£ A BOOK APART

Jeremy Keith

G0ING OrLIN

FOREWORD BY Aaron Gustafson

MORE FROM A BOOK APART

Conversational Design
Erika Hall

The New CSS Layout
Rachel Andrew

Accessibility for Everyone
Laura Kalbag

Practical Design Discovery
Dan Brown

Demystifying Public Speaking
Lara Hogan

JavaScript for Web Designers
Mat Marquis

Practical SVG
Chris Coyier

Design for Real Life
Eric Meyer &7 Sara Wachter-Boettcher

Git for Humans
David Demaree

Going Responsive
Karen McGrane

Visit abookapart.com for our full list of titles.

http://abookapart.com

Copyright © 2018 Jeremy Keith
All rights reserved

Publisher: Jeffrey Zeldman

Designer: Jason Santa Maria

Executive Director: Katel LeD{l

Managing Editor: Lisa Maria Martin

Technical Editors: Amber Wilson and Jake Archibald
Copyeditor: Kate Towsey

Proofreader: Katel LeD{l

Book Producer: Ron Bilodeau

Illustration Producer: Jon Long

ISBN: 978-1-937557-66-9

A Book Apart
New York, New York
http://abookapart.com

http://abookapart.com

TABLE OF CONTENTS

CHAPTER 1

Introducing Service Workers

CHAPTER 2

Preparing for Offline

CHAPTER 3

Making Fetch Happen

CHAPTER 4

Cache Me if you Can

CHAPTER §

Service Worker Strategies

CHAPTER 6

Refining Your Service Worker

CHAPTER 7
Tidying Up
CHAPTER 8

The Offline User Experience

CHAPTER 9

Progressive Web Apps
Acknowledgements

Resources

References

Index

FOREWORD

WE OFTEN TALK GLEEFULLY about the open and ubiquitous
nature of the web, but it has an Achilles’ heel: network con-
nectivity. If your career is spent working on the web, chances
are you might rarely encounter networking issues in your
day-to-day life. When it comes to networks, many of us are
spoiled with sweet, sweet speed and incredible reliability. We
take it for granted that everyone in the world experiences the
web like we do.

With an uncertain network connection, the web can be elu-
sive. Broken page layouts. Missing functionality. Lost images.
Dinosaurs. Broken hearts. Frustration.

With no network at all, the web ceases to exist.

Over the years, scores of people far smarter than I have
looked for ways to help the web overcome its complete depen-
dence on the network. Browser caching, Application Cache,
Local (and Session) Storage, and client-side databases have all
helped to some degree (well, maybe not AppCache) but these
technologies have been somewhat limited in both scope and
capability.

Then along came the service workers. Service workers are
one of the most powerful tools we’ve had at our disposal,
enabling us to control how we handle network requests. They
even enable us to decide whether to make a network request at
all. Of course, that power also gives us the ability to completely
break our sites—if we’re not careful.

Which brings me to the book you hold in your hands. In
Going Offline, Jeremy Keith breaks down heady concepts into
approachable prose and easy-to-follow code examples. He also
points out service worker gotchas and shows you how to deftly
avoid them. Invest a scant few hours with this book, and you’ll
gain a solid understanding of how to put this new technology
to work for you right away. No, really—within fifteen to twenty
minutes of putting it down.

Armed with the knowledge you gain from Jeremy’s words,
I have no doubt you’ll do wonders to improve the resilience
of the web.

—Aaron Gustafson

BUSINESSES ARE BUILT ON THE WEB. Without the web, Twit-
ter couldn’t exist. Facebook couldn’t exist. And not just busi-
nesses—Wikipedia couldn’t exist. Your favorite blog couldn’t
exist without the web. The web doesn’t favor any one kind of
use. It’s been deliberately designed to accommodate many and
varied activities.

Just as many wonderful things are built upon the web, the
web itself is built upon the internet. Though we often use the
terms web and internet interchangeably, the World Wide Web
is just one application that uses the internet as its plumbing.
Email, for instance, is another.

Like the web, the internet was designed to allow all kinds
of services to be built on top of it. The internet is a network
of networks, all of them agreeing to use the same protocols
to shuttle packets of data around. Those packets are transmit-
ted down fiber-optic cables across the ocean floor, bounced
around with Wi-Fi or radio signals, or beamed from satellites
in freakin’ space.

As long as these networks are working, the web is working.
But sometimes networks go bad. Mobile networks have a ten-

INTRODUCING SERVICE WORKERS 1

dency to get flaky once you’re on a train or in other situations
where you'’re, y’know, mobile. Wi-Fi networks work fine until
you try to use one in a hotel room (their natural enemy).

When the network fails, the web fails. That’s just the way it
is, and there’s nothing we can do about it. Until now.

WEAVING THE WEB

For as long as I can remember, the World Wide Web has had
an inferiority complex. Back in the ’90s, it was outshone by
CD-ROMs (ask your parents). They had video, audio, and a rich-
ness that the web couldn’t match. But they lacked links—you
couldn’t link from something in one CD-ROM to something in
another CD-ROM. They faded away. The web grew.

Later, the web technologies of HTML, CSS, and JavaScript
were found wanting when compared to the whiz-bang beauty
of Flash. Again, Flash movies were much richer than regular
web pages. But they were also black boxes. The Flash format
seemed superior to the open standards of the web, and yet the
very openness of those standards made the web an unstoppable
force. Flash—under the control of just one company—faded
away. The web grew.

These days it’s native apps that make the web look like an
underachiever. Like Flash, they’re under the control of indi-
vidual companies instead of being a shared resource like the
web. Like Flash, they demonstrate all sorts of capabilities that
the web lacks, such as access to device APIs and, crucially, the
ability to work even when there’s no network connection.

The history of the web starts to sound like an endless retell-
ing of the fable of the tortoise and the hare. CD-ROMs, Flash,
and native apps outshine the web in the short term, but the web
always seems to win the day somehow.

Each of those technologies proved very useful for the expan-
sion of web standards. In a way, Flash was like the R&D depart-
ment for HTML, CSS, and JavaScript. Smooth animations,
embedded video, and other great features first saw the light
of day in Flash. Having shown their usefulness, they later
appeared in web standards. The same thing is happening with

2 GOING OFFLINE

native apps. Access to device features like the camera and the
accelerometer is beginning to show up in web browsers. Most
exciting of all, we're finally getting the ability for a website to
continue working even when the network isn’t available.

SERVICE WORKERS

The technology that makes this bewitching offline sorcery pos-
sible is a browser feature called service workers. You might have
heard of them. You might have heard that they’re something to
do with JavaScript, and technically they are...but conceptually
they’re very different from other kinds of scripts.

Usually when you’re writing some JavaScript that’s going to
run in a web browser, it’s all related to the document currently
being displayed in the browser window. You might want to
listen out for events triggered by the user interacting with the
document (clicks, swipes, hovers, etc.). You might want to
update the contents of the document: add some markup here,
remove some text there, manipulate some values somewhere
else. The sky’s the limit. And it’s all made possible thanks to the
Document Object Model (DOM), a representation of what the
browser is rendering. Through the combination of the DOM
and JavaScript—DOM scripting, if you will—you can conjure
up all sorts of wonderful magic.

Well, a service worker can’t do any of that. It’s still a script,
and it’s still written in the same language—JavaScript—but it has
no access to the DOM. Without any DOM scripting capabilities,
this kind of script might seem useless at first glance. But there’s
an advantage to having a script that never needs to interact with
the current document. Adding, editing, and deleting parts of the
DOM can be hard work for the browser. If you’re not careful,
things can get very sluggish very quickly. But if there’s a whole
class of script that isn’t allowed access to the DOM, then the
browser can happily run that script in parallel to its regular
rendering activities, safe in the knowledge that it’s an entirely
separate process.

The first kind of script to come with this constraint was called
a web worker. In a web worker, you could write some JavaScript

INTRODUCING SERVICE WORKERS

to do number-crunching calculations without slowing down
whatever else was being displayed in the browser window. Spin
up a web worker to generate larger and larger prime numbers,
for instance, and it will merrily do so in the background.

A service worker is like a web worker with extra powers. It
still can’t access the DOM, but it does have access to the fun-
damental inner workings of the browser.

Browsers and servers

Let’s take a step back and think about how the World Wide
Web works. It’s a beautiful ballet of client and server. The cli-
ent is usually a web browser—or, to use the parlance of web
standards, a user agent: a piece of software that acts on behalf
of the user.

The user wants to accomplish a task or find some informa-
tion. The URL is the key technology that will empower the user
in their quest. They will either type a URL into their web
browser or follow a link to get there. This is the point at which
the web browser—or client—makes a request to a web server.
Before the request can reach the server, it must traverse the
internet of undersea cables, radio towers, and even the occa-
sional satellite (F1G 1.1).

Imagine if you could leave instructions for the web browser
that would be executed before the request is even sent. That’s
exactly what service workers allow you to do (FIG 1.2).

Usually when we write JavaScript, the code is executed after
it’s been downloaded from a server. With service workers,
we can write a script that’s executed by the browser before
anything else happens. We can tell the browser, “If the user
asks you to retrieve a URL for this particular website, run this
corresponding bit of JavaScript first.” That explains why service
workers don’t have access to the Document Object Model;
when the service worker is run, there’s no document yet.

4 GOING OFFLINE

—— 20— @

Request

@4 Response g Request |

=

FIG 1.1: Browsers send URL requests to servers, and servers respond by sending files.

Service
Worker
g >
Response '-(_’ ou Request @

‘ O ’ Response % Request |
< e ¢

FIG 1.2: Service workers tell the web browser to do something before they send the
request to queue up a URL.

Getting your head around service workers

A service worker is like a cookie. Cookies are downloaded from
a web server and installed in a browser. You can go to your
browser’s preferences and see all the cookies that have been
installed by sites you’ve visited. Cookies are very small and very
simple little text files. A website can set a cookie, read a cookie,
and update a cookie. A service worker script is much more
powerful. It contains a set of instructions that the browser will
consult before making any requests to the site that originally
installed the service worker.

INTRODUCING SERVICE WORKERS §

A service worker is like a virus. When you visit a website, a
service worker is surreptitiously installed in the background.
Afterwards, whenever you make a request to that website, your
request will be intercepted by the service worker first. Your
computer or phone becomes the home for service workers
lurking in wait, ready to perform man-in-the-middle attacks.
Don’t panic. A service worker can only handle requests for
the site that originally installed that service worker. When you
write a service worker, you can only use it to perform man-in-
the-middle attacks on your own website.

A service worker is like a toolbox. By itself, a service worker
can’t do much. But it allows you to access some very powerful
browser features, like the Fetch API, the Cache API, and even
notifications. API stands for Application Programming Inter-
face, which sounds very fancy but really just means a tool that
you can program however you want. You can write a set of
instructions in your service worker to take advantage of these
tools. Most of your instructions will be written as “when this
happens, reach for this tool.” If, for instance, the network con-
nection fails, you can instruct the service worker to retrieve a
backup file using the Cache API.

A service worker is like a duck-billed platypus. The platy-
pus not only lactates, but also lays eggs. It’s the only mammal
capable of making its own custard. A service worker can also...
Actually, hang on, a service worker is nothing like a duck-billed
platypus! Sorry about that. But a service worker is somewhat
like a cookie, and somewhat like a virus, and somewhat like
a toolbox.

SAFETY FIRST

SERVICE WORKERS ARE POWERFUL. Once a service worker has
been installed on your machine, it lies in wait, like a patient
spider waiting to feel the vibrations of a particular thread.
Imagine if a malicious ne’er-do-well wanted to wreak havoc
by impersonating a website in order to install a service worker.
They could write instructions in the service worker to prevent
the website ever appearing in that browser again. Or they could

6 GOING OFFLINE

write instructions to swap out the content displayed under that
site’s domain. That’s why it’s so important to make sure that a
service worker really belongs to the site it claims to come from.
As the specification for service workers puts it, they “create the
opportunity for a bad actor to turn a bad day into a bad eternity
(http://bkaprt.com/go/01-01/).”

To prevent this calamity, service workers require you to
adhere to two policies:

1) Same origin.
2) HTTPS only.

The same-origin policy means that a website at example.com
can only install a service worker script that lives at example.
com. That means you can’t put your service worker script on a
different domain. You can use a domain like s3.amazonaws.com
for hosting your images and other assets, but not your service
worker script. That domain wouldn’t match the domain of the
site installing the service worker.

The HTTPS-only policy means that https://example.com
can install a service worker, but http://example.com can’t. A
site running under HTTPS (the S stands for Secure) instead of
HTTP is much harder to spoof. Without HTTPS, the commu-
nication between a browser and a server could be intercepted
and altered. If you're sitting in a coffee shop with an open Wi-Fi
network, there’s no guarantee that anything you're reading in
browser from http://newswebsite.com hasn't been tampered
with. But if you're reading something from https://newswebsite.
com, you can be pretty sure you’re getting what you asked for.

Securing your site

Enabling HTTPS on your site opens up a whole series of secure-
only browser features—like the JavaScript APIs for geolocation,
payments, notifications, and service workers. Even if you never
plan to add a service worker to your site, it’s still a good idea
to switch to HTTPS. A secure connection makes it trickier for
snoopers to see who'’s visiting which websites. Your website
might not contain particularly sensitive information, but when

INTRODUCING SERVICE WORKERS

7

http://bkaprt.com/go/01-01/
http://s3.amazonaws.com/

someone Vvisits your site, that’s between you and your visitor.
Enabling HTTPS won’t stop unethical surveillance by the NSA,
but it makes the surveillance slightly more difficult.

There’s one exception. You can use a service worker on a
site being served from localhost, a web server on your own
computer, not part of the web. That means you can play around
with service workers without having to deploy your code to a
live site every time you want to test something.

If you're using a Mac, you can spin up a local server from
the command line. Let’s say your website is in a folder called
mysite. Drag that folder to the Terminal app, or open up the
Terminal app and navigate to that folder using the cd command
to change directory. Then type:

python -m SimpleHTTPServer 8000

This starts a web server from the mysite folder, served over
port 8000. Now you can visit localhost:8000 in a web browser
on the same computer, which means you can add a service
worker to the website you've got inside the mysite folder:
http://localhost:8000.

But if you then put the site live at, say, http:/mysite.com,
the service worker won’t run. You’ll need to serve the site
from https://mysite.com instead. To do that, you need a secure
certificate for your server.

There was a time when certificates cost money and were
difficult to install. Now, thanks to a service called Certbot, cer-
tificates are free. But I'm not going to lie: it still feels a bit intim-
idating to install the certificate. There’s something about logging
on to a server and typing commands that makes me simultane-
ously feel like a 133t hacker, and also like I'm going to break
everything. Fortunately, the process of using Certbot is rela-
tively jargon-free (FIG 1.3).

On the Certbot website (http://bkaprt.com/go/01-02/), you
choose which kind of web server and operating system your
site is running on. From there you’ll be guided step-by-step
through the commands you need to type in the command line
of your web server’s computer, which means you’ll need to
have SSH access to that machine. If youre on shared hosting,

8 GOING OFFLINE

http://bkaprt.com/go/01-02/

%] Certoot x

& C @ Secure | https://certbot.efforg

home about certbot faq documentation support donate to EFF

“cert

Automatically enable HTTPS on your website with EFF's Certbot,
deploying Let's Encrypt certificates.

I'musing [software) on [system)

3 To get instructions for Certbot, choose your server software and the system it is running on from th
il dropdown menus above. You can then pick "advanced" if you want less automation and more contrc

f v g+

FIG 1.3: The website of EFF's Certbot.

that might not be possible. In that case, check to see if your
hosting provider offers secure certificates. If not, please pester
them to do so, or switch to a hosting provider that can serve
your site over HTTPS.

Another option is to stay with your current hosting provider,
but use a service like Cloudflare to act as a “front” for your
website. These services can serve your website’s files from
data centers around the world, making sure that the physical
distance between your site’s visitors and your site’s files is nice
and short. And while they’re at it, these services can make sure
all of those files are served over HTTPS.

Once you’re set up with HTTPS, you’re ready to write a
service worker script. It's time to open up your favorite text
editor. You’re about to turbocharge your website!

INTRODUCING SERVICE WORKERS 9

http://bkaprt.com/go/01-02/

BEFORE YOU EXPEND ENERGY creating a service worker script,
you might be wondering if it’s worth the investment. You prob-
ably want to know which browsers support service workers,
and by extension, how many of your site’s visitors will benefit
from this technology.

You can go to caniuse.com and find the current support
levels for service workers (FIG 2.1). At the time of writing, it’s
not exactly a field of green. Quite a few of the major browsers
support service workers, but there are some glaring omissions.
Some of the visitors to your website are almost certainly using
browsers that don’t support service workers.

You could wait until just about every browser ships support
for service workers before adding this technology to your site.
Though, fortunately, because of the way service workers have
been designed, you don’t have to wait. You can deploy a service
worker to your site today. The supporting browsers will get the
benefit, and the non-supporting browsers will carry on just as
they do right now. Think of your service worker as a reward
for users of more modern browsers. Crucially, you won’t be
punishing users of less modern browsers.

10 GOING OFFLINE

https://caniuse.com/
https://caniuse.com/

™ Can luse... Support table:

& G @ caniusecomtien

Feature: Service Workers

3 Service Workers B-wo Global 65.27% + 832% = 73.6%

Method that enables applications to take advantage of persistent
background processing, including hooks to enable bootstrapping
of web applications while offline.

Usage relative Date relative showall

IE Edge * Firefox Chrome Safari Opera 105 Safari * Opera Mini~ g:gvzgﬁ * CZ:?(;:;LW
]
56 1" 1 all 61

52
55
N

Notes Knownissues (0) Resources (8) Feedback

Details on partial support can be found on is ServiceWorker Ready?
MS Edge status: In Development
WebKit status: In Development

FIG 2.1: You can find current browser support for service workers at https://caniuse.com.

Before a service worker can be installed on a user’s machine,
they must first visit your website. For that first visit, there’s no
service worker, regardless of whether the user’s browser has
support for service workers or not. When it comes to first-time
visits, no browser can benefit from a service worker. That
means a service worker can only be deployed as an enhance-
ment. Even if you wanted to make a website that relied com-
pletely on a service worker, that first visit would foil your
fiendish plan.

I think that’s a brilliant piece of design. Because service
workers must be applied as an extra layer on top of your exist-
ing functionality, the levels of support on caniuse.com really
don’t matter. Even if only one browser supported service work-
ers, it would still be worth adding one to your site. Best of all,
as more and more browsers add support for service workers,
more and more people will benefit from the work you do today.

PREPARING FOR OFFLINE 11

https://caniuse.com/
https://caniuse.com/
https://caniuse.com/

REGISTRATION

Start by creating a blank JavaScript file called serviceworker.
js and save it in the same folder as your website. You might be
used to putting all your JavaScript files into their own folder,
like /js/, but I recommend keeping your service worker file
at the root level. If you put it somewhere else, things get com-
plicated when it comes to which URLs the service worker can
intercept. Putting your service worker file at /serviceworker.
js keeps things simple.

Before the service worker can be installed on a visitor’s
machine, the visitor’s browser needs to know of the file’s exis-
tence. You need to point to the service worker file and say, “See
that service worker script over there? Install it, please.” This is
called registration.

The simplest way to do this is with a 1ink element in the
head of your site’s HTML:

<link rel="serviceworker" href="/serviceworker.js">

Alas, we can’t rely on this just yet. At the time of writing,
not many browsers support this nice declarative way of point-
ing to service worker scripts. But that’s okay. We can still use
JavaScript. You can put this JavaScript in an external file or put
it at the bottom of your HTML.:

<script>

navigator.serviceWorker.register('/serviceworker.
js');

</script>

This highlights an interesting difference between HTML and
JavaScript. If a browser doesn’t support service workers, and
you present it with the 1ink rel="serviceworker" element,
the browser will ignore it. That’s down to the error-handling
model of HTML—it ignores what it doesn’t understand. That
can be frustrating if you’re trying to debug HTML. If you make
a typo, the browser won’t complain—it will simply ignore it.
But it’s a powerful feature when it comes to extending the lan-

12 GOING OFFLINE

guage. New elements, attributes, and rel values can be added to
HTML, safe in the knowledge that older browsers will quietly
ignore them and move on.

That’s not how browsers behave with JavaScript. If you give
a browser some JavaScript it doesn’t understand, it will throw
an error. Worse, the browser will stop parsing that block of
JavaScript. Any subsequent code, even if it’s error-free, will
never get executed.

If you point a browser at a service worker script using JavaS-
cript, but that browser doesn’t understand what you mean by
navigator.serviceWorker, it won’t just ignore what you’ve
written—it will throw an error.

Feature detection

There’s a way around this. Before using a browser feature in
JavaScript, you can ask the browser whether or not the feature
exists. This is imaginatively called feature detection.

You can apply feature detection to just about anything that’s
available through JavaScript. If you wanted to use the Geoloca-
tion API, your feature detection might look like this:

if (navigator.geolocation) {
// Your code goes here

That line beginning with // is a comment. It won’t be exe-
cuted by the browser. It’s not meant for machines; it’s meant
for humans. Comments are a great way of leaving reminders
for your future self, like Guy Pearce in Memento or Arnold
Schwarzenegger in Total Recall.

The comment is there for you. The if statement is there for
the browser. The if statement checks to see if there’s such a
thing as a geolocation property in the navigator object.

Wait a minute. Objects? Properties? What is this moon lan-
guage I'm suddenly spouting?

PREPARING FOR OFFLINE 13

An object lesson

For the longest time, I was intimidated by concepts like
Object-Oriented Programming. Not only was it written in cap-
ital letters to demonstrate its seriousness, it also had its own
vocabulary of terms. [knew some JavaScript, so I knew what a
variable was (a label for storing a value—the value can change,
but the label stays the same), and I knew what a function was (a
block of code that can be executed by invoking its label), but I
had no idea what a property or a method was.

Imagine my surprise when I found out that a property is
just another name for a variable, and a method is just another
name for a function. The only difference is that properties and
methods have a parent, called an object—not exactly a very
revealing name (we’re lucky we didn’t up with Thing-Oriented
Programming).

Properties and methods are preceded by the parent’s label
and a dot:

object.property
object.method()

Web browsers expose their features to JavaScript through
objects. There’s one parent object called window. That object
contains other objects, chained together with dots. The docu-
ment object belongs to the window object:

window.document
So does the navigator object:
window.navigator
So document and navigator are properties of the window
object, as well as being objects themselves.
The window object is so ubiquitous that you don’t even have

to specify it if you don’t want to. That’s handy because doc-
ument and navigator can have their own objects, which in

14 GOING OFFLINE

turn have their own properties and methods. It can get quite
long-winded to write:

window.navigator.servicelWorker.register();
You can save a bit of space by writing:
navigator.serviceWorker.register();

That’s the register method of the servicelWorker object:
the serviceWorker objectis a property of the navigator object
(which is in turn a property of the window object). You can
read it backwards from right to left, substituting each dot for
the words “belongs to”: register belongs to serviceWorker,
which belongs to navigator (which belongs to window).

The property test

With feature detection, you’re checking for the existence of
properties. If you want to use service workers, you can first
ask the browser if there’s a property called serviceWorker that
belongs to the navigator object:

if (navigator.serviceWorker) {
// Your code goes here

In an older browser that doesn’t support service workers,
navigator.serviceWorker returns a value of undefined—
there’s no such property. In a newer browser, navigator.
serviceWorker exists and is an object.

There are many ways to do feature detection. You could use
the in operator to rifle through the navigator object looking
for the serviceWorker property:

if ('serviceWorker' in navigator) {
// Your code goes here

PREPARING FOR OFFLINE

15

Or you could explicitly check that the servicelorker object
doesn’t have a value of undefined:

if (navigator.serviceWorker !== undefined) {

// Your code goes here

Whichever way you decide to apply feature detection, it’s
always a good idea to do it before using a browser feature. With
this in mind, here’s how you can point to your service worker
file from your HTML:

<script>

if (navigator.serviceWorker) {
navigator.serviceWorker.register('/serviceworker.
is');

}

</script>

Now you're safely running the register method of the ser-
vicelorker object, secure in the knowledge that nonsupporting
browsers will never try to execute that code.

Whenever I see that something is a method, I do a little men-
tal substitution—replacing the word method with the word func-
tion—to remind myself how methods work. The parentheses
after the name of the method are a dead giveaway that methods
work just like functions (they just happen to be functions that
belong to a parent object).

The parentheses are where we can pass in values to a func-
tion—or to a method. For some reason, these values are known
as arguments. I have no idea why this is. It makes talking about
code sound quite confrontational: “Pass these arguments into
this method” sounds like an instruction to pick a fight.

In the case of the register method, you’re currently passing
in one argument—the URL of your service worker script:

register(url)

16 GOING OFFLINE

The value of that URL will define the scope of the service
worker—how much of your site the service worker will control.

Scope

By default, the scope is derived from where you put your ser-
vice worker script. If your service worker script resides at /js/
serviceworker. js, the script will only be able to control URLs
that start with /js.

There might be situations when you want the same domain
to have multiple service workers, such as /myapp/service-
workeri.js and /myotherapp/serviceworker2.js. Because
the scope of a service worker is defined by its URL, you can
point to both of them from anywhere in your site:

navigator.serviceWorker.register('/myapp/
serviceworkerl.js');

navigator.serviceWorker.register('/myotherapp/
serviceworker2.js');

The first service worker will have control over /myapp/. The
second service worker will have control over /myotherapp/.

What if you have one service worker for the whole site, but
another one for a specific folder?

navigator.serviceWorker.register('/serviceworkerl.
js');

navigator.serviceWorker.register('/myapp/
serviceworker2.js');

First you're declaring that one service worker should have
control over every URL, then you’re declaring that another
service worker should have control over certain URLs. Which
declaration wins?

There’s a fairly simple formula for figuring that out: the
service worker script with the longest path in its URL will
win. The service worker inside myapp will handle any requests
that start with /myapp/. Every other URL will be handled by /
serviceworkeri.js.

PREPARING FOR OFFLINE 17

Another option is to put all your service worker scripts at the
root level, and then declare the scope from JavaScript. Let’s say
your scripts are /serviceworkeri.js and /serviceworker2.
js. The first service worker script is for the whole site, so you
can point to it like this:

navigator.serviceWorker.register('/serviceworkerl.
is');

The other service worker script is only intended for /myapp/.
You can declare this by passing in another argument to the
register method:

navigator.serviceWorker.register('/serviceworker2.
is', A
scope: '/myapp/'

1

The declarative equivalent of this—once browsers support
it—will be:

<link rel="serviceworker" href="/serviceworkerl.js">
<link rel="serviceworker" href="/serviceworker2.js"

scope="/myapp/">

While it’s good to know how to set the scope of different
service workers, most websites will only ever have one service
worker responsible for the whole site.

The register method lives up to its name. You're asking
the browser to register the existence of a service worker script.
Your code should look something like this:

if (navigator.serviceWorker) {
navigator.serviceWorker.register('/serviceworker.

js');

18

GOING OFFLINE

PROMISES

When you ask the browser to register the existence of your
service worker script, you're going to have to give it a few
moments. First, the browser needs to verify that the current
site is either running on HTTPS or localhost. Then, it needs
to check that the service worker script is on the same domain
as the current site. Finally, the browser will attempt to fetch the
service worker script and parse it.

None of these steps will take very long, but you wouldn’t
want the browser to freeze while it’s busy with these tasks.
That’s why the register method is executed asynchronously.
The browser doesn’t finish executing the register method
before moving on to the next line of code. Instead, it moves
straight on to the next line of code while it carries out its tasks
in the background.

That’s great for browser performance, but what if we want to
give the browser some further instructions once the register
method has finished its chores?

The old way of executing the extra instructions would
involve listening out for events—maybe something like load
or ready. That works, but it can result in code that’s hard to
read. There’s another way of handling asynchronous events
that results in more elegant code: promises.

A promise is a kind of object that comes with a built-in method
called then. Whatever function you put inside the then method
will only be executed when the promise has successfully fin-
ished all its tasks. At this point, we say that the promise has been
fulfilled, much like the closing chapter of a revenge thriller or
the denouement to a fairy tale.

promise

.then(function () {
// Yay! It worked.

s

PREPARING FOR OFFLINE 19

If something goes wrong along the way and the promise isn’t
fulfilled, there’s a corresponding catch method. You can put a
function in there to make amends for the unsuccessful fulfill-
ment of the promise. The end result looks something like this:

promise

.then(function () {
// Yay! It worked.

D)

.catch(function () {
// Boo! It failed.

1)

You don’t have to put the then and catch methods on new lines
like that. That’s just my preference. You might prefer to write:

promise.then(
function () {
// Yay! It worked.
}
).catch(
function () {
// Boo! It failed.
}
)

You could even write the whole thing on one line if you want
to be the James Joyce of JavaScript.

In those examples, the functions inside then and catch are
anonymous functions. That doesn't mean that they’re ashamed
of anything they're doing; it means that they don't have names.
They’re created on the fly and then never referred to again.
You don’t have to use anonymous functions. You could invoke
functions that you’ve written elsewhere—functions that are
proud of their names, not hiding behind the veil of anonymity:

promise
.then(doSomething)
.catch(doSomethingElse);

20 GOING OFFLINE

If I were the judgmental sort, I would have to say that
doSomething and doSomethingElse aren’t names to be proud
of, but the point is they can be reused. And if you use them
within then or catch you know that they won’t run until the
promise is fulfilled or rejected. That’s right—we call it a rejection
when a promise isn’t fulfilled.

Promises, fulfillments, and rejections—this is beginning to
feel like a soap opera.

The order of events

Promises are perfect for asynchronous tasks. Registering a
service worker is an asynchronous task. Let’s prove it. Try out
this piece of code:

<script>
if (navigator.serviceWorker) {
navigator.serviceWorker.register('/serviceworker.
js")
.then(function () {
console.log('Success!");
)
.catch(function () {
console.error('Failure!");
3
console.log('All done.");
}

</script>

Add that JavaScript to the bottom of your HTML page, reload
the page in a web browser, then open up the browser’s JavaS-
cript console (alt+cmd+j). Here’s what you should see:

All done.
Success!

PREPARING FOR OFFLINE

21

Unless something went horribly wrong, in which case
you'll see:

All done.
Failure!

Notice that the command to log “All done.” was at the end of
your code, and yet it’s the first log command to get executed.
Usually JavaScript code is executed in a procedural way—the
order in which commands are given is also the order in which
those commands are executed. Asynchronous commands—Ilike
serviceWorker.register—will finish executing in their own
good time. That’s asynchronousness... asynchronicity... asyn-
chronaciousness... that’s how this kind of thing works.

Winning arguments

When a promise is fulfilled (or rejected), it can send data to
the function that’s waiting patiently inside then (or catch). To
access that data, you’ll need to include it as an argument inside
the waiting function. Here’s an example:

navigator.serviceWorker.register('/serviceworker.
js")

.then(function (registration) {
console.log('success!', registration.scope);

1)

In this case, I'm passing the data from successful registration
in a variable called registration. That data is an object. I'm
then accessing the scope property of that object. That gives me
something like:

Success! http://localhost:8000/

22

GOING OFFLINE

That word registration is just what I'm calling the object
being returned from a successful service worker registration.
I could call it anything—for instance, this code works exactly
the same way:

navigator.serviceWorker.register('/serviceworker.
js")

.then(function (x) {
console.log('success!', x.scope);

1)

Whenever you receive data from a promise, you can call
it anything you want. Personally, I think that registration
makes more sense than x because it describes the data better.

A promise can also pass data to the function within catch.
That’s really useful for debugging. Here’s an example where
I'm deliberately going to cause an error by trying to point to a
non-existent service worker file:

navigator.serviceWorker.register('/nothing.js")
.catch(function (error) {
console.error('Failure!', error);

3
Now I'll see something like this in the console:

Failure! TypeError: Failed to register a
ServiceWorker: A bad HTTP response code (404) was
received when fetching the script.

Again, that name error is just my name for the data. I
could’ve called it x or y or anything:

navigator.serviceWorker.register('/nothing.js")
.catch(function (y) {
console.error('Failure!’, y);

1)

PREPARING FOR OFFLINE

23

Feel free to update the JavaScript code in your HTML to
take advantage of the data being passed in from the regis-
ter promise:

<script>
if (navigator.serviceWorker) {
navigator.serviceWorker.register('/serviceworker.
js")
.then(function (registration) {
console.log('Success!', registration.scope);
9]
.catch(function (error) {
console.error('Failure!', error);
1
}

</script>

Looking good. You're practicing feature detection, you're
handling promises, and most important, you’re registering a
service worker for your site. But that service worker isn’t doing
anything yet. It’s just a blank file.

Let’s fix that.

24 GOING OFFLINE

RIGHT NOW, YOUR SERVICE WORKER FILE IS EMPTY. An empty
service worker file won’t do anything by default. That might
sound obvious, but it’s a very deliberate design decision. There
are plenty of technologies that try to anticipate your needs
and provide you with default behaviors without you having
to specify anything. That sounds great—unless those default
behaviors are not what you wanted.

I realize I'm being quite vague, so I'll be more specific. ButI
warn you, I am about to drag some skeletons from the darkest
depths of the browser and out into the light. Huddle a little
closer to the campfire, and I'll position this flashlight under my
chin while I tell you a tale...

THE EXTENSIBLE WEB

What if I told you that service workers aren’t the first technol-
ogy to enable websites to work offline? There was a previous
attempt to solve the offline problem using a technology called
Application Cache, or AppCache for short. If you haven’t heard

MAKING FETCH HAPPEN 2§

of AppCache, that’s good. We try not to speak its name. Those
poor unfortunate souls who dabbled too deep in the dark arts
of AppCache have banished it from their minds, lest they be
driven out of their wits by such painful memories.

AppCache was forged in the fires of the standards process,
hidden from the gaze of mortal web developers. The spec was
then triumphantly unveiled. “Behold!” cried the standard bear-
ers, “We’ve given you a way to make your sites work offline!”
Web developers eagerly took hold of this new knowledge,
implemented AppCache, and promptly broke their websites.

It all looked so good on paper (and on mailing list). You cre-
ated a new file called an application manifest. In that manifest,
you listed which files should be cached. From then on, the
listed files would always be retrieved from the cache instead
of from the network.

It seemed straightforward enough, but the devil was in the
details. In order to tell the browser where the manifest file lived,
you needed to point to it using a manifest attribute in your
document’s html element. As soon as you did that, the HTML
file was automatically added to the list of files to be cached.
It didn’t matter if you updated the HTML—your users would
still see the stale version from the cache. Trying to break this
stranglehold on your site meant entering a painful world of
cache invalidation. It was a mess.

AppCache sounded great in theory, but fell apart in practice.
In retrospect, the root of the problem seems obvious. Instead of
consulting with developers on the functionality they wanted,
the spec was created by imagining what developers wanted.
It makes more sense to give developers the tools they need to
create their own offline solutions, than giving them an inflexible
technology that only works in limited situations.

Giving developers access to the building blocks they need
to craft their own solutions is the driving force behind an idea
called the extensible web. There’s even a manifesto:

Our primary goal is to tighten the feedback loop between the
editors of web standards and web developers. We prefer an
evolutionary model of standardization, driven by the vast army

26 GOING OFFLINE

of web developers, to a top-down model of progress driven by
standardization. (http.//bkaprt.com/go/03-01/)

Stirring stuff. It makes me want to storm the barricades (and
replace them with well-designed, standardized barricades).

Whereas AppCache added a layer of “magic” on top of the
work the browser was doing under the hood, service workers
expose the true inner workings of the browser.

Browser vendors should provide new low-level capabilities that
expose the possibilities of the underlying platform as closely as
possible. (http.//bkaprt.com/g0/03-01/)

Developers then have to provide step-by-step instructions
to browsers detailing exactly what we want to happen. That’s
more work than the straightforward, declarative approach of
AppCache, but it’s also more empowering. Writing JavaScript
is the price we pay for these newfound powers.

That’s why your service worker file isn’t doing anything yet.
You need to fill it with instructions first. That means you need
to decide what you want your service worker to do.

EVENTS

An empty service worker file won’t do anything, but it still gets
installed on the user’s machine. You can see this for yourself
by looking in your browser’s development tools. I recom-
mend using Chrome for this. Visit the local version of your
site—the one with the service worker registration code in the
HTML—and open up Developer Tools (alt+cmd+i). Click on the
Application panel. Then, from the menu in the sidebar, select
Service Workers (FIG 3.1).

This shows that a service worker has been activated, like a
sleeper agent in a Cold War thriller. Now it’s time to add some
JavaScript to that empty service worker file, serviceworker. js.

When you write JavaScript that’s going to be executed by a
web browser, it often follows this pattern:

MAKING FETCH HAPPEN 27

http://bkaprt.com/go/03-01/
http://bkaprt.com/go/03-01/

Developer Tools - http://local host:8000/

[¥ @] | Network Audits Memory Console Elements Sources Performance Application Security

Application

[Manfest
%x Service Workers
1 Clear storage

Storage

» S5 Local Storage

S websaL

» & Cookies

Cache

» & Cache Storage

Service Workers

7 Offine (] Update on reload (] Bypass for network () Show all

55 Appiication Cache

Frames.
»Dtop

http://iocalhost:3000/ Update Push Sync Unregister
Source senviceworkeris
Recelved 05/11/2017, 18:59:30
Status @ #0 activated andis running stop
Glents _htip:/7ocainost8000/ focus
i Console Network condions ~ Rendering ~ Coverage Quick source x
v | Fiter Allevels ¥ "

© | wp

FIG 3.1: The Service Workers section in Chrome’s Developer Tools (under the Application

panel).

1) When this event happens,
a) do something.

The event you're listening out for could be triggered by the
user—clicking, scrolling, or hovering, for instance. You can then
use that event as your cue to do something—show some informa-
tion, trigger an animation, or make an Ajax request to the server.

It’s a similar situation with service workers. You can still
write code that listens for events, but this time the events are
triggered by the browser itself as it goes about its business. The
way that a browser works its magic is through the fetch event.

When you click on a link or type a URL into the brows-
er’s address bar, that triggers the fetch event—the browser
will “fetch” that document from the web. If that HTML doc-
ument has images in it, each img element will trigger another
fetch event—the browser will “fetch” the files referenced in
the src attributes. If the page links to a stylesheet with rel="-
stylesheet”, that will also trigger a fetch event. The same
goes for a JavaScript file referenced from the src attribute of a
script element.

In your service worker script, you can listen for every sin-
gle one of those fetch events. You can use addEventListener
to do this:

28 GCOING OFFLINE

ece Developer Tools - htp://localhost:8000/
[¥ @] | Network Audits Memory Console Elements Sources Performance Application Security

Application Service Workers

Gy 7 Offine () Update on reload () Bypass for network () Show all
% Senvce Workers
1 Clear st

L EEeEE hitp:/ocalhost:8000/ Update Push Sync Unreaister
Storage Source senjceworkeris

Recaived 05/11/2017, 1907:22

» S5 Local Storage
ession Storage Status @ #0 activated and s running stop.
IndexedDB

= #1 waiting to activate skipWaiting
£ Web SaL Received 05/11/2017, 19:07:41

» & Cookies
Gllents _ httpi/fiocalnost8000/ focus

Cache
£ Cache Storage
55 Appiication Cache

Frames.
»Dtop

i Console Network condions ~ Rendering ~ Coverage Quick source

© |wp v | Fiter Allevels ¥

FIG 3.2: The Service Workers section of the Application panel in Chrome's Developer
Tools shows that the old service worker is still in control.

addEventListener('fetch', function (event) {
console.log('The service worker is listening.');

1)

This is following the familiar pattern of listening for an event,
and then executing some code when the event is triggered:

1) Whenever a fetch event happens,
a) log this message to the browser console.

In the settings for the Console panel in Chrome’s DevTools,
tick the “Preserve log” option—that way you’ll get a record
of every fetch event. Save the changes you’ve made in the
serviceworker.js file and reload the page in your browser. If
you look in the Console panel of DevTools, you'll see...nothing
new. What’s going on? Why doesn’t it say, “The service worker
is listening.”?

The key to unravelling this mystery is to look in the Appli-
cation panel again. The status message now shows two service
workers. When you edited the service worker script, the
browser saw that as being a whole new service worker. It can’t
swap out the existing service worker for the new one just yet,
because the page currently loaded in the browser is still under
the control of the original service worker (FIG 3.2).

MAKING FETCH HAPPEN 29

THE SERVICE WORKER LIFE CYCLE

Let’s back up for a moment and think about all the steps
involved in getting a service worker up and running.

The whole process starts with registration, which you initi-
ated from a script element in your HTML:

navigator.serviceWorker.register('/serviceworker.
is');

The service worker file is downloaded. After download
comes installation. This is followed by activation, when the
service worker takes control of this particular browser. After
activation, every request to your site will be routed through
the service worker.

The first time a browser visits your site, the life cycle of the
service worker seems straightforward enough:

1. Download
2. Install
3. Activate

When you update your service worker script, you aren’t
updating the service worker that’s been installed on the user’s
machine. Instead, you're creating a whole new service worker.
This new service worker is downloaded and installed, but it
isn’t automatically activated. The new service worker is waiting
in the wings, ready to be activated, but as long as the user is nav-
igating around your site, the old service worker is still in charge.

The way that service workers get updated is similar to the
way that browsers themselves get updated. If there’s a new
version of Chrome, it gets downloaded in the background. But
Chrome doesn’t restart without asking. Instead, it waits until
you shut down the browser. Only then does it install the new
version of the browser and delete the old one.

30 GOING OFFLINE

ece Developer Tools - htp://localhost:8000/
[¥ @] | Network Audits Memory Console Elements Sources Performance Application Security

Application Service Workers

[Manifest ™) Offine () Update on reload () Bypass for network [] Show all

% Senvce Workers

W Clear st pd: 0l
1 Clear storage http//iocalhost:8000/ Undate Push Sync Unregister

Storage Source senviceworkecis
Recelved 05/11/2017, 19:20:12

» 55 Local Storage
ession Storage Status @ #10activated and s running. stop
indexedDB

S WebsaL
» & Cookies

Cllents _httpi//localnost:8000/ focus

Cache
£ Cache Storage
55 Appiication Cache

Frames.
»Dtop

i Console Network condions ~ Rendering ~ Coverage Quick source x

© |wp v | [Fiter Allevels ¥

FIG 3.3: A service worker with a numeric ID is running.

It’s the same with service workers—the update is down-
loaded in the background, but it doesn’t take effect until the
browser is closed and reopened. Until then, it’s waiting.

So the life cycle for an updated service worker is more
like this:

1. Download
2. Install

3. Wait

4. Activate

The new service worker will patiently wait until the user has
the left your website. As long as the user has a single browser tab
open with your website in it, the old service worker is active.

You can see the service worker life cycle in action using the
Developer Tools in Chrome. Under the Service Workers section
in the Application panel, you’ll see which service worker is
currently active (FiG 3.3). It will have a unique number. The
Status will say something like “#12345 is activated and is running.”

When you update your service worker script, a new service
worker with a new number will appear, saying something like
“#12346 is waiting to activate” (FIG 3.4).

MAKING FETCH HAPPEN 31

ece
[C]

Application
[Manfest
%x Service Workers
1 Clear storage

Storage

» S5 Local Storage

S WebsaL
» & Cookies

Cache

S Cache Storage

Developer Tools - http://local host:8000/

Network Audits Memory Console FElements Sources Performance Application Security

Service Workers

7 Offine (] Update on reload (] Bypass for network () Show all

55 Appiication Cache

Frames.
»Dtop

http://iocalhost:3000/ Update Push Sync Unregister
Source senviceworkeris
Recelved 05/11/2017, 19:20:12
status I #10activated and s running stop
#12 waiting to activate skipWaiting
Recelved 05/11/2017, 19:22:08
Glents _htip:/7ocainost8000/ focus
i Console Network condions ~ Rendering ~ Coverage Quick source x
v | [Fiter Allevels ¥ "

© | wp

FIG 3.4: Another service worker with a different numeric ID is waiting to take over.

Updating your service worker

As long as you have a browser window or tab open with a
domain that’s under the control of a service worker, the new
version of that service worker has to wait in the wings. This
can make debugging quite tricky. If you have multiple browser
windows or tabs open, you need to make sure that you haven’t
accidentally left one running with the old service worker in
control, or none of them will get the updated service worker.

There are two things you can do to make sure the updated
service worker kicks in. You can either shut down any browser
windows or tabs that have localhost loaded in them, or you
can use the handy skipWaiting command in the Application
panel in DevTools. Then, the next time you load the page, the
new service worker will be activated and the old one will fade
away into oblivion.

Now when you reload the page, you’ll finally be greeted with
this message in your browser console:

The service worker is listening.

When you’re working with service workers, you may find
yourself refreshing your browser window many times. It’s
important to note that if you do a hard refresh—pressing Shift
while you refresh—you’ll bypass the service worker completely.

32 GOING OFFLINE

If you like, you can see the service worker installation and
activation in action by listening to the install and acti-
vate events:

addEventListener('install', function (event) {
console.log('The service worker is
installing...");

1

addEventListener('activate', function (event) {
console.log('The service worker is activated.');

1)

addEventListener('fetch', function (event) {
console.log('The service worker is listening.');

1)

Save those changes in your serviceworker.js file. Once
again, if you refresh your browser window, you won’t see any
changes; your new service worker script is waiting to take
effect while your page is still in the clutches of the old version.
Close your browser window, or use the skipWaiting link in
DevTools. Now when you reopen a browser window and nav-
igate to your local site, you'll see these messages:

The service worker is installing...
The service worker is activated.

As long as your browser window is open, you won’t see
either message again. But every time you refresh the page, you’ll

trigger a new fetch event:

The service worker is listening.

THE fetch EVENT

When you intercept a fetch event, you can do whatever you
want with the data being passed into the anonymous function

MAKING FETCH HAPPEN

33

you’ve created. The data is available through the event argu-
ment you’re passing into that function:

addEventListener('fetch', function (event) {
// Do something with 'event' data

1)

You don’t have to call it event. You could call it x, y, or z if
you wanted:

addEventListener('fetch', function (z) {

// Do something with 'z' data
1

I find it’s useful to use a descriptive word like fetchEvent or
event (or even just evt, as long as your future self can remem-
ber what it’s short for). It’s your code, so you can use whatever
makes sense to you.

addEventListener('fetch', function (fetchEvent) {
// Do something with 'fetchEvent' data
1

Something else you can do is use some of the fancy new
JavaScript syntax that was added in ESé6. I know it would make
more sense if it were called JS6, but why keep things logical
when they can be deliberately obscure and confusing?

One of the new syntax features is designed to remove those
ugly anonymous function declarations and replace them with
ASCII art in the shape of an arrow:

addEventListener('fetch', fetchEvent => {
// Do something with 'fetchEvent' data
1

I quite like the way those new arrow functions look. Again,
it’s your code so use whichever syntax makes most sense to you.
Usually I'm cautious about using new JavaScript syntax
in web browsers. If a browser doesn’t understand the new

34 GOING OFFLINE

syntax, it will throw an error and stop parsing the script. But
that’s not going to happen inside a service worker script. Every
browser that supports service workers also supports the new
ESé6 features. Your service worker script is a safe space for you
to dabble with new syntax.

Other new additions to the JavaScript language are let and
const. Previously we had to use var to create all our variables:

addEventListener('fetch', fetchEvent => {
var request = fetchEvent.request;

1)

Now we can use let for variables that will change value, and
const for variables that should remain constant:

addEventListener('fetch', event => {
const request = fetchEvent.request;

1)

In this case, you’re creating a variable called request, just so
you don’t have to keep typing fetchEvent.request every time
you want to examine that property.

If you output the contents of request, you’ll see quite a bit
of data (FIG 3.5):

addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;

console.log(request);

1)

Remember, you’ll need to close down your browser tab or
use the skipWaiting link in the Application panel of Chrome’s
Developer Tools to apply your changes. If you don’t see the
skipWaiting link, you can also use the Unregister link to
delete the current service worker. Refreshing the page should
install the new service worker. Refreshing the page again
will allow that service worker to listen to fetch events and
log its data.

MAKING FETCH HAPPEN 35§

ece Developer Tools - http://local host:8000/
[R.A1 | Network Audfts Memorn,_ Console Elements Sources Performance Application Security

@ Ot v | Fiter Allevels ¥

neasers: Headers, referier: ™, o T s dowigrah, L T 0 servicemsrwerisis

Quick source. X ! Console Networkcondtions Rendering ~ Coverage |

FIG 3.5: The Console panel in Chrome’s Developer Tools showing the details of a request.

In the JavaScript console, you’ll see a Request object with
all sorts of properties: method, mode, referrer, credentials,
and url—that’s the URL of the file that’s being fetched. All of
that scrumptious information will come in handy later.

Intercepting fetch events

Until now you’ve been observing the fetch events that the
browser is carrying out. The real power comes with altering
those events.

Using respondWith, you can send back your own custom
response. You can create a new Response object and put any-
thing you like in it:

addEventListener('fetch', fetchEvent => {
fetchEvent.respondWith(
new Response('Hello, world!")
); // end respondWith
}); // end addEventListener

36 GOING OFFLINE

You’ll need to do the dance of deletion in the DevTools
Application panel to see the fruits of your labor. Once your
new service worker is installed, every request it intercepts will
result in a page saying, “Hello, world!” and nothing else. That’s
a terrible user experience, but it illustrates the power you can
wield within service workers.

THE FETCH API

The Fetch API allows you as a developer to instruct the browser
to fetch any resources you want, effectively recreating what the
browser is doing. Granted, there’s not much point in doing this
other than to demonstrate how much control you now have at
your command. Later you’ll be able to use this superpower to
optimize your site.

Fetching resources is an asynchronous activity, so the Fetch
API uses promises like this:

fetch(request)

.then(responseFromFetch => {
// Success!

D)

.catch(error => {
// Failure!

s

You can create a fetch event inside your service worker by
using respondWith:

addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;
fetchEvent.respondWith(
fetch(request)
.then(responseFromFetch => {
return responsefFromFetch;
}) // end fetch then
); // end respondWith
}); // end addEventListener

MAKING FETCH HAPPEN

37

That code is telling the browser to do what it would do
anyway: fetch a resource, and return with the contents of that
resource.

Now you can go one step further: you can tell the browser
what to do if the request for that resource doesn’t succeed.
That’s what the catch clause is for. You can create a custom
response in there:

addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;
fetchEvent.respondWith(
fetch(request)
.then(responseFromFetch => {
return responsefFromFetch;
}) // end fetch then
.catch(error => {
return new Response('Oops! Something went
wrong.');
}) // end fetch catch
); // end respondWith
}); // end addEventListener

To test whether or not this is working, you’ll first have to
update your service worker—do the Unregister, Reload, Reload
samba in the Application panel—then take your browser offline.
There’s a quick way to do this that doesn’t involve switching off
your Wi-Fi or unplugging your ethernet cable: in the Service
Workers panel of the Application panel in Chrome Developer
Tools, there’s a checkbox labeled Offline. If you check this, it
does exactly what it says on the tin—your browser is effectively
offline. Reload the page while this checkbox is ticked, and you’ll
see the response you crafted:

Oops! Something went wrong.
It’s not the most informative of messages, but it demonstrates

that you're no longer at the mercy of the browser’s default
offline message.

38 GOING OFFLINE

Try refining your offline message by adding some HTML:

return new Response('<h1>0ops!</hl> <p>Something
went wrong.</p>');

Update the service worker in the Application panel using
skipWaiting, but don’t forget to untick the Offline option
before doing that. Then, when the new service worker is
installed, try going offline again. This time you’ll see a differ-
ent message:

<h1>00ps!</h1> <p>Something went wrong.</p>

That’s not quite right. We don’t want to see those
HTML undergarments.

The message is being sent as plain text instead of HTML. You
can fix that by passing in a second argument to the Response
object where you can specify the headers:

return new Response(
"<h1>00ps!</h1> <p>Something went wrong.</p>",
{
headers: {'Content-type': 'text/html;
charset=utf-8'}
}
)

Untick the Offline checkbox and update the service worker.
Once the new service worker is up and running, tick that Offline
option again and reload. This time you will see glorious HTML
(FI1G 3.6).

This is working nicely, but it isn’t going to scale if you want
to provide a nicer offline experience. Writing an entire HTML
page inside your service worker script doesn’t seem right. You’ll
also probably want your offline page to have images and other
assets. It would be better if you could make a standalone offline
page, get the service worker to store it, and later display it when-
ever the user is offline. What you need is the power of caching.

MAKING FETCH HAPPEN

39

* mm localhost:8000

& @ @ locahost

Oops!

Something went wrong.

FIG 3.6: A custom offline message.

40 COING OFFLINE

WHEN THE WEB WAS CREATED, it had no memory. I don’t mean
memory in the sense of kilobytes, megabytes, and gigabytes; I
mean memory in the literal sense.

As you’ll recall from Chapter 1, a web browser requests a
page from a web server. The server sends a response. This
might be the first time that this particular browser has inter-
acted with this particular server, or it might be the hundredth
time. Without any memory of one another, they can never
form a lasting relationship. Every time is just like the first time.

Because the word memory is already taken, we use the word
state to describe these situations. A system that can retain
knowledge of previous interactions is stateful. At its outset, the
web was stateless.

Managing state can be tricky. The fact that the web was state-
less kept it nice and simple. Anybody creating a new browser
or new server software didn't have to worry about the arrow
of time. But the stateless nature of the web was also frustrating.
If you were trying to build a business on the web, you had no
way of forming a relationship with your customers.

CACHE ME IF YOU CAN

41

Imagine a user adding a product to their shopping cart, click-
ing on a link to another product, and finding their shopping
cart empty again as though the past had never happened. An
engineer at Netscape named Lou Montulli created cookies to
remedy this problem. Such a cute-sounding name! And indeed,
cookies are dainty little things—small pieces of text that can
be stored by a browser and read by a server. Now that you can
be identified by your cookie, a website can remember who
you are, and what you’ve already put in your shopping basket.
Unfortunately, cookies can also be used to track you from site
to site, allowing advertising networks to build up a profile of
your browsing habits.

Thanks to cookies, web servers can now identify and
recall who you are. But how does a web browser remember
that it has previously asked for a particular item from a web
server? Caching!

The word cache always makes me think of pirates in Treasure
Island talking about their secret caches of treasure. On the web,
caches are also used to hoard precious items. Instead of storing
doubloons and emeralds, we can use a cache to store files that
we can dig up later.

Thinking about it like that, a “cache” is actually a pretty
accurate term for the technology. It’s certainly sounds better
than “booty.”

THE HTTP CACHE

Suppose you’ve written a web page. In that page, you've
included an image. As the browser parses your page, it sees that
it needs to fetch an image, and off it goes to the server. Now
suppose you include that same image again later in the same
page. Instead of starting another request to the server, the
browser realizes that it already has a copy of that image and
reuses it (FIG 4.1).

That’s an example of the memory cache in action. It’s use-
ful for avoiding duplicate server requests, but it only works
for short-term interactions. Like a goldfish, the browser for-

42 GOING OFFLINE

(o 4 @

Retrieve Image
] «

FIG 4.1: The browser can reuse images stored in the HTTP cache without sending the
request out to the server.

Empty
Cache

— ([0 ¢

gets about everything in its memory cache once the user
leaves the page.

The browser has a longer-lasting store called the HTTP cache
(or disk cache). If a file is stored in the HTTP cache, it can be
retrieved and reused days, weeks, months, or even years later.

That sounds great, but you don’t actually want all your files
to be stored in the HTTP cache. If a file is updated frequently—
say, the homepage of your website—it would be disastrous if
it were stored in the HTTP cache. Your site’s visitors would be
served a stale version of the homepage.

The HTTP cache is really handy for files that are rarely, if
ever, updated: images, fonts, stylesheets, and scripts. But you
don’t want the HTTP cache to store web pages.

To avoid storing the wrong files, the HTTP cache only does
what it’s told. It’s up to the web server to declare which kinds of
files should be cached, and for how long. This is done through
the exchange of HTTP headers—the secret, behind-the-scenes
instructions that accompany every response. For instance,
your web server can send max-age headers to tell the HTTP
cache how long it should store certain files. The server tells
the browser that it can store images, stylesheets, and scripts for
months, but that HTML pages should never be stored.

Ah, but what if you update a stylesheet or script on the
server? The browser is going to do what it has been told and
reuse the old version from the HTTP cache. A visitor to your
site will get stale CSS or JavaScript. The visitor can overcome

CACHE ME IF YOU CAN 43

this by performing a hard refresh (holding down Shift while
reloading the page). But putting this burden on the visitor isn’t
a great long-term strategy.

You could use max-age headers to instruct the browser to
never store CSS or JavaScript files, but then you would miss out
on the benefits of the HTTP cache. It would be a shame to force
your site’s visitors to download the same CSS and JavaScript
every single time they request a page.

The most common way of breaking this impasse is to change
the names of the files themselves. Suppose someone visits
one of your pages, and that page links to a stylesheet called
styles-vi.css. Using headers, you can instruct the browser to
cache that file for months. When you need to change the CSS,
change the name of the file to something like styles-v2.css.
As far as the browser is concerned, this is a brand-new file that
bears no relation to the CSS file stored in the HTTP cache. The
browser fetches the new file and then stores it in the HTTP
cache for months.

The only downside to this approach is that you also have to
update every HTML page that points to the CSS or JavaScript
file that you’re changing the name of. On dynamic sites, there’s
usually a build process in place to automate this.

The HTTP cache can really boost your site’s performance
on repeat visits. It’s a fairly crude tool though, and you can’t
entirely rely on it. Web browsers perform periodic clean-up
operations, discarding files from the HTTP cache. There’s just
one HTTP cache being shared by every single website that the
browser visits. There’s only so much space to spare.

Now there’s a successor to the HTTP cache. Using the new
Cache API, you have much more fine-grained control over the
caching of your site’s content.

THE CACHE API

The Cache API is conceptually similar to the Fetch API. They
are both APIs that give us access to the low-level features used
by the browsers themselves. Browsers having been fetching and

44 GOING OFFLINE

caching for decades, but now we can use those same mecha-
nisms for our own purposes.

Like the Fetch API, the Cache API is asynchronous and uses
promises to fulfill or reject each operation. That means you
can use this API in your service worker script. You’ll be able to
create caches, delete caches, put files into caches, and retrieve
files from caches.

Don’t think of the Cache API as a replacement for the HTTP
cache. Think of it as an enhancement. Don’t change whatever
strategy you’re currently using for caching and versioning
files. You can use the Cache API to create a powerful frontline
caching strategy, but you will still want to keep the home fires
burning with the HTTP cache.

Whereas the HTTP cache gives you one big cache for every-
thing, the Cache API allows you to create separate caches. You
could have one cache just for images, for example, and another
cache for storing pages. Keeping your files in different caches
gives you more control over how you treat those files.

Your first cache

Let’s start with a single cache for static assets—CSS, JavaScript,
fonts, icons. These are all resources that are updated infrequently.

Open up your serviceworker. js file. At the top of the file,
choose a name for your cache and store the name in a variable
like this:

const staticCacheName = 'staticfiles';

I'm using const for this because the value of the variable
shouldn’t be changed. Feel free to use a good old-fashioned var
statement if you prefer. I've chosen to call this cache static-
files and assigned that name to the variable staticCacheName.
You can give your cache any name you like. You could call it
JohnnyCache. Please don’t.

Now that you’ve got a name for your cache, you’ll want to
create the cache and put files into it. But you’ll only want to do
this once, when the service worker is first installed. You can
listen out for an event called install.

CACHE ME IF YOU CAN

45

addEventListener('install', installkEvent => {
// Install-handling code goes here
1

This looks similar to how you’re listening for fetch events:

addEventListener('fetch', fetchEvent => {
// Fetch-handling code goes here
1

The difference is that the fetch event is triggered every sin-
gle time the browser requests a resource, whereas the install
event is only triggered when the service worker is first down-
loaded. You can tell the browser to delay the installation of
the service worker until you’ve populated your cache. You're
saying, “When you’re about to install, wait until you’ve added
these files to the static cache.” Translating that into JavaScript,
you literally say waitUntil:

addEventListener('install', installkEvent => {
installEvent.waitUntil(
// Cache your files here
); // end waitUntil
}); // end addEventListener

This is the moment to use the Cache API. You'll start by
using the open method of the caches object. This is a promise,
so the structure looks like this:

caches.open(staticCacheName)
.then(cache => {
// Success!
D)
.catch(error => {
// Failure!
s

There’s not much we can do about errors in this case, so we
won’t even need to use the catch clause.

46 GOING OFFLINE

Put the caches.open method inside your install-handling
code like this:

addEventListener('install', installEvent => {
installEvent.waitUntil(
caches.open(staticCacheName)
.then(staticCache => {
// Cache your files here
}) // end open then
); // end waitUntil
}); // end addEventListener

Now you have a reference—called staticCache—to the
open cache. This has a method called addA11. You can pass an
array of URLs into this method:

staticCache.addAll(array);

An array is a collection of items, separated with commas,
and bookended with square brackets, like this:

[1)2J3)4]

That’s an array of four numbers, but you could also have an
array of strings:

['John','Paul’, 'George', 'Ringo"]

For the addAll method, you're going to pass in an array of
strings. Each string is the URL of a file you want to cache.

staticCache.addAll([
'/path/to/stylesheet.css’,
'/path/to/javascript.js’,
'/path/to/font.woff"',
'/path/to/icon.svg’

1)

CACHE ME IF YOU CAN

47

Those URLs are fictitious. Any resemblance to actual URLs,
living or dead, is purely coincidental. Make sure that you use
real URLs. If just one item in the array is misspelt, none of the
URLs will be cached.

Putting it all together, you will return the result of stat-
icCache.addAll to the install event that’s patiently waiting
with installEvent.waitUntil:

addEventListener('install', installkEvent => {
installEvent.waitUntil(
caches.open(staticCacheName)
.then(staticCache => {
return staticCache.addAll([
'/path/to/stylesheet.css’,
'/path/to/javascript.js’,
'/path/to/font.woff"',
'/path/to/icon.svg’
1); // end return addAll
}) // end open then
); // end waitUntil
}); // end addEventListener

By using that return statement, you’re making sure that the
installation won’t be completed until all the items in the array
have been cached. If there are lots of files, there’s a chance
they won’t all get cached, and then the service worker won’t
be installed.

To avoid that problem, you can split your list of files into
the ones you must have and the ones you’d /ike to have. Put the
must-haves behind the return statement. Put the nice-to-haves
in a regular addA1l:

addEventListener('install', installkEvent => {
installEvent.waitUntil(
caches.open(staticCacheName)
.then(staticCache => {
// Nice to have
staticCache.addAll([
'/path/to/font.woff",

48

GOING OFFLINE

'/path/to/icon.svg’
1); // end addAll
// Must have
return staticCache.addAll([
'/path/to/stylesheet.css’,
'/path/to/javascript.js’
1); // end return addAll
}) // end open then
); // end waitUntil
}); // end addEventListener

Cache, then network

Now that you've successfully made a cache filled with your
static assets, you can update your service worker script to take
advantage of your cache. Here’s the logic of the code you’ll
be writing:

1) When the browser requests a file,
a) look for a matching file that has been cached,;
b) if there’s no match, fetch the file from the network.

It’s time to revisit your code for handling fetch events. This
is the code that will run every single time the browser requests
a file from your site.

addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;
fetchEvent.respondWith(
// fetch-handling code goes here
); // end respondWith
}); // end addEventListener

That takes care of the first part: “When the browser
requests a file.”

Now for the next part: “look for a matching file that has been
cached.” The long way of doing this is to use the open method
of the caches object to specify which cache you want to search,
and then use the match method to do the searching:

CACHE ME IF YOU CAN

49

caches.open(staticCacheName)
.then(staticCache => {
return staticCache.match(request);

1)

The short way is to use the match method directly on the
caches object. You don’t need to specify which cache you want
to look in:

caches.match(request);

As with all things cache-related, this is an asynchronous
operation, so caches.match has the familiar structure of
a promise:

caches.match(request)

.then(responseFromCache => {
// Success!

D)

.catch(error => {
// Failure!

s

This seems straightforward enough. If we get a response
from the cache, the promise is fulfilled and we can return that
response. If we don’t get a response, then we can instead make
a fetch request for the file within the catch clause, right?

Alas, no. If match doesn’t find a match for the file, the prom-
ise doesn’t reject. Instead, it returns a value of null in the then
clause. This makes the catch clause as useful as a window
washer on a submarine.

I have no idea why match has been designed to work this
way. It’s like working with an annoyingly pedantic stickler.

“Hey!” you say to the Cache API. “Were you successful when
you looked for this file?”

“Why, yes!” says the Cache API.

“Great!” you say. “Give it to me.” Whereupon the Cache API
mimes handing something to you, because it has successfully
found nothing.

50 GOING OFFLINE

When you've finished rolling your eyes, you’ll need to add
an extra step to make sure the response isn’t empty:

caches.match(request)
.then(responseFromCache => {
if (responseFromCache) {
// Success!
¥
D)

When you write if (responseFromCache), that’s shorthand
forif (responseFromCache !== null). Translated to English:
“Is it not empty?”

Here’s how it looks inside your code:

addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;
fetchEvent.respondWith(
caches.match(request)
.then(responseFromCache => {
if (responseFromCache) {
return responseFromCache;
} // end if
}) // end match then
); // end respondWith
}); // end addEventListener

Notice how the return statement is used to pass the response
up the chain from within caches.match to respondiWith. The
end result is that, if there’s a matching file in the cache, the
fetch event responds with the contents of that file.

That takes care of the first two parts of the flow
you’ve outlined:

1) When the browser requests a file,
a) look for a matching file that has been cached.

Now it’s time to add the third and final part:

CACHE ME IF YOU CAN 51

b) if there’s no match, fetch the file from the network.
Here’s the code for that:

return fetch(request)
.then(responseFromFetch => {
return responseFromFetch;

1)

In fact, you could shorten this code. Everything inside the
then clause is telling the service worker to do what it would do
anyway: return the response from fetching. So you can leave
that part out, and the end result is the same:

return fetch(request);

If you want, you can put this in an else clause after the
if statement:

if (responseFromCache) {
return responseFromCache;
} else {
return fetch(request);

In this case, the else wrapper isn’t necessary. Because the
if block has a return statement within it, your fetch code can
go right after the if block.

if (responseFromCache) {
return responseFromCache;

}

return fetch(request);

If you wanted to make your code even shorter, you could
ditch the if statement entirely and use a single return statement:

return responseFromCache || fetch(request);

52

GOING OFFLINE

The two vertical lines mean “or,” so you're saying, “Return
the response from the cache, or return the result of fetching
the file.” The code after || will only be executed if the value
before | | is empty.

While that’s nice and short, I’'m not sure it’s more under-
standable. Personally, I err on the side of trying to keep my code
readable, even if that means the script is longer.

Putting it all together, you get something like this:

// When the browser requests a file...
addEventListener('fetch', fetchEvent => {
const request = fetchEvent.request;
fetchEvent.respondWith(
// First, look in the cache
caches.match(request)
.then(responseFromCache => {
if (responseFromCache) {
return responseFromCache;
} // end if
// Otherwise fetch from the network
return fetch(request);
}) // end match then
); // end respondWith
}); // end addEventListener

UPDATING CACHES

You’ve just made big performance improvements to your site.
Anyone who visits your site more than once will have a speedy
experience. Static assets are coming straight out of a cache,
which means the browser doesn’t spend nearly as much time
making network requests.

This all works wonderfully until you make a change to your
CSS, or JavaScript, or some other static asset that you’ve put in
your cache. The browser will never see the updated version.
The updated file is sitting on your server, but in your service
worker script, you're instructing the browser to never look on
the server for that file.

CACHE ME IF YOU CAN

53

The solution is similar to what we do to update the HTTP
cache: throw some versioning into the mix.

You might be tempted to change the file name of your ser-
vice worker script and update your HTML to point to the new
script. Don’t do that. Yes, a new service worker will be installed,
but your old service worker will also still be installed. That’s a
messy state of affairs.

Instead, you want to replace the outdated service worker
with a new version. To do that, you’ll take care of versioning
within the service worker script itself.

Your service worker script currently starts with the name
of your static cache:

const staticCacheName = 'staticfiles';

Right before that, create a variable with a version number,
something like this:

const version = 've.01';

It doesn’t really matter what you name this variable, or even
what value you give it, as long as you can update the value
whenever you want to update the cache. You could use the
current date and time as your versioning variable, if you prefer.
Whatever you choose, you can then add this versioning variable
to your cache name:

const version = 've.01';

const staticCacheName = version + 'staticfiles';

If you change your CSS or JavaScript or anything else in your
cache, edit the first line of your service worker script:

const version = 'V0.02';

Because you’ve made a change to your service wor