observations and expert judgement.
The ranges of future projections of temperature and ranges
of estimates of ECS, TCR and TCRE are somewhat sensi-
tive to the prior distributions of ECS/TCR parameters but
less sensitive to the ERF from a doubling of CO2 or the ob-
servational temperature dataset used to constrain the ensem-
ble. Taking these sensitivities into account, there is no evi-
dence to suggest that the median and credible range of ob-
servationally constrained TCR or ECS differ from climate
model-derived estimates. The range of temperature projec-

tions under RCP8.5 for 2081–2100 in the constrained FAIR
model ensemble is lower than the emissions-based estimate
reported in AR5 by half a degree, owing to differences in
forcing assumptions and ECS/TCR distributions.

1 Introduction

Most multi-model studies, such as the Coupled Model In-
tercomparison Project (CMIP), which produces headline cli-
mate projections for the Intergovernmental Panel on Climate
Change (IPCC) assessment reports, compare atmosphere–
ocean general circulation models that are run with prescribed
concentrations of greenhouse gases. Greenhouse gas and
aerosol emissions time series are provided by integrated as-
sessment modelling groups based on socio-economic narra-
tives (Moss et al., 2010; Meinshausen et al., 2011b), which
are then converted to atmospheric concentrations by sim-
ple climate–carbon-cycle models such as MAGICC6 (Mein-
shausen et al., 2011a). Earth system models can be run in
emissions mode, where emissions of carbon dioxide are used
as a starting point and the atmospheric CO2 concentrations
are calculated interactively in the model, with atmospheric
concentration changes being the residual of emissions mi-
nus absorption by land and ocean sinks. While many models
include the functionality to be run in CO2 emissions-driven
mode, these integrations were not the main focus of CMIP5
(the fifth phase of CMIP; Taylor et al., 2012).
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Earth system models in CMIP5 all show a positive car-
bon cycle feedback, meaning that as surface temperature
increases, land and ocean carbon sinks become less effec-
tive at absorbing CO2 and a larger proportion of any fur-
ther emitted carbon will remain in the atmosphere (Friedling-
stein, 2015). The various feedback strengths are nevertheless
model dependent (Friedlingstein et al., 2006). While CO2 is
the most important climate forcer, individual models may
also differ in their responses to non-CO2 emissions. These
emissions can also introduce uncertainty that is not captured
in concentration-driven or CO2-only driven model experi-
ments (Matthews and Zickfeld, 2012; Tachiiri et al., 2015;
Gasser et al., 2017). As non-CO2 forcing impacts tempera-
ture, which affects the efficiency of carbon sinks, non-CO2
forcing agents themselves influence the carbon cycle (Mac-
Dougall et al., 2015; Tokarska et al., 2018).

Simple models can be used to emulate radiative forc-
ing and temperature responses to emissions and atmospheric
concentrations and can be tuned to replicate the behaviour
of individual climate and earth system models (Meinshausen
et al., 2011a; Good et al., 2011, 2013; Geoffroy et al.,
2013). A simple emulation of the carbon cycle of full- and
intermediate-complexity earth system models was developed
by Joos et al. (2013) and used in the IPCC Fifth Assessment
Report (AR5) for the purposes of calculating global warming
potentials. The model was developed for a 100 GtC pulse
against a background CO2 concentration of 389 ppm. Millar
et al. (2017) showed that this model does not sufficiently cap-
ture the time-evolving dependency of carbon sinks against
different background conditions. They introduced the Finite
Amplitude Impulse Response (FAIR) model (version 1.0)
that tracks the time-integrated airborne fraction of carbon and
uses this to determine the efficiency of carbon sinks, in turn
calculating atmospheric CO2 concentrations, radiative forc-
ing and temperature change.

FAIR v1.0 is well-calibrated to the temperature and car-
bon cycle response of earth system models. FAIR v1.3 is
extended to calculate non-CO2 greenhouse gas concentra-
tions from emissions, aerosol forcing from aerosol precursor
emissions, tropospheric and stratospheric ozone forcing from
the emissions of precursors, and forcings from black carbon
on snow, stratospheric methane oxidation to water vapour,
contrails and land use change. Forcings from volcanic erup-
tions and solar irradiance fluctuations are supplied externally.
These forcings are then converted to a temperature change,
taking into account the different thermal responses of the
ocean mixed layer and deep ocean.

The model philosophy in FAIR is to represent these pro-
cesses as simply as possible and to be able to emulate the his-
torical effective radiative forcing (ERF) time series in AR5
given input emissions. FAIR is written in Python and is open
source. The extension to non-CO2 emissions makes FAIR
v1.3 applicable for assessing scenarios with a broad range
of emissions pathways.

This paper introduces the FAIR model in Sect. 2, includ-
ing the key changes from versions 1.0 to 1.3. Section 3 then
discusses the generation of a large ensemble of input param-
eters to the FAIR model which is run and results described
in Sect. 4. A sensitivity analysis to some of the key inputs
to the large ensemble is given in Sect. 5. Section 6 provides
a summary.

2 Development of FAIR v1.3 and differences to v1.0

FAIR v1.3 takes emissions of greenhouse gases and short-
lived climate forcers as its main input. This is an array of
size (number of years× 40) (see Table 1) and is based on
the order provided in the Representative Concentration Path-
way (RCP) emissions datasets (Meinshausen et al., 2011b).
Additional options that can be specified by the user include
the treatment of aviation contrail and land use forcing, the
fraction of total methane attributable to fossil fuels, natural
emissions of CH4 and N2O, and natural forcing from solar
variability and volcanoes. The atmospheric concentrations of
greenhouse gases are calculated from new emissions minus
the decay of the current atmospheric burden, which is deter-
mined by the atmospheric lifetime of each gas, and output
is produced as a (years× 31) array (Table 2). For CO2, at-
mospheric concentrations are calculated from a simple rep-
resentation of the carbon cycle which includes temperature
and saturation dependency of land and ocean sinks. The cal-
culated CO2 concentrations at each timestep also include a
proportion of methane oxidised to CO2. This is on the as-
sumption of a mole of oxidised methane from fossil sources
is not also counted as a mole of CO2 when reported in
national emissions inventories (Gillenwater, 2008; Boucher
et al., 2009).

The effective radiative forcing (ERF) from 13 different
forcing agents (Table 3) is determined from the concentra-
tions of each greenhouse gas, plus emissions of short-lived
climate forcers and natural forcing, and is output from the
model as a (years× 13) array. From the ERF, temperature
change is calculated. The change in temperature feeds back
into the carbon cycle, which impacts the atmospheric life-
time of carbon dioxide. A flow diagram outlining the key
processes is provided in Fig. 1. It is also possible to run FAIR
using only CO2 emissions as inputs or purely in forcing-only
mode, where a time series of non-CO2 or total forcing can be
optionally specified rather than calculated from emissions.

2.1 Greenhouse gases: emissions to concentrations

2.1.1 Carbon dioxide and carbon cycle

The carbon cycle component in FAIR is described in detail
by Millar et al. (2017) and an overview is provided here.
The FAIR model uses anthropogenic fossil and land use CO2
emissions as input and partitions them into four boxes Ri
(with partition fraction ai and

∑3
0ai = 1) representing the
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Table 1. Emissions time series input used in FAIR, based on the RCP emissions datasets in Meinshausen et al. (2011b).

Index Species Unit Remark

0 Year Year Important for running RCP scenarios as
some treatments differ before 1850

1 CO2 fossil Gt C yr−1

2 CO2 land use Gt C yr−1

3 CH4 Mt yr−1 Only anthropogenic emissions
4 N2O Mt N2 yr−1 Only anthropogenic emissions,

expressed as N2 equivalent mass
5 SOx Mt S yr−1 Only anthropogenic emissions
6 CO Mt yr−1 Only anthropogenic emissions
7 NMVOC Mt yr−1 Only anthropogenic emissions
8 NOx Mt N yr−1 Only anthropogenic emissions
9 BC Mt yr−1 Only anthropogenic emissions
10 OC Mt yr−1 Only anthropogenic emissions
11 NH3 Mt yr−1 Only anthropogenic emissions
12 CF4 kt yr−1 Natural emissions should be included
13 C2F6 kt yr−1

14 C6F14 kt yr−1

15 HFC23 kt yr−1

16 HFC32 kt yr−1

17 HFC43-10 kt yr−1

18 HFC125 kt yr−1

19 HFC134a kt yr−1

20 HFC143a kt yr−1

21 HFC227ea kt yr−1

22 HFC245fa kt yr−1

23 SF6 kt yr−1

24 CFC11 kt yr−1

25 CFC12 kt yr−1

26 CFC113 kt yr−1

27 CFC114 kt yr−1

28 CFC115 kt yr−1

29 CCl4 kt yr−1

30 Methyl chloroform kt yr−1

31 HCFC22 kt yr−1

32 HCFC141b kt yr−1

33 HCFC142b kt yr−1

34 Halon 1211 kt yr−1

35 Halon 1202 kt yr−1

36 Halon 1301 kt yr−1

37 Halon 2402 kt yr−1

38 CH3Br kt yr−1 Natural emissions should be included
39 CH3Cl kt yr−1 Natural emissions should be included

differing timescales of carbon uptake by geological processes
(τ0), the deep ocean (τ1), the biosphere (τ2) and the ocean
mixed layer (τ3). The atmospheric molar mixing ratio of CO2
and its relationship to each box is

CCO2 = CCO2,pi+

3∑
i=0

Ri

Ma

wCO2

wa
, (1)

with CCO2,pi equal to 278 ppm and the subscript pi represent-
ing a pre-industrial state. Ma = 5.1352× 1018 kg is the dry
mass of the atmosphere, and wCO2 and wa are the molecular
weights of CO2 and dry air. Ri is in kilograms. The govern-
ing equations for the four boxes are

dRi
dt
= aiECO2 −

Ri

ατi
; i = 0, . . .,3, (2)
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Table 2. The set of greenhouse gases used in FAIR. With the exception of methane lifetime, radiative efficiencies and lifetimes are from AR5
(Myhre et al., 2013b, Table 8.A.1). For ozone-depleting substances, the fractional release coefficients ri (Daniel and Velders, 2011) and the
number of chlorine and bromine atoms are also given for the calculation of equivalent effective stratospheric chlorine (Eq. 14). Where ERF
is not calculated as a linear function of concentration, “not applicable” (N/A) is displayed.

Index Gas Molecular weight Radiative efficiency Lifetime
wf (g mol−1) η (W m−2 ppb−1) τ (yr) ri nCl nBr

Major gases

0 CO2 44.01 N/A Variable
1 CH4 16.04 N/A 9.3
2 N2O 44.01 N/A 121

Kyoto Protocol gases

3 CF4 88.00 0.09 50 000
4 C2F6 138.01 0.25 10 000
5 C6F14 338.04 0.44 3100
6 HFC23 70.01 0.18 222
7 HFC32 52.02 0.11 5.2
8 HFC43-10 252.06 0.42 16.1
9 HFC125 120.02 0.23 28.2
10 HFC134a 102.03 0.16 13.4
11 HFC143a 84.04 0.16 47.1
12 HFC227ea 170.03 0.26 38.9
13 HFC245fa 134.05 0.24 7.7
14 SF6 146.06 0.57 3200

Ozone-depleting substances

15 CFC11 137.37 0.26 45 0.47 3 0
16 CFC12 120.91 0.32 100 0.23 2 0
17 CFC113 187.38 0.30 85 0.29 3 0
18 CFC114 170.92 0.31 190 0.12 2 0
19 CFC115 154.47 0.20 1020 0.04 1 0
20 CCl4 153.81 0.17 26 0.56 4 0
21 Methyl chloroform 133.40 0.07 5 0.67 3 0
22 HCFC22 86.47 0.21 11.9 0.13 1 0
23 HCFC141b 116.94 0.16 9.2 0.34 2 0
24 HCFC142b 100.49 0.19 17.2 0.17 1 0
25 Halon 1211 165.36 0.29 16.0 0.62 1 1
26 Halon 1202 209.82 0.27 2.9 0.62 0 2
27 Halon 1301 148.91 0.30 65 0.28 0 1
28 Halon 2402 259.82 0.30 20 0.65 0 2
29 CH3Br 94.94 0.004 0.8 0.60 0 1
30 CH3Cl 50.49 0.01 1 0.44 1 0

with ECO2 being the emissions of CO2.
The four time constants τi are scaled by a factor α de-

pending on the 100-year integrated impulse response func-
tion (iIRF100), which represents the 100-year average air-
borne fraction of a pulse of CO2 (Joos et al., 2013). α is found
by equating two different expressions for iIRF100

3∑
i=0

αaiτi

[
1− exp

(
−100
ατi

)]
= r0+ rCCacc+ rTT (3)

and finding the unique root α (Millar et al., 2017). The
right-hand side of Eq. (3) proposed by Millar et al. (2017)

is a simplified expression for iIRF100 that depends on the
total accumulated carbon in land and ocean sinks Cacc =

(
∑
tECO2,t )− (CCO2 −CCO2,pi) and temperature change T

since the pre-industrial era that simulates the behaviour of
earth system models well. This increase in iIRF100 and scal-
ing of the time constants by α accounts for the land and ocean
carbon sinks changing absorption efficacy as more carbon is
added to them (rC parameter). In earth system models it is
also observed that the efficiency of carbon sinks decreases
with increasing temperature (rT parameter; Fung et al., 2005;
Friedlingstein et al., 2006). Following Millar et al. (2017)
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Table 3. The 13 separate forcing groups considered in FAIR v1.3 in the calculation of effective radiative forcing. The ERF uncertainty
represents the 5–95 % range and is used in the generation of the large ensemble (Sect. 3). ERF uncertainties from Myhre et al. (2013b)
are used except for CH4 where we use the Myhre et al. (2013b) estimate inflated by the additional uncertainty in the new methane forcing
relationship in Etminan et al. (2016), which also affects the uncertainty in stratospheric water vapour oxidation from methane.

Index Forcing agent Depends on ERF uncertainty

0 CO2 CO2 emissions; CH4 fossil fraction; cumulative C
emissions; total temperature change

±20 %

1 CH4 CH4 emissions ±28 %
2 N2O N2O emissions ±20 %
3 Other greenhouse gases Emissions of other greenhouse gases ±20 %
4 Tropospheric ozone Emissions of CH4 and short-lived climate forcers ±50 %
5 Stratospheric ozone Concentrations of ozone-depleting substances (sub-

set of minor greenhouse gases)
±200 %

6 Stratospheric water vapour CH4 ERF ±72 %
7 Contrails Aviation NOx fraction; total NOx emitted −66 to +191 %
8 Aerosols Emissions of short-lived climate forcers −89 to +111 %
9 Black carbon on snow Emissions of black carbon −56 to +128 %
10 Land use change Cumulative emissions of land-use-related CO2 ±167 %
11 Volcanic Externally supplied forcing from volcanoes ±50 %
12 Solar Externally supplied forcing from solar variability ±0.05 W m−2

Figure 1. Simplified overview of the FAIR v1.3 model.

we use rC = 0.019 yr GtC−1 and rT = 4.165 yr K−1, but in
contrast to Millar et al. (2017) a pre-industrial r0 = 35 years
is used rather than their 32.4 years. This facilitates better
agreement with present-day CO2 atmospheric concentrations
when spun up from 1765 with historical CO2 and non-CO2
emissions. This parameter combination is consistent with a
present-day iIRF100 diagnosed from more complex carbon
cycle models (Joos et al., 2013) with a fixed background CO2
concentration of 389 ppm.

2.1.2 Other greenhouse gases

A one-box decay model is assumed for other greenhouse
gases where the sink is an exponential decay of the exist-
ing gas concentration anomaly. New emissions are converted
to the equivalent increase in molar mixing ratios δC in year

t by

δCt =
Et

Ma

wa

wf
δt , (4)

where Et is the emissions of gas in year t , Ma = 5.1352×
1018 kg is the mass of the atmosphere and wf is the molecu-
lar mass of the greenhouse gas (δt = 1 for annual emissions
data). The model updates the atmospheric molar mixing ra-
tios C at year t based on new emissions and the natural sink
by

Ct = Ct−1+
1
2
(δCt−1+ δCt )−Ct−1 (1− exp(−1/τ)) , (5)

where τ is the atmospheric lifetime of each gas (Table 2).
For CH4 and N2O, time-varying natural emissions are in-

cluded in Et (Fig. 2) in order to match the observed atmo-
spheric concentrations of these gases in Meinshausen et al.
(2011b), including the 1765 concentrations when the 1765
natural emissions are run to steady state. Beyond 2005, natu-
ral emissions of CH4 and N2O are fixed at 191 Mt CH4 yr−1

and 8.99 Mt N2-eq yr−1, which are close to the best-estimate
present-day emissions of 202 Mt CH4 yr−1 and 9.1 Mt N2-
eq yr−1 (Prather et al., 2012). We prefer to use varying nat-
ural emissions with a fixed atmospheric lifetime of CH4 and
N2O, firstly because this provides a good match to observed
and projected concentrations and secondly because this is
consistent with the simple model philosophy. Other meth-
ods of calculating concentrations of these gases are possible,
for example using a fixed natural background emission and
relating any differences between observed and calculated his-
torical concentrations as an error term (either in the natural
or anthropogenic time series or missing processes) or by ad-
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Figure 2. Natural emissions of methane and nitrous oxide used
in the FAIR model. Future emissions are fixed at their 2011 val-
ues. Also shown are the present-day best estimates of Prather et al.
(2012).

justing the atmospheric lifetime of each gas over the histor-
ical period in order to match the observed concentrations at
each time step.

Natural emissions of CO2 are not included as the carbon
cycle model is more complex than the single box used for
other gases and it is assumed that natural sources and nat-
ural sinks are in balance. For other greenhouse gases, natu-
ral emissions are assumed to be zero except for CF4, CH3Br
and CH3Cl. Pre-industrial concentrations of these three mi-
nor compounds are estimated by running the 1765 emissions
from Meinshausen et al. (2011b) to steady state using the
lifetimes in Table 2. Unlike CH4 and N2O, natural emissions
of CF4, CH3Br and CH3Cl are included in the anthropogenic
emissions data. In total, 31 greenhouse gas species are used
(Table 2). Other than CO2, CH4 and N2O, the remaining
gases can be subdivided into those covered by the Kyoto Pro-
tocol (HFCs, PFCs, SF6) and the ozone-depleting substances

(ODSs) covered by the Montreal Protocol (CFCs, HCFCs,
and other chlorinated and brominated compounds).

The best estimate of τ for each gas except methane is used
from AR5 (Myhre et al., 2013b, Table 8.A.1), consistent with
using AR5 estimates for parameters where possible. We find
that using a constant methane lifetime of 9.3 years results
in reasonable levels of historical natural emissions and also
agrees well with the MAGICC6-projected RCP concentra-
tion scenarios in the future. The global methane lifetime of
9.3 years used is significantly lower than the perturbation
lifetime of 12.4 years in AR5. This latter figure includes the
feedback of methane emissions on its own lifetime due to the
depletion of the OH radical, which is the main tropospheric
sink for methane (a factor of 1.34; Holmes et al., 2013,
also used in AR5), and is used for perturbation calculations
against a constant background concentration. As emissions
of OH-affecting species (NOx , non-methane volatile organic
compounds (NMVOCs), CO) and temperature have varied
substantially over the historical period, the background state
is not constant, so the perturbation lifetime is not appropriate.

2.1.3 Methane oxidation to CO2

The oxidation of CH4 produces additional CO2 if it is of fos-
sil origin, which is accounted for in the model. Methane is
assumed to be from fossil sources if it arises from the trans-
port, energy or industry sectors. A best estimate of 61 % of
the methane lost through reaction with the hydroxyl radical
in the troposphere (the dominant loss pathway) is converted
to CO2 (Boucher et al., 2009). This is treated as additional
emissions of CO2:

ECH4→CO2 = 0.61fCH4fos
(
CCH4 −CCH4,pi

)(
1− exp(−1/τCH4)

)
, (6)

where fCH4fos is the fraction of anthropogenic methane at-
tributable to fossil sources and τCH4 is 9.3 years. Both the
fraction of methane converted (61 %) and the time series of
the fraction of methane that is of fossil origin fCH4fos are
user-specifiable, and RCP-derived values available from the
RCP Database (2009) can be imported. The user can there-
fore switch off methane oxidation by setting either of these
values to zero.

Oxidation of CO and NMVOCs to CO2 is not included as
to not double count the carbon that is included in national
CO2 emissions inventories (Daniel and Solomon, 1998;
Gillenwater, 2008).

2.2 Effective radiative forcing

The ERF from 13 different forcing agent groups are consid-
ered: CO2, CH4, N2O, other greenhouse gases, tropospheric
O3, stratospheric O3, stratospheric water vapour, contrails,
aerosols, black carbon on snow, land use change, solar ir-
radiance and volcanoes (Table 3). ERF, which accounts for
all (stratospheric plus tropospheric) rapid adjustments, corre-
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sponds better to temperature change than “traditional” strato-
spherically adjusted radiative forcing (RF) (Myhre et al.,
2013b; Forster et al., 2016). Therefore, we use relationships
for ERF where they exist.

2.2.1 Carbon dioxide, methane and nitrous oxide

We use the updated Etminan et al. (2016) RF relationships
for CO2, CH4 and N2O, which for the first time includes
band overlaps between CO2 and N2O. It also includes a sig-
nificant upward revision of the CH4 RF due to inclusion of
previously neglected shortwave absorption, compared to the
previous relationships of Myhre et al. (1998) used in AR5.
Although Etminan et al. (2016) calculate RF, Myhre et al.
(2013b) concluded that over the industrial era there was not
sufficient evidence to state that ERF was significantly differ-
ent from RF for these three gases, and ERF is taken to equal
RF, although with a doubled uncertainty range. The Etmi-
nan et al. (2016) relationships are reproduced in Eqs. (7)–(9),
where C (ppm), M and N (ppb) have been used to represent
concentrations of CO2, CH4 and N2O, and the subscript pi
representing pre-industrial concentrations.

FCO2 =

[
(−2.4× 10−7)(C−Cpi)

2
+ (7.2× 10−4)

|C−Cpi| − (1.05× 10−4)(N +Npi)+ 5.36
]

× log
(
C

Cpi

)
, (7)

FN2O =
[
(−4.0× 10−6)(C+Cpi)+ (2.1× 10−6)

(N +Npi)− (2.45× 10−6)(M +Mpi)+ 0.117
]

×

(√
N −

√
Npi

)
, (8)

FCH4 =

[
−(6.5× 10−7)(M +Mpi)− (4.1× 10−6)

(N +Npi)+ 0.043
]
×

(√
M −

√
Mpi

)
. (9)

Finally, a scaling to FCO2 is made to ensure that a dou-
bling of CO2 using Eq. (7) along with pre-industrial N2O
concentrations equals the user-specified value of F2×, which
defaults to 3.71 W m−2.

2.2.2 Other well-mixed greenhouse gases

For all well-mixed greenhouse gases in Table 2 except CO2,
CH4 and N2O, the ERF is assumed to be a linear relationship
of the change in gas concentration Ci since the pre-industrial
era by its radiative efficiency ηi [W m−2 ppb−1]:

Fi = ηi(Ci −Ci,pi); i ∈ {gas indices 3,4. . .,30}, (10)

where radiative efficiencies are given in Table 2, i refers to
index numbers in Table 2 and Ci are converted to ppb. This
is an established method for small greenhouse gas forcings,
also used in MAGICC.

2.2.3 Tropospheric ozone

Tropospheric ozone is formed from a complex chemical re-
action chain from emissions of CH4, NOx , CO and NMVOC.
Furthermore, its concentration is more variable in space and
time than for the well-mixed greenhouse gases. Therefore,
we do not calculate a globally averaged concentration. We
use coefficients from Stevenson et al. (2013) to estimate
tropospheric ozone ERF from emissions of NOx , CO and
NMVOC, and concentrations of methane, assuming linear-
ity between atmospheric burden and ozone forcing:

FO3tr = βCH4(CCH4 −CCH4,pi)+βNOx (ENOx −ENOx ,pi)

+βCO(ECO−ECO,pi)+βNMVOC

(ENMVOC−ENMVOC,pi)+ f (T ) (11)

and

f (T )=min{0,0.032exp(−1.35T )− 0.032}. (12)

The β coefficients in Eq. (11) are provided in Table 4, and
Eq. (12) is a small negative climate feedback, estimated using
a curve fit to year 2000, 2030 and 2100 temperature changes
under RCP8.5 in Stevenson et al. (2013). As Stevenson et al.
(2013) used 1850 as their baseline for forcing calculations
based on emissions data from Lamarque et al. (2010), in
RCP scenarios adjusted coefficients can optionally be spec-
ified for times prior to 1850 where “pre-industrial” anthro-
pogenic emissions are taken from Skeie et al. (2011). This
ensures that ERF is both equal to zero in 1765 and equal to
the best estimates in Stevenson et al. (2013) for 2005. Both
the differing treatment prior to 1850 and the climate feedback
can optionally be switched off by the user.

2.2.4 Stratospheric ozone

The stratospheric ozone ERF is calculated using the
functional relationship borrowed from Meinshausen et al.
(2011a), namely

FO3st = a(b s)
c. (13)

a =−1.46×10−5, b = 2.05×10−3 and c = 1.03 in Eq. (13)
are fitting parameters that are found by a least-squares curve
fit between Eq. (13) and the stratospheric ozone ERF time
series from AR5; due to this data fitting approach, our pa-
rameters differ from MAGICC. s is the equivalent effective
stratospheric chlorine (EESC) from all ozone-depleting sub-
stances, calculated as (Newman et al., 2007)

s = rCFC11
∑
i∈ODS

(
nCl(i)Ci

ri

rCFC11
+ 45nBr(i)Ci

ri

rCFC11

)
. (14)

ri represents fractional release values for each ODS com-
pound taken from Daniel and Velders (2011) and reproduced
in Table 2. nCl and nBr represent the number of chlorine
and bromine atoms in compound i with the factor of 45 in
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Table 4. Contribution to tropospheric ozone ERF from each precursor. Pre-industrial emissions from Skeie et al. (2011), pre-industrial CH4
from Meinshausen et al. (2011b), 1850 and 2000 emissions from Lamarque et al. (2010), and 2000 minus 1850 ERF from Stevenson et al.
(2013).

Ozone forcing efficiency βi (Eq. 11)

ERF in Pre-
2000 industrial

Species (W m−2) Pre-1850 Post-1850 value

CH4 0.178 1.73× 10−4 1.73× 10−4 W m−2 ppb−1 722 ppb
CO 0.076 4.76× 10−5 8.51× 10−5 W m−2 (Mt yr−1)−1 170 Mt CO yr−1

NMVOC 0.044 1.88× 10−4 2.25× 10−4 W m−2 (Mt yr−1)−1 5 Mt NMVOC yr−1

NOx 0.125 5.72× 10−4 9.08× 10−4 W m−2 (Mt yr−1)−1 2 Mt N yr−1

Eq. (14) indicating that bromine is 45 times more effective
at stratospheric ozone depletion than chlorine (Daniel et al.,
1999). The concentrations Ci are expressed in ppb.

2.2.5 Stratospheric water vapour from methane
oxidation

In AR5, the ERF from the stratospheric water vapour oxi-
dation of methane was assumed to be 15 % of the methane
ERF. This was based on the methane forcing relationship of
Myhre et al. (1998), which is about 20 % lower than the Et-
minan et al. (2016) methane forcing used in FAIR. As there
has been no substantial revision to the stratospheric water
vapour forcing, we define stratospheric water vapour ERF as
12 % of the methane ERF.

2.2.6 Contrails

Meinshausen et al. (2011b) did not include a forcing time se-
ries for contrails or contrail-induced cirrus, which contribute
a small positive ERF (Boucher et al., 2013). Three differ-
ent methods to supply contrail ERF are available in FAIR:
(1) scaling with aviation-based NOx emissions, (2) scaling
with global supply of jet kerosene fuel, or (3) supplying an
external forcing time series. In method 1, it is assumed that
contrail ERF is proportional to the aircraft NOx emissions in
a given year ENOx ,avi compared to 2005 and multiplied by
the 2005 ERF from Lee et al. (2009) of 0.0448 W m−2:

Fcon =
ENOx ,avi

ENOx ,avi,2005
Fcon,2005. (15)

This gives a coefficient of Fcon,2005/ENOx ,avi,2005 =

0.0152 W m−2 (Mt-aviNOx yr−1)−1.
Method 2 is similar, based on kerosene fuel supplied

Skerosene, as a proxy for activity data. We take a 2005 global
kerosene supply of 236 Gt from International Energy Agency
(2018) to anchor the forcing time series calculation:

Fcon =
Skerosene

Skerosene,2005
Fcon,2005. (16)

For method 1, the past and future aviation NOx emissions
from the RCP scenarios are available in FAIR. The fraction
of total NOx emissions attributable to aviation is used to cal-
culate ENOx ,avi in Eq. (15).

2.2.7 Aerosols

Aerosols have a lifetime of the order of days (Kristiansen
et al., 2016), and the emissions are converted to forcing with-
out an intermediate concentration step.

The aerosol ERF contains contributions from aerosol-
radiation interactions (ERFari) and from aerosol–cloud inter-
actions (ERFaci). ERFari includes the direct radiative effect
of aerosols, in addition to rapid adjustments due to changes
in the atmospheric temperature, humidity and cloud profile
(formerly the semi-direct effect; Boucher et al., 2013).

We use the multi-model results from Aerocom (Myhre
et al., 2013a) and assume a linear relationship between emis-
sions and forcing:

Fari = γBCEBC+ γOCEOC+ γSOxESOx + γNOxENOx

+ γNH3ENH3 + γSOAENMVOC, (17)

where the default coefficients for each γ are provided in Ta-
ble 5 and calculated from the difference in anthropogenic
emissions between 1765 and 2010. Users are free to spec-
ify their own species-dependent γ for each aerosol precur-
sor. We assume that emitted black carbon (BC) and organic
carbon (OC) correspond directly to BC and OC forcing and
that emissions of sulfur compounds (SOx) correspond di-
rectly to sulfate forcing. Following Shindell et al. (2009) we
assume a 60 % contribution to nitrate aerosol forcing from
NH3 and 40 % from NOx . We allow formation of secondary
organic aerosol (SOA) to scale with emissions of anthro-
pogenic NMVOC. Biomass burning aerosol has a net zero
forcing in 2011 and is ignored, and mineral dust, which does
not scale directly with an emitted component, is also disre-
garded. The sum of the direct effects of each component is
−0.35 W m−2 in 2010 assuming RCP4.5. The difference be-
tween this and the best-estimate ERFari of −0.45 W m−2 in
AR5 is assumed to be due to rapid adjustments (semi-direct
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Table 5. Contribution to ERFari from each aerosol precursor
species and contribution to 2011 ERFari.

ERFari in Radiative efficiency
Species 2011 (W m−2) (10−3 W m−2 (Mt yr−1)−1)

SOx −0.34 −6.22 (Mt S)
BC +0.13 +16.0
OC −0.05 −1.45
NH3 −0.066 −1.56
NOx −0.044 −1.17 (Mt N)
SOA −0.08 −0.38

effects). There is evidence that scattering aerosols do not ex-
hibit significant semi-direct effects (Boucher et al., 2013), so
the overall difference of −0.1 W m−2 is assumed to be due
to BC semi-direct effects. The net impact is to reduce the
radiative efficiency coefficient of BC.

ERFaci describes how aerosols affect clouds in the radia-
tion budget; the two main mechanisms are changes in cloud
droplet size, which changes cloud albedo (Twomey, 1977)
and changes in cloud lifetime and precipitation efficiency,
which affects cloud fraction (Albrecht, 1989; Boucher et al.,
2013). There is evidence that the ERFaci is not linear with
emissions (Carslaw et al., 2013), and as such a simple linear
scaling as for ERFari may not be appropriate.

In FAIR we use an emulation of the global aerosol model
of Ghan et al. (2013) to estimate ERFaci from precursor
emissions. The Ghan et al. (2013) method contains a series of
non-linear equations that require iterative solutions and cur-
rently has not been optimised for use in FAIR. We therefore
emulate the ERFaci by varying the emissions of SOx and
primary organic aerosol (the sum of BC and OC). Secondary
organic aerosol is also an input to the model, but it is found
that ERFaci is only weakly dependent on NMVOC emissions
and a simple functional form could not be found and so was
eliminated as a predictor.

Informed by the simple aerosol model of Stevens (2015),
we use a logarithmic dependence of ERFaci on emissions
that can vary both as a function of SOx and BC+OC, which
represents increasing saturation of the cloud–albedo effect
with increasing emissions. We find a relationship of the form

G(ESOx ,EBC+OC)=−1.95log
(1+ 0.0111ESOx + 0.0139EBC+OC), (18)

where the coefficients in Eq. (18) are found with a least-
squares optimisation routine (r2

= 0.938). The modelled and
simulated outputs are compared in Fig. S1 in the Supplement.

Equation (18) was derived from a climate model and pro-
duces a present-day ERFaci that is stronger than the cen-
tral estimate of −0.45 W m−2 from AR5. We therefore scale
Eq. (18) in order to obtain a forcing of−0.45 W m−2 in 2011

under RCP4.5 emissions:

Faci =−0.45
G(E)−G(E1765)

G(E2011)−G(E1765)
, (19)

where E = (ESOx ,EBC+OC) refers to emissions and a nu-
merical subscript refers to a particular year. The emissions
for 1750 from Skeie et al. (2011) are used for year 1765, and
a linear interpolation between 1765 and 1850 is applied.

2.2.8 Black carbon on snow

The best-estimate ERF of 0.04 W m−2 in AR5 for 2011 is
compared to the BC emissions in 2011 from Meinshausen
et al. (2011b), with this scaling factor assumed to hold for all
years. The relationship is given by

FBCsnow = 0.00494EBC, (20)

where EBC is BC emissions in Mt yr−1.

2.2.9 Land use change

Land use forcing is a result of surface albedo change (An-
drews et al., 2017) and changes in evapotranspiration pat-
terns (Jones et al., 2015), which is often due to deforestation
for agriculture (Myhre and Myhre, 2003). Cropland has a
higher albedo than the forest that it replaces, reflecting more
incident solar radiation and therefore resulting in a negative
ERF; additionally, deforestation in boreal regions may un-
mask snow-covered ground, again increasing albedo.

Deforestation produces land-use-related CO2 emissions.
The total amount of deforestation since pre-industrial times
could therefore be expected to scale with cumulative land-
use-related CO2 emissions. This is the default approach taken
in FAIR. A regression of non-fossil CO2 emissions against
land use ERF in AR5 gives

Flanduse =−1.14× 10−3
t∑

j=0
ECO2land,j , (21)

where the coefficient has units W m−2 (Gt C)−1.
The simple relationship in Eq. (21) does not take into ac-

count latitude dependence of surface albedo or any evapo-
transpiration changes. As a zero-dimensional model, FAIR
does not include geographical dependence of individual forc-
ing effects, which may differ significantly between forcing
pathways (for example the scenarios typically used to drive
integrated assessment models). Inclusion of evapotranspira-
tion effects, which again differ between tropical and boreal
regions (Jones et al., 2015), is challenging as they do not
directly relate to an emitted species or a change in radia-
tive forcing (Pielke et al., 2002). Nevertheless, we conclude
that this simple treatment is acceptable, firstly as the range of
land use forcing uncertainty is relatively large (so much that
the sign of the forcing is not known with confidence; Myhre
et al., 2013b), secondly because at least in the best estimate
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the forcing is a small fraction of the present-day total, and
thirdly because the future trajectory of the land use forcing
in the RCP datasets is very similar to that predicted by FAIR,
suggesting that a dependence on cumulative land use CO2
emissions is an important component of the land use forcing
in MAGICC.

Noting that this simple relationship may not be suitable
in all cases, the user is free to supply their own time series
of ERF from land use change. If gridded land use data are
available, the transitions to and from forested land each year
can be convoluted with the marginal contribution to land use
forcing per square kilometre deforestation (e.g. from Jones
et al., 2015).

2.2.10 Solar variability

The SOLARIS-HEPPA v3.2 solar irradiance dataset pre-
pared for CMIP6 is used to generate the solar ERF, which in-
cludes projections of the variation in future solar cycles from
1850 to 2300 (Matthes et al., 2017). ERF from solar forc-
ing is calculated as the change in solar constant since 1850
divided by 4 (average insolation) and multiplied by 0.7 (rep-
resenting planetary co-albedo). This approach is also used in
Meinshausen et al. (2011b). Prior to 1850, we revert to the
solar forcing from AR5.

2.2.11 Volcanic aerosol

Historical volcanic forcing is punctuated by several large
eruptions that cause large but short-lived negative forcing
episodes, with several smaller eruptions that cause year-to-
year changes in the volcanic forcing. In order to generate a
historical volcanic ERF time series, we first start with grid-
ded volcanic optical depths taken from the Easy Volcanic
Aerosol generator over the 1850–2014 period (Toohey et al.,
2016) which will be used to drive CMIP6 models. A number
of time slice experiments with various scalings of the histor-
ical mean volcanic optical depth are run in the HadGEM3-
GA7.1 climate model (Walters et al., 2017), where it was
found that aerosol ERF scales as−18τvol (where τvol is glob-
ally averaged volcanic aerosol optical depth at 550 nm). This
scaling factor is consistent with other HadGEM models (Gre-
gory et al., 2016), although weaker than the value of−26τvol
adopted in AR5. The discrepancy is claimed to be due to
rapid adjustments, in which case our adoption of the less neg-
ative value is consistent with the ERF definition.

In the context of measuring forcing since the pre-
industrial, we have to assume an “average” level of volcanic
background aerosol. We therefore define the 1850–2014 pe-
riod to have a mean volcanic forcing of zero. To achieve
this we subtract the mean (negative) forcing from the his-
torical period, resulting in a quiescent year ERF of around
+0.1 W m−2. A similar approach was taken in Meinshausen
et al. (2011b), with a higher quiescent year forcing of about
+0.2 W m−2. Prior to 1850 we use the AR5 dataset, scaled

by 18/26 to match the differences in optical depth/forcing
relationships, and from 2015 onwards volcanic forcing is de-
fined to be zero. For solar and volcanic forcing, users are free
to provide a custom forcing time series or to use the AR5 or
RCP datasets which are both available in FAIR.

2.3 Temperature change

In simple impulse response models, forcing is related to to-
tal temperature change in year t , Tt , by a two-time constant
model (Boucher and Reddy, 2008; Myhre et al., 2013b; Mil-
lar et al., 2015, 2017). FAIR v1.3 takes this approach with
a small modification compared to FAIR v1.0 to allow for
forcing-specific efficacies εj such that

Tt,i =Tt−1,i exp(1/di)+
12∑
j=0

(
qiεjFj (1− exp(1/di))

)
;

i = 1,2. (22)

Owing to the use of ERF rather than RF in FAIR v1.3 and
its better correspondence with temperature, efficacies are as-
sumed to be unity for all forcing agents except black car-
bon on snow (j = 9), where an efficacy of 3 is used follow-
ing Bond et al. (2013). The coefficients d1 and d2 govern
the slow (i = 1) and fast (i = 2) temperature changes from
a response to forcing from the upper ocean and the deep
ocean respectively (Millar et al., 2015). The total tempera-
ture change in year t is the sum of the slow and fast com-
ponents, i.e. Tt = Tt,1+ Tt,2. Fj represents the 13 individual
forcing agents in year t calculated in Sect. 2.2 (see also Ta-
ble 3). d1 and d2 default to 239 and 4.1 years which are fit
to match the mean of CMIP5 models (Geoffroy et al., 2013).
The coefficients q1 and q2 (units K W−1 m2) are determined
by solving a matrix equation given transient climate response
(TCR), equilibrium climate sensitivity (ECS), d1, d2 and the
ERF from a doubling of CO2, F2× = 3.71 W m−2 (Myhre
et al., 2013b):

TECS =F2×(q1+ q2); (23)

TTCR =F2×

(
q1

(
1−

d1

D

(
1− exp

(
−
D

d1

)))
+q2

(
1−

d2

D

(
1− exp

(
D

d2

))))
, (24)

giving the relative contributions to the fast and slow compo-
nents of the warming. D = log(2)/ log(1.01)≈ 69.7 years is
the time to a doubling of CO2 with a compound 1 % per year
increase in CO2 concentrations.

There is some evidence that ECS and TCR have not been
constant values over the historical period (Gregory and An-
drews, 2016; Gregory et al., 2015) and that ECS does not
necessarily assume a constant value in CMIP5 modelling ex-
periments (Armour, 2017). FAIR has the capability to model
time-evolving ECS and TCR by updating the q1 and q2 val-
ues in each time step.
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3 Projections using a large ensemble

To test the model response to a range of forcing pathways,
we perform a 100 000-member Monte Carlo simulation us-
ing emissions from the RCP datasets (Meinshausen et al.,
2011b). Emissions themselves are not altered from the RCP
time series, but the TCR, ECS, carbon cycle response to
increasing temperature (rT) and cumulative emissions (rC)
along with the pre-industrial value of iIRF100 (r0), plus the
ERF scale factors for each of the 13 forcing agents, are drawn
from distributions. FAIR is run from 1765 (the start of the
RCP emissions datasets) to 2100.

3.1 Constraint to historical temperature observations

As a wide range of forcing, and thus temperature, scenar-
ios can be generated, there are a proportion of ensemble
members generated that fall outside the range of plausibility.
We constrain the full 100 000-member ensemble (hereafter
FULL) to the observed temperature change from the Cowtan
and Way (2014) dataset (hereafter C&W) to assess plausibil-
ity; ensemble members that satisfy the temperature constraint
are designated as “not ruled out yet” (NROY) and the major-
ity of the discussion of the results in Sect. 4 focuses on this
dataset. We rebase all of the temperatures to the 1861–1880
mean following Richardson et al. (2016), to represent a pre-
industrial state that is relatively free of volcanic eruptions
but with a reasonable global coverage of temperature obser-
vations. An ordinary least-squares regression of temperature
change versus time from 1880 to 2016 is used to calculate the
linear warming trend in each ensemble member. The regres-
sion is also performed for the C&W “observational” dataset
to estimate the observed warming rate. The confidence in-
terval around the C&W warming rate is inflated by a factor
that represents the lag-1 autocorrelation of residuals (i.e. the
trend-line estimate from the regression minus the C&W “ob-
servations”) which accounts for internal climate variability
(Santer et al., 2008; Thompson et al., 2015) and is the same
method used in AR5 to estimate linear temperature trends.
The constraint is satisfied for an ensemble member if the
modelled trend falls within the 5–95 % range of trend from
C&W of 0.95± 0.17 K.

The C&W observed warming from 1880 to 2016 is higher
than the UK Met Office Hadley Centre observational dataset
(HadCRUT4; Morice et al. 2012) estimate of 0.91± 0.18 K
for the same time frame. The infilling of grid boxes where no
or limited data are available accounts for these differences,
as sparse observations are typically in polar regions which
warm faster than the global mean (Cowtan and Way, 2014).
Under this constraint approximately 26 % of the FULL en-
semble is retained in NROY.

It should be stressed that there are several issues to con-
sider when attempting to derive plausible parameter sets
from observational data. These include the type of observa-
tional constraints to employ (Meinshausen et al., 2009), the

length of the historical record (e.g. Otto et al., 2013), the sep-
aration of forced response from natural variability (Haustein
et al., 2017) and assumptions surrounding prior distributions
(Frame et al., 2005).

3.2 Sampling ECS and TCR

The ECS and TCR from CMIP5 models (Forster et al., 2013)
are used to generate a joint log-normal distribution. Random
variables are sampled using the R package MethylCapSig1

using the mean, standard deviation and correlation coeffi-
cient (r = 0.81) between ECS and TCR in CMIP5. A log-
normal distribution is representative of distributions of ECS
and TCR in the literature (Meinshausen et al., 2009; Rogelj
et al., 2012; Flato et al., 2013; Millar et al., 2017). The sam-
pled joint and marginal distributions are shown as black con-
tours and curves in Fig. 3. We sample 100 000 ECS–TCR
pairs; sampled pairs where ECS<TCR are rejected and re-
drawn. A joint distribution is used because ECS and TCR
are highly correlated and low values of the realised warming
fraction (TCR divided by ECS) are inconsistent with mod-
els and observations (Millar et al., 2015). For other sampled
quantities in this section a 100 000-member ensemble is also
generated.

3.3 Sampling thermal response and carbon cycle
parameters

We allow F2×, the ERF due to a doubling of CO2, to as-
sume a Gaussian distribution with 5–95 % confidence inter-
val of 20 % around the best-estimate ERF of 3.71 W m−2

(Myhre et al., 2013b). d1 (mean 239 years, standard devi-
ation 63 years) and d2 (mean 4.1 years, standard deviation
1.0 years) in Eq. (22) are also varied based on truncated
Gaussian distributions (no values outside ±3σ allowed, pri-
marily to prevent unrealistically small or negative values of
the slow response d1). Although FAIR is able to model the re-
sponse to time-varying ECS and TCR, we use time-invariant
values in our ensemble.

Some uncertainty in the carbon cycle parameters is as-
sumed with samples of r0, rC and rT taken from Gaussian
distributions. r0, rC and rT are given 5–95 % confidence in-
tervals of 13 % of the default parameter value following Mil-
lar et al. (2017).

3.4 Sampling ERF uncertainties

The uncertainty in each of the 13 forcing components is
modelled following the 5–95 % confidence intervals for each
forcing from AR5 (Myhre et al., 2013b, Table 8.6) in 2011
(Table 3). This is achieved by scaling the ERF values calcu-
lated in Sect. 2.2; the uncertainty ranges are given in Table 3.
The scaling factor is applied to the whole time series. A time-

1https://cran.r-project.org/package=MethylCapSig (last access:
4 August 2017).
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varying scale factor for forcing can be used, and an option is
provided to exactly replicate the AR5 historical time series
for each component, but we do not apply it here. Most un-
certainties are assumed to be Gaussian, the exceptions being
contrails and BC on snow which are log-normally distributed
(with geometric standard deviations 1.92 and 1.65 respec-
tively, following AR5) and aerosols which are modelled as
two half-Gaussian distributions, treating values above and
below the best estimate separately. These ERF uncertainties
are assumed to be uncorrelated with each other.

4 Results from the NROY ensemble for the RCP
scenarios

4.1 ECS and TCR

The FULL and NROY joint and marginal distributions of
ECS and TCR are shown in Fig. 3.

The temperature constraint in NROY results in distribu-
tions of ECS and TCR that are lower than in FULL. Some
of the prior sample space in which ECS and TCR are larger
than the likely AR5 ranges has been rejected in the NROY
distribution. While the possibility that ECS> 5 K cannot be
ruled out, it appears less likely than would be inferred from
CMIP5 models, although it should be stressed that time-
varying feedbacks are not accounted for in this large ensem-
ble, which would allow ECS to increase over time (Armour,
2017). From the marginal distributions, we estimate that ECS
and TCR are 2.86 (2.01 to 4.22) K and 1.53 (1.05 to 2.41) K
(median; (5–95 % range)) respectively in the NROY ensem-
ble, similar to but a little more tightly constrained than the
likely AR5 (>66 % probability) ranges of 1.5 to 4.5 K and
1.0 to 2.5 K, noting that the AR5 ranges are estimated from
a combination of models, observations and expert judge-
ment. The ratio of TCR to ECS, the realised warming frac-
tion (RWF), is approximately independent of TCR in CMIP5
models (Millar et al., 2015), and the prior distribution could
alternatively be defined in terms of the TCR and RWF joint
distribution, which is explored in Sect. 5. The FULL and
NROY median and 5 to 95 % ranges of RWF are 0.56 (0.41
to 0.76) and 0.54 (0.40 to 0.72) respectively, which is close
to the range of CMIP5 models (0.45 to 0.75, Millar et al.,
2017).

4.2 Historical and future greenhouse gas
concentrations

The historical (1765–2005) greenhouse gas concentrations
from the RCP scenarios in Meinshausen et al. (2011b) were
assimilated from observations of in situ and ice core records
and represent a best estimate of the actual concentrations
over this period. We therefore assume that the RCP data rep-
resents the best estimate of the historical concentrations and
compare our estimates from the NROY ensemble using the
emissions-driven model.

The FAIR model reproduces the historical concentrations
of greenhouse gases (Fig. 4). The atmospheric concentra-
tions of CO2 estimated from FAIR are up to 9 ppm lower
than MAGICC6 in the period 1880–1950 (Fig. 4a). A simple
carbon cycle model cannot reproduce the kinks in the obser-
vational CO2 trend without large changes in the input emis-
sions. However, between 1950 and 2005, the differences be-
tween the two curves are small. The post-2005 atmospheric
CO2 concentrations are slightly higher than those estimated
by MAGICC6 for the RCP scenarios, but the MAGICC6 con-
centrations are within the uncertainty range from the NROY
ensemble. FAIR projects best-estimate CO2 concentrations
of 427 (413 to 443), 552 (527 to 578), 695 (661 to 731)
and 979 (926 to 1040) ppm for RCP2.6, RCP4.5, RCP6 and
RCP8.5 in 2100. Here, the uncertainty in CO2 concentrations
relates to the range of carbon cycle parameters and the tem-
perature dependence on carbon uptake sampled in the large
ensemble.

The historical CH4 and N2O concentrations in FAIR have
been tuned to agree with Meinshausen et al. (2011b) by ad-
justing natural emissions as described previously (Fig. 4b, c).
There are some small differences in the future CH4 and N2O
concentrations in the RCPs using fixed atmospheric lifetimes
and constant (present-day) natural emissions.

Kyoto Protocol gases have been grouped as HFC134a-eq
based on their radiative efficiency, and ODSs have been sim-
ilarly grouped as CFC12-eq (Fig. 4d, e). Small differences
between the models in future scenarios may be a result of
the assumption of a change in the rate of the Brewer–Dobson
circulation in MAGICC6 (Meinshausen et al., 2011a), which
increases the efficiency of the stratospheric sink for these
gases. This temperature-dependent effect is not included in
FAIR. Over the historical period, the differences are a result
of the natural emissions of CF4 (contributing to HFC134a-
eq) and CH3Br and CH3Cl (contributing to CFC12-eq) pro-
viding a non-zero background state of these greenhouse gas
equivalents in FAIR. In the RCP historical dataset these back-
ground concentrations have not been added to the HFC134a-
eq and CFC12-eq time series.

4.3 Historical, present and future radiative forcing

Figure 5 shows the comparison between FAIR and MAG-
ICC6 for the 13 forcing agents considered in FAIR for the
NROY ensemble. The ERF time series for the historical pe-
riod in AR5 is also shown (IPCC, 2013). The updated radia-
tive forcing relationship for CH4 increases radiative forcing
substantially (Fig. 5b). The new relationship for N2O results
in a slightly lower ERF estimate in FAIR than RF in MAG-
ICC6 (Fig. 5c), which is offset by the higher concentrations
of N2O in FAIR. The FAIR estimate of CO2 forcing is also
higher than MAGICC for the RCPs, but the ERFs from FAIR
and RFs from MAGICC for the minor greenhouse gases are
similar (Fig. 5a, d). For non-CO2 gases, AR5 did not provide
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a breakdown of ERF by individual gas, so the total ERF has
been scaled by the ratios in the MAGICC6 time series.

For tropospheric ozone, the Stevenson et al. (2013) rela-
tionship agrees well with AR5 until around 1970, from which
point it is larger than AR5. There is also a large relative dif-
ference between this relationship and the MAGICC estimate
in AR5 out to 2100 (Fig. 5e). The shape of the stratospheric
ozone ERF curve between AR5 and MAGICC6 differs, but
it can be seen that the AR5 historical ERF is well emulated
as it uses the same functional relationship as AR5 (Fig. 5f).
Stratospheric water vapour from methane oxidation depends
on the underlying methane forcing and is similar to the AR5
time series (Fig. 5g). Contrail ERF shows a similar time evo-
lution over the historical period to AR5 (Fig. 5h). Histori-
cally, ERF from aviation contrails has been small but may
become more substantial in the future. The median aerosol
ERF in FAIR is slightly more negative than in AR5 from
around 1900 to 2011 (Fig. 5i) but is less negative than the
RCP projections. We reiterate here that the RCPs report RF
from MAGICC rather than ERF.

BC on snow has a smaller ERF in FAIR than the corre-
sponding RF in MAGICC6, although the efficacy factor of 3
used in FAIR results in a similar effect on temperature be-
tween the models (Fig. 5j). Estimates of future land use forc-
ing in FAIR follow a similar shape to the Meinshausen et al.
(2011b) dataset, with slightly less negative best estimates to
the AR5 ERF 2011 best estimate; agreement in the histori-
cal period to either MAGICC6 or AR5 is less good, but the
general trajectory of forcing is correct (Fig. 5k). There are
substantial differences between the volcanic forcing datasets
in FAIR, AR5 and the RCPs that are not easy to discern at
the resolution of the plot (Fig. 5l): generally, the AR5 dataset
gives more negative forcing than the RCPs during volcani-
cally active years and also defines the absence of volcanoes
as zero forcing whereas the RCP and FAIR datasets define
zero to be the average of the historical period. Solar forcing is
used from the new CMIP6 dataset, which is reasonably sim-
ilar to the RCP time series for historical forcing but exhibits
some differences in the future owing to the assumed inter-
cycle variability that was not present in CMIP5 (Fig. 5m).
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Figure 5n shows the sum of the forcing components. The
best-estimate sum of ERF follows AR5 closely over the his-
torical period, which is intentional. In the RCP future sce-
narios, the FAIR best estimates of ERF are higher than the
corresponding RF estimates in MAGICC. This is in part due
to the increased CH4, tropospheric ozone and contrail forc-
ing in FAIR, and less negative total aerosol ERF. The FAIR
model projects 2100 ERFs (median (5–95 % credible inter-
vals)) of 2.62 (1.79 to 3.64), 4.62 (3.30 to 6.22), 5.84 (4.07 to
8.00) and 9.34 (6.84 to 12.44) W m−2 for RCP2.6, RCP4.5,
RCP6.0 and RCP8.5 respectively.

4.4 Relationship between forcing components, ECS
and TCR

The distribution of ERF in 2017 for aerosols, greenhouse
gases and the anthropogenic total in both the FULL and the
NROY ensembles assuming the RCP8.5 forcing pathway is
shown in Fig. 6 and Table 6. The temperature constraint in
NROY permits a wider range of greenhouse gas ERF than
the FULL ensemble. For aerosols, the distribution of ERF in
NROY is again slightly wider than in FULL. The median es-
timate of net anthropogenic ERF of 2.63 W m−2 in 2017 for
NROY is a little lower than the unconstrained FULL estimate
of 2.73 W m−2 with a wider uncertainty range.

There are negative correlations between aerosol radiative
forcing and ECS/TCR (Fig. 7). A large negative aerosol forc-
ing requires a high ECS to balance and recreate realistic ob-
served temperatures (Forest et al., 2006). Millar et al. (2015)

highlighted the necessity of anti-correlation between TCR
and aerosol forcing in observational constraints. The aerosol
forcing on TCR constraint is tighter than that on ECS, ev-
idenced by the narrower mass of points in the TCR plot
(Fig. 7b) compared to the ECS plot (Fig. 7a). A high value for
TCR (greater than 2.5 K) or ECS (greater than 5 K) is only
possible with a strong negative present-day aerosol forcing
(more negative than about −1.0 W m−2).

4.5 Observed and future temperature changes

Figure 8a shows the transient historical and RCP-projected
temperature change for 1850–2100 along with the 2081–
2100 median, 1σ (16–84 % range) and 5–95 % credible range
for the NROY ensemble (Fig. 8b), (c.f. Rogelj et al., 2012;
Collins et al., 2013, Fig. 12.8b). For the RCP scenarios, the
median NROY estimates of temperature change for 2081–
2100 are 1.49, 2.29, 2.66 and 3.91 K above pre-industrial
for RCPs 2.6, 4.5, 6.0 and 8.5 respectively. The median,
1σ and 5–95 % ranges of total temperature change predicted
from FAIR are a little lower for RCPs 2.6, 4.5 and 6.0 than
those predicted by the emissions-driven MAGICC6 experi-
ments which are reported in AR5 (Rogelj et al., 2012; Mein-
shausen et al., 2009) and substantially lower for RCP8.5.
The RCP8.5 temperature change is lower despite higher 21st-
century ERF profiles in FAIR compared to RF in MAGICC.
The difference of 0.6 K in the median end-of-century warm-
ing in RCP8.5 could be particularly important in policy as-
sessments.
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Figure 5. Comparison of the radiative forcing from RCP2.6, RCP4.5, RCP6.0 and RCP8.5 derived from 13 separate components (a–m),
along with the total radiative forcing (n). ERF from FAIR (solid lines) with 5–95 % confidence intervals (shading), RF from MAGICC6
(dashed lines; Meinshausen et al., 2011b) and RF from AR5 Annex II for 1850–2011 (green solid lines, IPCC, 2013).
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Table 6. Median and 5–95 % credible intervals for effective radiative forcing from greenhouse gases, aerosols and anthropogenic total from
the FULL and NROY FAIR ensembles in 2017. Anthropogenic total contains contributions from contrails, BC on snow and land use change
and therefore is not equal to the sum of greenhouse gas and aerosol forcing. Compare Fig. 6.

Effective radiative forcing (W m−2)

Before temperature After temperature
Forcing type constraint (FULL) constraint (NROY)

Greenhouse gases 3.69 (3.18 to 4.21) 3.68 (2.90 to 4.61)
Aerosols −0.91 (−1.63 to −0.37) −0.96 (−1.65 to −0.27)
Anthropogenic total 2.73 (1.85 to 3.50) 2.63 (1.74 to 3.73)
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Figure 6. ERF from aerosols (blue), greenhouse gases (red) and to-
tal anthropogenic (black) for present-day (2017, based on RCP8.5)
runs from FAIR constrained to observed temperature change
(NROY; histograms) and from prior distributions (FULL; curves);
compare Myhre et al. (2013b, Fig. 8.16). Greenhouse gas forcing
includes contributions from ozone and stratospheric water vapour
from methane. Anthropogenic total is the sum of greenhouse gas,
aerosol, contrails, BC on snow and land use change. The latter three
distributions are not shown separately.

Differences between the models can arise from many
sources. The results of Rogelj et al. (2012) are based on best
estimates of the ECS/TCR and radiative forcing from the
IPCC Fourth Assessment Report (AR4), whereas we guide
FAIR using AR5 forcings. Differences between this study
and Rogelj et al. (2012) could be due to differences in the his-
torical radiative forcing time series. The RF over the 1861–
1880 to 2005 period, which forms the bulk of the period
used to constrain the ensemble to observed temperatures, is
1.72 W m−2 in Meinshausen et al. (2011b) whereas the ERF
differences are 1.98 W m−2 in AR5 and 1.97 W m−2 in FAIR
over the same period. Therefore, the same observed tem-
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Figure 7. Relationship between (a) ECS and aerosol ERF; (b) TCR
and aerosol ERF for the NROY ensemble. Aerosol ERF is shown
for 2017 under the RCP8.5 scenario.

perature change would be recreated with a smaller RF in
Rogelj et al. (2012) than the corresponding ERF in FAIR,
and the same future forcing in MAGICC6 would lead to a
higher temperature change than in FAIR. Other differences
between the studies include a different selection of ECS and
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TCR priors in Meinshausen et al. (2009) and Rogelj et al.
(2012) (based on AR4 but not substantially different from
the CMIP5 models used in this study), a different method of
constraining to observed temperatures, and different assump-
tions regarding the strength of future aerosol and ozone forc-
ing. The sensitivity to some of these assumptions is tested in
Sect. 5.

4.6 Transient climate response to emissions

There is an approximately linear relationship between cumu-
lative CO2 emissions and temperature, independent of the ac-
tual emissions pathway taken, provided temperature is still
increasing (Allen et al., 2009; Collins et al., 2013). Using
this linearity we can diagnose the transient climate response
to emissions (TCRE), defined as the change in temperature
for a 1000 Gt cumulative emission of carbon.

We show both the TCRE assuming CO2 forcing alone and
the temperature change due to all forcing agents but mea-

sured against cumulative carbon emissions (Fig. 9). When
including the effect of non-CO2 forcing on the total temper-
ature change, the temperature response is substantially larger
than for CO2 forcing alone. This indicates that a smaller cu-
mulative CO2 emission is required to reach the same tem-
perature change and is a result of the total non-CO2 forcing
being positive. This same conclusion was reached in Collins
et al. (2013) when assessing a suite of earth system models.

To determine the TCRE we run FAIR in CO2-only mode.
We measure cumulative CO2 emissions and temperature
change since 1870, as this is the date from which reliable es-
timates of carbon emissions start (Le Quéré et al., 2016) and
is also at the centre of the 1861–1880 period used to evaluate
temperature changes.

The NROY ensemble in FAIR shows a TCRE of 0.95 to
2.22 K for a cumulative carbon emission of 1000 Gt with a
best estimate of 1.39 K. We diagnose TCRE based on the
RCP8.5 simulation. The TCRE range from FAIR is within
the range of estimates from AR5 (0.8 to 2.5 K, Collins et al.,
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Figure 9. Transient climate response to CO2 emissions (TCRE) for
FAIR based on RCP8.5 for all forcing (red) and for CO2-only forc-
ing (black).

2013). Towards higher cumulative CO2 emissions in RCP8.5
the temperature response has a slightly concave shape. The
slight (rather than moderate) downward curvature is also
present in CMIP5 earth system models, as the increase in
airborne fraction of CO2 with emissions almost cancels out
the logarithmic relationship between CO2 concentration and
temperature (Millar et al., 2016).

4.7 Top of atmosphere energy imbalance

The top of atmosphere energy imbalanceN can be diagnosed
from (Forster et al., 2013)

N = F − λT , (25)

where λ is the climate feedback parameter and λ=

F2×/ECS. In Fig. 10 we compare FAIR model outputs from
the NROY ensemble under RCP4.5 to observations of the
earth’s energy imbalance from satellites (Clouds and the
Earth’s Radiant Energy System; CERES) and from the array
of Argo floats (Argo, 2000), which measure ocean tempera-
ture which is the largest component of the change in earth’s
energy budget. Both datasets are taken from Johnson et al.
(2016).

For most years from 2001 to 2015, the net energy bal-
ance from CERES is within the uncertainty range estimated
from the FAIR NROY ensemble. The Argo estimate of N
is more variable prior to 2005, after which coverage of the
Argo floats saw a large increase (Johnson et al., 2016). From
2005 onwards, all Argo estimates but one fall inside the cred-
ible range of FAIR estimates. Both CERES and Argo obser-
vations from 2005 onwards are clustered towards the lower
half of the credible range from FAIR, which may indicate
that ECS over the 2005–2015 period could be towards the
lower end of the credible range estimated from the NROY
ensemble.
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Figure 10. Comparison of earth’s energy imbalance N to observa-
tions from Argo and CERES, from Johnson et al. (2016).

5 Sensitivity to prior distributions and constraints

To determine the robustness of the results of the NROY en-
semble, the input assumptions were varied or the ensemble
members subjected to a different constraint as described in
this section. The results are summarised in Tables 7, 8 and 9.

5.1 Prior distributions of ECS and TCR

The prior distributions of ECS and TCR have a large influ-
ence on the posterior distributions attained (Pueyo, 2012).
Here we test the dependence of the shape of the posterior
distributions of ECS and TCR in the constrained samples on
the choice of prior distributions.

As the RWF is approximately independent of TCR we use
an alternative prior starting with the distributions of TCR
and RWF. Noting the analysis of Collins et al. (2013), the
likely AR5 range of TCR of 1.0 to 2.5 K is taken to be most
probable, with values between 0.5–1.0 K and 2.5–3.5 K pos-
sible but unlikely. A trapezoidal distribution in TCR with
these limits is constructed, therefore not expressing any prior
judgement about the most likely value of TCR within the
likely AR5 range. The RWF is sampled from a Gaussian
distribution with mean 0.6 and 5–95 % range of 0.45–0.75
following Millar et al. (2017), truncated to fall within the
0.2–1.0 range. These ranges are subjective choices based on
evidence from CMIP5 models. The posterior distribution of
ECS in particular can be sensitive to the choice of prior dis-
tribution (Frame et al., 2005; Pueyo, 2012). Figure S2 shows
the alternative prior distributions and the posteriors obtained
as a result of constraining to the C&W observed tempera-
tures.

The best estimate and credible range of ERF is very similar
to NROY with the alternative prior distributions (Table 8).
However, the future temperature projections under the RCPs
span a wider range than in NROY (Table 9). This is due to
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Table 7. Sensitivity in the ECS, TCR and TCRE to variations in the underlying assumptions in the FAIR large ensemble. For the sensitivity
experiments the section number in the paper describing the change is given. The “accepted” column details the proportion of the 100 000-
member FULL ensemble that satisfied the specified temperature constraint.

Variation (section) Accepted ECS (K) TCR (K) TCRE (K (Eg C)−1)

5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %

C&W temperature constraint (NROY) 26.1 % 2.01 2.86 4.22 1.05 1.53 2.41 0.96 1.40 2.23
C&W with alternative ECS/TCR prior (5.1) 21.6 % 1.57 2.62 4.76 0.99 1.55 2.68 0.89 1.35 2.55
C&W with F2× = 3.44 W m−2 (5.2) 24.9 % 1.99 2.84 4.22 1.03 1.52 2.41 0.93 1.36 2.15
HadCRUT4 temperature constraint (5.3) 26.4 % 1.97 2.82 4.19 1.02 1.51 2.38 0.93 1.37 2.21
GISTEMP temperature constraint (5.3) 33.2 % 2.03 2.89 4.26 1.06 1.56 2.44 0.97 1.42 2.27
Berkeley Earth temperature constraint (5.3) 23.4 % 2.11 2.97 4.32 1.13 1.61 2.48 1.02 1.47 2.30
NOAA temperature constraint (5.3) 35.2 % 1.98 2.85 4.22 1.03 1.52 2.41 0.93 1.39 2.23
No temperature constraint (FULL) 100 % 2.00 3.11 4.86 1.01 1.73 2.96 0.91 1.58 2.78

Table 8. Sensitivity in the effective radiative forcing to variations in the underlying assumptions in the FAIR large ensemble.

Variation Effective radiative forcing in 2100, W m−2

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %

C&W temperature constraint (NROY) 1.79 2.62 3.64 3.30 4.62 6.22 4.07 5.84 8.00 6.84 9.34 12.40
C&W with alternative ECS/TCR prior 1.76 2.61 3.68 3.27 4.61 6.25 4.04 5.84 8.04 6.81 9.34 12.42
C&W with F2× = 3.44 W m−2 1.67 2.45 3.40 3.12 4.34 5.85 3.83 5.47 7.48 6.51 8.83 11.69
HadCRUT4 temperature constraint 1.76 2.59 3.59 3.27 4.57 6.17 4.03 5.78 7.93 6.78 9.26 12.28
GISTEMP temperature constraint 1.80 2.64 3.67 3.31 4.63 6.27 4.09 5.87 8.05 6.86 9.37 12.45
Berkeley Earth temperature constraint 1.85 2.70 3.73 3.36 4.71 6.36 4.16 5.97 8.17 6.94 9.50 12.58
NOAA temperature constraint 1.77 2.60 3.62 3.27 4.59 6.21 4.04 5.80 7.98 6.79 9.29 12.36
No temperature constraint (FULL) 1.65 2.67 3.90 3.17 4.67 6.55 3.91 5.91 8.40 6.66 9.42 12.85

the wider range of ECS and TCR admitted in the posterior
distributions (Table 7) using this alternative prior.

5.2 ERF from a doubling of CO2

The canonical RF value of F2× = 3.71 W m−2 may not be
applicable when considering all land surface and tropo-
spheric rapid adjustments in the definition of ERF. For CO2
forcing, rapid adjustments include cloud changes that are not
driven by temperature change (Gregory and Webb, 2008) and
land surface adjustments consequential to plant stomatal con-
ductance (Doutriaux-Boucher et al., 2009). The mean ERF
for a doubling of CO2 in CMIP5 models was found to be
3.44 W m−2 (Forster et al., 2013). The simulation is repeated
with this new lower ERF value for a doubling of CO2, with
the same uncertainty of 20 %.

It is found that this lower value of F2× slightly lowers the
best estimate and credible range of ECS, TCR and ERF, but
the temperature change under the RCP scenarios is higher
than in NROY due to non-CO2 forcings. This behaviour can
be analysed with the help of Eq. (25). In equilibrium states,
the top of atmosphere (TOA) energy imbalance N = 0 and
Eq. (25) is rearranged to yield T = F2×/λ. If F2× is found

to take a lower value and ensemble members are constrained
to the same observed temperature, then the climate sensitiv-
ity 1/λ must be higher to compensate for this. Therefore, the
same positive future non-CO2 forcing time series will pro-
duce higher temperatures in the future.

5.3 Historical temperature constraint

Historical temperatures were also constrained using the Had-
CRUT4 dataset without infilling (Morice et al., 2012), along
with the GISTEMP (Hansen et al., 2010), Berkeley Earth
(Berkeley Earth, 2017) and NOAA (Zhang et al., 2017) ob-
servational datasets. The linear 1880–2016 trends are 0.91±
0.18 K, 0.99±0.22 K, 1.07±0.16 K and 0.93±0.24 K respec-
tively. All datasets, including C&W (0.95±0.17 K), were ac-
cessed on 17 October 2017.

We also perform analysis on the FULL dataset, where the
input assumptions are guided by CMIP5 models and AR5
uncertainty ranges but no constraint to historical temperature
is performed. We show in Tables 7, 8 and 9 that ECS, TCR,
TCRE, ERF and temperature change depend slightly on the
dataset of constraint, with datasets showing more warming
over the historical period also projecting warmer 2100 tem-
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Table 9. Sensitivity in the 2100 temperature change in RCP scenarios to variations in the underlying assumptions in the FAIR large ensemble.

Variation Temperature change in 2100 from 1861 to 1880 mean, K

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 %

C&W temperature constraint (NROY) 1.10 1.48 2.09 1.73 2.37 3.45 2.08 2.84 4.14 3.11 4.33 6.50
C&W with alternative ECS/TCR prior 0.95 1.42 2.26 1.52 2.31 3.83 1.86 2.80 4.59 2.82 4.29 7.24
C&W with F2× = 3.44 W m−2 1.10 1.49 2.11 1.73 2.39 3.51 2.07 2.85 4.19 3.13 4.38 6.63
HadCRUT4 temperature constraint 1.06 1.44 2.05 1.67 2.31 3.39 2.00 2.77 4.07 3.01 4.22 6.40
GISTEMP temperature constraint 1.11 1.51 2.14 1.74 2.42 3.53 2.09 2.90 4.25 3.14 4.42 6.62
Berkeley Earth temperature constraint 1.19 1.59 2.20 1.88 2.52 3.62 2.27 3.03 4.36 3.39 4.60 6.79
NOAA temperature constraint 1.06 1.47 2.09 1.67 2.35 3.46 2.00 2.81 4.15 3.01 4.29 6.51
No temperature constraint (FULL) 0.92 1.66 2.97 1.52 2.66 4.73 1.81 3.20 5.75 2.80 4.90 8.72

peratures under the RCP scenarios. Using the FULL ensem-
ble, however, leads to wide uncertainty bounds and higher
median estimates of these diagnosed parameters than using
any of the constrained ensembles. Therefore, using a histor-
ical temperature constraint rejects parameter combinations
that produce larger future temperature changes.

6 Conclusions

We present a simple model, FAIR v1.3, that calculates global
temperature change, effective radiative forcing from a vari-
ety of drivers and concentrations of greenhouse gases. The
emissions-based model is based on the FAIR v1.0 carbon-
cycle–climate model with an extension for emissions of non-
CO2 greenhouse gases, ozone precursors and aerosols. This
version of FAIR, which is tuned to the effective radiative
forcing time series in AR5 over the historical period, pro-
vides ERFs that are close to the target radiative forcings from
the RCP scenarios in 2100. FAIR was not tuned to emulate
the radiative forcing in the MAGICC6 model; however, it
closely matches the concentrations of greenhouse gases pro-
jected in that model.

Within FAIR, the response of the carbon cycle model can
be adjusted via the rate of uptake of carbon by land and ocean
processes parameterised as a function of total temperature
change and cumulative carbon emissions (iIRF100). Emis-
sions and concentrations are converted to effective radiative
forcing and the relationship of ERF to temperature change is
governed by the TCR, ECS and the efficacy of each of the 13
separate forcing categories considered in the model. The em-
ulation of specific earth system models is therefore possible
as discussed by Millar et al. (2017).

Using a correlated joint log-normal prior distribution of
ECS and TCR based on CMIP5 models, running a 100 000-
member ensemble in FAIR, and keeping only those ensem-
ble members that match the rate of temperature change from
1880–2016 in C&W (the “not ruled out yet” or NROY en-
semble), we find the median and 5–95 % credible ranges of

ECS and TCR to be 2.86 (2.01 to 4.22) K and 1.53 (1.05 to
2.41) K respectively. The transient climate response to CO2
emissions (TCRE) is diagnosed from a CO2-only ensemble
and found to be 1.40 (0.96 to 2.23) K (1000 GtC)−1. These
ranges are similar to the IPCC likely AR5 ranges for ECS,
TCR and TCRE, albeit with tighter credible bounds. The
NROY best estimates and ranges are not very sensitive to
a lower estimate of the ERF from a doubling of CO2 or a dif-
ferent observational temperature dataset to constrain the his-
torical temperature change rather than the Cowtan and Way
(2014) dataset. They are more sensitive to the prior distribu-
tion of ECS and TCR, particularly for the constraint on ECS.
All methods of constraint lead to lower median and credible
range estimates of ECS, TCR and TCRE than not constrain-
ing to temperature at all (the FULL ensemble, with input pa-
rameters estimated from the distribution of CMIP5 models
and ERF uncertainties based on AR5 estimates).

Our estimate of TCR is not as low as the range derived
by Otto et al. (2013) from observational constraints (0.9 to
2.0 K). Similarly our best estimate of ECS is higher than the
estimate provided by Gregory and Andrews (2016) of around
2 K using observed sea-surface temperatures and sea ice in
two atmosphere-only general circulation models (GCMs).
While we cannot absolutely rule out values of ECS greater
than 5 K or TCR greater than 2.5 K, this would require a
strong present-day aerosol forcing (at least as negative as
−1.0 W m−2) to balance. Progress towards tightening these
upper bounds could therefore be achieved with a better un-
derstanding of the present-day aerosol forcing (Stevens et al.,
2016).

Temperature changes projected in the NROY ensemble in
2100 are a little lower than those from Rogelj et al. (2012) for
the RCP scenarios, except for RCP8.5 where FAIR is 0.6 K
lower in the median response. This is due to the lower en-
semble estimates of ECS and TCR in NROY and the dif-
ferences in present-day minus 1850 radiative forcing be-
tween AR5/NROY and the RCP radiative forcing in Mein-
shausen et al. (2011b). Nevertheless, under RCP8.5 the me-
dian year 2100 temperature projection is 4.32 K above the
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pre-industrial in our NROY ensemble, which would have
very severe global consequences. Conversely the median es-
timate for RCP2.6 is 1.48 K, suggesting about a 50 % chance
of limiting end-of-century warming to 1.5 K under this path-
way.

FAIR is useful for creating large ensembles of future tem-
perature change based on input uncertainties in the carbon
cycle parameters and effective radiative forcing strengths.
This can be used for instance to assess the impacts of emis-
sions commitment scenarios or committed warming (Ehlert
and Zickfeld, 2017) or if a certain category of emissions such
as aerosols are increased or decreased in the future. FAIR
can be used with integrated assessment models to calculate
the social cost of carbon in the presence of non-CO2 forcing
agents. Following the 2015 Paris Agreement and in anticipa-
tion of the 2018 IPCC Special Report, the FAIR model can
be used to investigate emissions pathways consistent with
1.5 and 2 K total warming limits, including remaining carbon
budgets, and give probabilistic indications of the likelihood
of these limits being breached.

Code availability. The source code can be obtained at https://
github.com/OMS-NetZero/FAIR (OMS, 2017; Smith et al., 2018)
and can also be installed from the Python Package Index (https:
//pypi.org/project/fair/). A user guide is included in the Supplement.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/gmd-11-2273-2018-supplement.
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