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Abstract. Many multi-site stochastic models have been pro-
posed for the generation of daily precipitation, but they gen-
erally focus on the reproduction of low to high precipitation
amounts at the stations concerned. This paper proposes sig-
nificant extensions to the multi-site daily precipitation model
introduced by Wilks, with the aim of reproducing the statis-
tical features of extremely rare events (in terms of frequency
and magnitude) at different temporal and spatial scales. In
particular, the first extended version integrates heavy-tailed
distributions, spatial tail dependence, and temporal depen-
dence in order to obtain a robust and appropriate repre-
sentation of the most extreme precipitation fields. A sec-
ond version enhances the first version using a disaggregation
method. The performance of these models is compared at
different temporal and spatial scales on a large region cover-
ing approximately half of Switzerland. While daily extremes
are adequately reproduced at the stations by all models, in-
cluding the benchmark Wilks version, extreme precipita-
tion amounts at larger temporal scales (e.g., 3-day amounts)
are clearly underestimated when temporal dependence is ig-
nored.

1 Introduction

Stochastic precipitation generators are often employed in risk
assessment studies to estimate the return periods of very rare
flooding events (e.g., 10 000-year events). The observed se-
ries of streamflows are too short to produce reliable esti-
mations of very rare and large floods. Typically, extreme
hydrological events can be reproduced using long series of
simulated precipitation data as input to hydrological models
(Lamb et al., 2016).

In the last two decades, a number of precipitation mod-
els have been proposed to deal with the temporal and spa-
tial properties of daily precipitation, for both intermittency
and amount, and all have different strengths and weaknesses.
Many of these models use exogenous variables to predict
the statistical properties of precipitation using generalized
linear models (Chandler and Wheater, 2002; Mezghani and
Hingray, 2009; Serinaldi and Kilsby, 2014b), atmospheric
analogs (Lafaysse et al., 2014), or modified Markov mod-
els (Mehrotra and Sharma, 2010). Introducing a link between
exogenous atmospheric variables can be used to reconstruct
past events, make predictions, or downscale global-climate-
model-based simulations of future climate. Such models are
classically referred to as statistical downscaling models (see
Maraun et al., 2010, for a review.) Closely related to this ap-
proach, weather “types” or “regimes” (Ailliot et al., 2015)
can be used to specifically account for different atmospheric
circulation patterns. Using a hidden Markov model (HMM)
with transitions between these weather states, stochastic
weather generators can then simulate various aspects of the
precipitation process (Rayner et al., 2016).

Alternatively, purely stochastic precipitation models can
be used. These can be broadly classified into three main
types.

– Resampling methods. The stochastic generation of pre-
cipitation fields can be performed using resampling
techniques such as the K-nearest neighbors algorithm
(Buishand, 1991; Yates et al., 2003). Unobserved pre-
cipitation amounts can be obtained using perturbation
techniques (Sharif and Burn, 2007).

– Random fields. Spatiotemporal precipitation models can
simulate precipitation fields over a regular grid. This ap-
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proach is particularly useful for hydrological applica-
tions, since areal precipitation values over a basin are
obtained directly. Poisson cluster-based models (Bur-
ton et al., 2008, 2010; Leonard et al., 2008; McRobie
et al., 2013) randomly simulate rain disk cells, with ran-
dom centers, radius and intensity, over the study area.
Meta-Gaussian models (Vischel et al., 2009; Kleiber
et al., 2012; Allard and Bourotte, 2015; Baxevani and
Lennartsson, 2015; Bennett et al., 2017) are based
on truncated and transformed random Gaussian fields.
Closely related, the turning band method can be used
to simulate intermittent precipitation fields with dif-
ferent types of advection (Leblois and Creutin, 2013).
These model structures are appealing since they are able
to simulate realistic precipitation fields at fine spatial
scales. However, their complexity leads to numerous
technical issues during parameter estimation and sim-
ulation, notably in terms of computational cost. More-
over, they are usually unable to represent large regions
comprising very distinct precipitation regimes.

– Statistical multi-site models. In this last type of weather
generator, the properties of precipitation are directly
fitted at a limited number of stations using different
statistical structures. This type of generator preserves
the interdependency between all pairs of stations, even
when the area under study exhibits different precipi-
tation regimes. Bárdossy and Pegram (2009) and Ras-
mussen (2013) combine a multivariate autoregressive
process and transformations (V-transform, power trans-
formation) to simultaneously model precipitation oc-
currence and amount. More precisely, with these mod-
els, transformed precipitation amounts follow truncated
distributions. Alternatively, Wilks (1998) proposes a
multi-site model in which precipitation occurrence and
amount are handled separately. Several extensions to
this popular structure have been proposed in the liter-
ature. Thompson et al. (2007) reformulate the Wilks
model as a hidden Markov model, inferring three pre-
cipitation states (“dry”, “light”, and “heavy”). Mehrotra
and Sharma (2007b) apply semi-parametric techniques
to add more flexibility to the spatial structure of pre-
cipitation occurrence and amount. Srikanthan and Pe-
gram (2009) propose a modified version in which daily,
monthly, and annual amounts are nested such that pre-
cipitation statistics are preserved for all these levels of
aggregation.

Mehrotra et al. (2006) compare three different precipita-
tion models, the Wilks model, a HMM and a resampling ap-
proach, and they provide strong arguments in favor of the
Wilks model in terms of performance, computation time,
model, and level of complexity of the model structure. Fur-
thermore, as indicated above, this model offers a flexible
structure, which can be applied to a large number of stations

with very different precipitation regimes (like in mountain-
ous areas). This paper presents several significant extensions
of the Wilks precipitation model, referred to as GWEX ver-
sions, which will be used to generate long scenarios. These
extensions aim to fit the most extreme precipitation amounts
at different temporal (1- and 3-day amounts) and spatial
scales. Novel components are thus introduced in GWEX, in-
cluding robust estimation methods (regionalization methods)
for critical parameters impacting directly on the behavior of
extreme precipitation at each station. Recent advances in the
choice of the marginal distributions for daily precipitation
amounts are also included. Using 15 029 long daily precipi-
tation records (> 50 years) from around the world, Papalex-
iou et al. (2013) conclude that heavy-tailed distributions are
generally in better agreement with observed precipitation ex-
tremes. Follow-up studies (Papalexiou and Koutsoyiannis,
2013; Serinaldi and Kilsby, 2014a) apply extreme value the-
ory to annual maxima and “peaks over threshold” (POTs) of
a large subset of these records and confirm that extreme daily
precipitation is not adequately represented by light-tailed dis-
tributions. Based on statistical tests on 90 000 station records
of daily precipitation, Cavanaugh et al. (2015) also come to
the same conclusion. These findings have important implica-
tions for precipitation models.

– Light-tailed distributions such as exponential, Gamma,
and Weibull distributions, which are applied in the vast
majority of the existing precipitation models, often lead
to an underestimation of extreme daily precipitation
amounts.

– While nonparametric densities with Gaussian kernels
(Mehrotra and Sharma, 2007a, 2010) offer the flexibility
of fitting the observed range of precipitation amounts,
their tail also belongs to the domain of attraction of the
Gumbel distribution and suffers from the same draw-
backs.

Alternatively, current statistical procedures consisting of
fitting a flexible distribution to the bulk of the observations
and using it for extrapolation are highly questionable, as
major assumptions are usually violated (Klemeš, 2000a, b).
Since the tail of the distribution on precipitation amounts at
each station will dictate the generation of the most extreme
precipitation events, important features of GWEX are as fol-
lows:

– the application of a heavy-tailed distribution to precipi-
tation amounts at each station (Naveau et al., 2016),

– the determination of robust estimates of the shape pa-
rameter of this distribution, which indicates the heavi-
ness of the tail, using a regionalization approach, as in
Evin et al. (2016).

Furthermore, following Bárdossy and Pegram (2009),
GWEX also employs the copula theory to introduce a tail de-
pendence between the precipitation amounts simulated at the
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different stations. The second version of the GWEX model
includes a disaggregation method, the observed precipitation
amounts being fitted at a 3-day scale in a first step. This paper
compares the performance of the different model versions
and assesses the impact of the different statistical compo-
nents (e.g., heavy-tailed distribution, tail dependence).

We first describe the study area in Sect. 2. The features of
different multi-site precipitation models are then described
in Sect. 3. The evaluation framework, presented in Sect. 4,
aims to assess the performance of these models at different
spatial and temporal scales. Section 5 presents an application
of these daily precipitation models to 105 stations located in
Switzerland, with a summary of the results focusing on the
reproduction of extreme events. Finally, Sect. 6 presents our
conclusions.

2 Data and study area

The Aare River basin covers the northern part of the Swiss
Alps and has an area of 17 700 km2. Basin elevations approx-
imately range from 310 m.a.s.l. in Koblenz (next to the Ger-
man border in the north) to 4270 m.a.s.l. at the Finsteraarhorn
summit (in the south of the basin). The mean annual precipi-
tation for the basin as a whole is 1300 mm. The basin can be
divided into five main sub-basins, with different hydromete-
orological regimes highly governed by regional terrain fea-
tures (Jura Mountains in the northwest, northern Alps in the
south of the basin, and lowlands in the middle).

Figure 1 shows the location of the 105 precipitation sta-
tions used for the development and evaluation of weather
generators. Located within or close to the Aare River basin,
they correspond to the stations for which long daily time se-
ries of observations with less than 3 years of missing data are
available over the period 1930–2014. The 105 precipitation
stations cover the Aare River basin relatively well.

The proposed precipitation models are designed to simu-
late flood scenarios, via a conceptual hydrological model, for
the whole Aare River basin and for its different sub-basins.
For Switzerland, Froidevaux et al. (2015) show that the gen-
eration of floods is mainly influenced by areal precipitation
amounts accumulated over short periods (e.g., 1 to 3 days).
These results are obtained by analyzing a wide variety of
basins, their areas ranging from 10 to 12 000 km2. Therefore,
the properties of the weather scenarios must be evaluated at
different spatial and temporal scales, from the high resolu-
tions required to simulate the hydrological behavior of the
system (e.g., sub-daily, 100 km2) to lower resolutions rele-
vant at the scale of the entire basin (e.g., n-days, 17 700 km2).
In this study, the performance of the different precipitation
models is evaluated at the station scale, at the scale of 15
and 5 sub-basins partitioning the Aare River basin, and at
the scale of the entire study area (see Sect. 5). Note that
for those evaluations, areal estimates of precipitation are ob-

tained from the precipitation amounts at the stations using
the Thiessen polygon method.

3 Multi-site precipitation model

As indicated above, GWEX refers to multi-site precipitation
models that rely strongly on the structure proposed by Wilks
(1998). At each location k, let Pt (k) be a random variable
representing the accumulated precipitation over day t . The
structure proposed by Wilks considers a hidden occurrence
process Xt (k) that can be represented by a two-state Markov
chain as follows:

Xt (k)=

{
0, if day t is dry at location k.

1, if day t is wet at location k.
(1)

Precipitation amount Pt (k) is then defined as

Pt (k)= Yt (k)Xt (k), (2)

where Yt (k) is a random variable describing the non-zero
precipitation amounts. Non-zero precipitation amounts Yt (k)
are thus modeled independently of precipitation occurrences
Xt (k), which act as a mask.

3.1 Precipitation occurrence process

3.1.1 At-site occurrence process

At each location, the temporal persistence of dry and wet
events is introduced with a p-order Markov chain model for
Xt (k) so that

Pr{Xt (k)= 1|Xt−1(k), . . .,X1(k)}

= Pr{Xt (k)= 1|Xt−1(k), . . .,Xt−p(k)}; (3)

i.e., the probability of having a wet day at time t depends
only on the p previous states, for days t−1, . . ., t−p. While
many authors suppose that a first-order Markov is sufficient
(e.g., Wilks, 1998; Keller et al., 2015), Srikanthan and Pe-
gram (2009) apply a fourth-order Markov chain and show
that it improves the reproduction of dry/wet period lengths.
In this study, different orders for this Markov chain are con-
sidered.

At each site, the probability of having a wet day on day t is
given by the transition probability Pr{Xt (k)= 1|Xt−1(k)=

i1, . . .,Xt−p(k)= ip}, where i1, . . ., ip are equal to 0 or 1.
This Markov chain is thus fully characterized by a transition
matrix 5 with dimension 2p.

3.1.2 Spatial occurrence process

The spatial dependence of the precipitation states Xt (k) is
modeled using an unobserved Gaussian stochastic process
Ut = {Ut (1), . . .,Ut (K)}, where K is the number of stations.
Here, Gaussian random variables Ut (k),k = 1, . . .,K , are
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Figure 1. Location of the 105 precipitation stations in Switzerland. Different partitions of the Aare River basin into 5 and 15 sub-basins are
shown.

temporally independent and Ut follows a multivariate nor-
mal distribution:

Ut ∼N(0,�X), (4)

where �X = {ωkl} is a positive-definite correlation matrix.
At any location k, the precipitation state Xt (k) is assumed
to be completely determined by Ut (k) and the previous
p states at the same location. Specifically, if Xt−1(k)=

i1, . . . , Xt−p(k)= ip, and p1 = Pr{Xt (k)= 1|Xt−1(k)=

i1, . . .,Xt−p(k)= ip}, then

Xt (k)=

{
1, if Ut (k)≤8−1(p1).

0, otherwise,
(5)

where 8[.] indicates the standard Gaussian cumulative dis-
tribution function.

Let ρkl = Corr(Xt (k),Xt (l)) denote the inter-site correla-
tion between the states Xt (k) and Xt (l). Following Srikan-
than and Pegram (2009), ρkl can be expressed as

ρkl =
π00(k, l)−π0(k)π0(l)
√
π0(k)π1(k)

√
π0(l)π1(l)

, (6)

where π0(s)= Pr{Xt (s)= 0} and π1(s)= Pr{Xt (s)= 1} de-
note the probabilities of having dry and wet states at location
s, respectively, and π00(k, l)= Pr{Xt (k)= 0,Xt (l)= 0} de-
notes the joint probability of having dry states at both loca-
tions k and l.
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Figure 2. Illustration of the relationship between ωkl and ρkl for
the month of July and for stations GOS and ANT. A Markov
chain of order 4 is considered in this example. The correlation be-
tween the observed states is ρ̂kl = 0.81 and can be reproduced us-
ing a bivariate Gaussian distribution with a correlation parameter of
ωkl = 0.98. The maximum correlation ρ which can be obtained if
ωkl = 1 is ρMAX = 0.87.

The relationship between ωkl and ρkl is not direct since
the temporal persistence of dry and wet events introduced at
each station with a Markov chain also influences ρkl (Wilks,
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1998). Figure 2 illustrates this relationship, obtained for the
month of July via Monte Carlo simulations, for two close sta-
tions, GOS and ANT. In a first step, transition probabilities
with a Markov chain of order 4 are estimated for these two
stations. Given these transition probabilities, stochastic sim-
ulations of occurrence are then generated for different val-
ues of ωkl , leading to different values of ρkl . Since this rela-
tionship is monotonic (see Fig. 2), it can be used to identify
the value ωkl leading to a specific ρ̂kl , namely the empirical
value obtained from the observed time series of occurrence.
The estimate of ωkl is found by iterating until the evaluation
of the correlation between the simulated precipitation states,
ρkl , matches ρ̂kl . Note that a very high value for ρ̂kl cannot
always be reached, even if ωkl = 1. This is, however, a situa-
tion which rarely occurs in practice.

3.2 Precipitation intensity process

Given the occurrence of precipitationXt (k) at different loca-
tions k, GWEX models generate the amounts of precipitation
Yt (k) using

– marginal heavy-tailed distributions,

– a tail-dependent spatial distribution,

– an autocorrelated temporal process.

3.2.1 Marginal distributions

At a given location k, daily precipitation has often been mod-
eled by light-tailed distributions: exponential and Weibull
distributions (Bárdossy and Pegram, 2009); gamma distribu-
tions (Srikanthan and Pegram, 2009; Mezghani and Hingray,
2009); a mixture of exponential distributions (Wilks, 1998;
Keller et al., 2015); and a mixture of gamma distributions
(Chen et al., 2014). However, as shown by many recent
studies on a very large number of daily precipitation series
(Papalexiou et al., 2013; Serinaldi and Kilsby, 2014a; Ca-
vanaugh et al., 2015), exponentially decaying tails often re-
sult in a severe underestimation of extreme event probabil-
ities. The introduction of a heavy-tailed distribution is thus
crucial for the reproduction of the most extreme precipita-
tion events (Hundecha et al., 2009).

In this work, the distribution representing the precipitation
intensity at each location, Yt (k), is the E-GPD distribution.
This distribution was first proposed by Papastathopoulos and
Tawn (2013), who referred to it as an extended GP-Type III
distribution, and it has since been shown to adequately model
the whole range of precipitation intensities (Naveau et al.,
2016). Compared to other heavy-tailed distributions applied
to daily precipitation amounts (e.g., mixtures of GPD and
gamma distribution; see Vrac and Naveau, 2007), the E-GPD
is parsimonious and provides a very good compromise be-
tween flexibility and stability, which is an essential feature
for extrapolation.

This distribution can be described by a smooth transition
between a gamma-like distribution and a heavy-tailed Gener-
alized Pareto distribution (GPD). This transition is obtained
via a transformation function, G(ν), such that the whole
range of precipitation intensities is modeled without a thresh-
old selection (Naveau et al., 2016):

FY {Yt (k)} =G
[
Hξ
{
Yt (k)/σ

}]
, (7)

where

Hξ (z)=

{
1− (1+ ξz)−1/ξ

+ if ξ 6= 0,

1− e−z if ξ = 0,
(8)

where a+ =max(a,0) is the standard cumulative distribution
function of the GPD, σ > 0 is a scale parameter, andG(ν)=
νκ ,κ > 0. Thus, a three-parameter set {σ,κ,ξ} needs to be
estimated at each station.

3.2.2 Spatial and temporal dependence of precipitation
amounts

Spatial and temporal dependence of precipitation amounts
is represented using a multivariate autoregressive model of
order 1 (MAR(1)). A MAR(1) process has been used by
different authors (Bárdossy and Pegram, 2009; Rasmussen,
2013) to simultaneously represent spatial and temporal de-
pendences. Let Zt denote a vector of K Gaussian random
variables with mean 0 defined as

Zt (k)=8
−1[FY {Yt (k)}]. (9)

The stochastic Gaussian process Zt is assumed to follow a
MAR(1) process defined as follows:

Zt = AZt−1+ εt , (10)

where A is a K ×K matrix and εt is an innovation term de-
scribed by a random K × 1 noise vector. The elements of
εt have zero means and are independent of the elements of
Zt−1. The covariance matrix of εt is denoted by�Z . Follow-
ing Bárdossy and Pegram (2009), A is taken to be a diagonal
matrix with diagonal elements that are the lag-1 serial corre-
lation coefficients of the intensity process Yt (k). The matrix
�Z can be expressed as

�Z =M0−AM′0A, (11)

where M0 is the covariance matrix of Zt , which indicates the
degree of spatial dependence between each pair of stations,
and M′0 is its transpose.

Innovations εt are often assumed to follow a standard mul-
tivariate normal distribution. However, the upper tail depen-
dence of the multivariate normal distribution is 0, which
means that extreme precipitation amounts simulated at the
different sites are not spatially dependent. To introduce a tail
dependence between at-site extremes, a possibility is to use
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a Student copula to represent the dependence structure of εt ,
providing an additional parameter, ν, related to the tail de-
pendence. Both dependence structures will be considered in
the following.

3.3 Parameter estimation

3.3.1 Occurrence process

Following Wilks (1998), parameters related to the occur-
rence process Xt (k) are estimated using the method of mo-
ments, i.e., using the empirical counterparts of the parame-
ters. Observed states are first obtained using a low precip-
itation threshold (e.g., 0.2 mm). The matrix 5 of transition
probabilities is then estimated directly by the proportion of
wet daysXt (k)= 1 following observed sequences {Xt−1(k),

. . .,Xt−p(k)}. Concerning the spatial occurrence process, ρ̂kl
estimates are obtained using the empirical counterparts of
π00, π0, and π1 (see Eq. 6), which correspond respectively
to the proportion of days for which dry states are observed
simultaneously at two locations (π̂00) and to the proportions
of dry days π̂0 and wet days π̂1. The correlation matrix �̂X
is then composed of the cross-correlations ω̂kl obtained for
all possible pairs of stations. If �̂X is not positive-definite,
the closest positive-definite matrix is considered (Rousseeuw
and Molenberghs, 1993; Rebonato and Jaeckel, 2011). Fur-
thermore, the seasonality of the occurrence process is taken
into account by estimating these parameters on a monthly
basis.

3.3.2 Intensity process

E-GPD distributions are first fitted to precipitation amounts
available at each location k. As local estimations of the GPD
tail exhibit a lack of robustness, we propose estimating the ξ
parameter of the E-GPD (see Eq. 8) using a regionalization
method similar to that of Evin et al. (2016), which can be
summarized as follows.

1. Following Burn (1990), for each station, a region-of-
influence (RoI) is delimited by a circle around the site,
the radius being determined using homogeneity tests.
All the stations inside this RoI are then considered ho-
mogeneous up to a scale factor.

2. The ξ parameters are then estimated with the maximum
likelihood method using the precipitation observations
from all the stations inside the RoI.

This regionalization method is applied to the precipitation
data available from 666 stations in Switzerland, for four dif-
ferent seasons:

– winter: December, January, and February;

– spring: March, April, and May;

– summer: June, July, and August;

– autumn: September, October, and November.

In this work, the estimation of the ξ parameter is bounded
below by 0. When ξ < 0, the E-GPD distribution has an up-
per bound. As shown by many recent studies (e.g., Serinaldi
and Kilsby, 2014a), negative estimates of ξ are usually due to
parameter uncertainty and are not realistic. The two remain-
ing parameters of the E-GPD, the scale parameter σ and the
parameter of the transformation κ , are estimated from the ob-
servations available at that station. Here, we use a method
of moments based on probability weighted moments (see
Naveau et al., 2016, for further details).

Concerning the spatial and temporal dependence of pre-
cipitation amounts, direct estimates of M0 and A cannot be
obtained since non-zero precipitation amounts Yt (k) are not
observed. Here, we follow the methodology proposed by
Wilks (1998) and Keller et al. (2015). For each pair of sta-
tions, we generate long sequences of precipitation amounts
Pt (k) using the estimated parameters of the occurrence pro-
cess (5̂ and ω̂kl), the parameters of the marginal distribu-
tions, and a correlation coefficientm0(k, l), indicating the de-
gree of spatial dependence. Similarly to the occurrence pro-
cess, m̂0(k, l) is then found iteratively by matching the corre-
lation between these long random streams with the observed
correlation Corr(Pt (k),Pt (l)) (see Wilks, 1998; Keller et al.,
2015, for further details). The correlation matrix M̂0 is then
composed of the cross-correlations m̂0(k, l) obtained for all
possible pairs of stations. For each station, the estimates of
the lag-1 serial correlation coefficients of the matrix A are
obtained using the same simulation approach.

The matrix �̂Z , i.e., the estimate of the covariance matrix
of the innovations εt , is then obtained using Eq. (11). Since
�̂Z is not necessarily positive-definite (see Eq. 11), the clos-
est positive-definite matrix is taken as the covariance matrix
of εt if necessary. Given �̂Z , the parameter ν is estimated
by maximizing the likelihood, as described in McNeil et al.
(2005, Sect. 5.5.3.).

Similarly to the occurrence process, the seasonal aspect of
the precipitation intensity is taken into account by perform-
ing the parameter estimation for each month, on a 3-month
moving window.

3.4 Model versions

Different versions of the proposed multi-site precipitation
model are considered in this paper, each corresponding to
different extensions of the Wilks model. A flowchart summa-
rizing the increasing complexity of these models is presented
in Fig. 3.

3.4.1 Wilks

A first benchmark version of the multi-site model, referred to
here as “Wilks”, is considered. It closely matches the multi-
site model proposed by Wilks (1998), detailed in particular
as follows.
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Wilks

Wilks_EGPD

GWEX

GWEX_Disag

.Markov chain of order 4 for the 
transitions between dry & wet states
.The E-GPD is the marginal distrib.
of precipitation amounts

Temporal dependence is introduced
with a MAR(1) process. Innovations
are modeled with a Student copula

. GWEX is applied to 3-day prec.
amounts
. Simulated 3-day amounts are
disaggregated at a daily scale

Figure 3. Flowchart of the different model versions. The differences
between the models are summarized inside green boxes.

– The at-site occurrence process is a Markov chain of or-
der 1.

– The marginal distribution on precipitation amounts is a
mixture of exponential distribution, for which the prob-
ability density function is defined as

f (x)=
w

β1
exp

(
−
x

β1

)
+

1−w
β2

exp
(
−
x

β2

)
. (12)

The parameters w, β1 and β2 are estimated using
the expectation-maximization (EM) method (Dempster
et al., 1977).

– Precipitation amounts are not considered to be tempo-
rally correlated; i.e., the matrix A in Eq. (10) is a zero
matrix. Furthermore, innovations εt follow a standard
multivariate normal distribution and represent the spa-
tial correlations.

3.4.2 Wilks_EGPD

A modified Wilks version is considered, for which the at-
site occurrence process is a Markov chain of order 4 and

the mixture of exponential distributions is replaced by the
E-GPD distribution. As indicated above, Srikanthan and Pe-
gram (2009) show that a fourth-order Markov chain improves
the reproduction of dry/wet period lengths. This direct ex-
tension of the Wilks model is used to illustrate the impact of
using a Markov chain of order 4 compared to order 1. Dif-
ferences in performance between a heavy-tailed distribution
(E-GPD) and a low-tailed distribution (mixture of exponen-
tials) will be highlighted.

3.4.3 GWEX

The initial GWEX model has the following characteristics.

– The at-site occurrence process is a Markov chain of or-
der 4.

– The marginal distribution for precipitation amounts is
the E-GPD distribution.

– Precipitation amounts follow a MAR(1) process with
innovations modeled by a Student copula.

3.4.4 GWEX_Disag

In this paper, an alternative version, referred to as
GWEX_Disag, is also proposed. GWEX_Disag is applied to
3-day precipitation amounts and has the same characteristics
as GWEX, except the following.

– The at-site occurrence process is a Markov chain of or-
der 1.

– A threshold of 0.5 mm separates dry and wet states.

With GWEX_Disag, daily scenarios are first generated at
a 3-day scale and then disaggregated at a daily scale using
a method of fragments (e.g., Wójcik and Buishand, 2003).
Simulated 3-day amounts are disaggregated using the tem-
poral structures of the closest observed 3-day amounts, in
terms of similarity of the spatial fields. The same observed 3-
day sequence is thus used to disaggregate the 3-day amounts
simulated at the 105 stations, which ensures the spatial co-
herence of these disaggregated amounts. Details of the dis-
aggregation method are provided in Appendix A. Compared
to GWEX, GWEX_Disag offers the following advantages.

– The 3-day precipitation amounts are directly modeled
and have a better chance of being adequately repro-
duced.

– The disaggregation of 3-day precipitation amounts cre-
ates an inherent link between the occurrence and the in-
tensity processes. For very extreme precipitation events,
we can expect these processes to be dependent (higher
chance of being in a wet state over the whole Aare
River basin, as well as large and persistent precipitation
amounts).
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4 Multi-scale evaluation

The proposed stochastic models intend to preserve the most
critical properties of precipitation at different spatial and
temporal scales, especially extreme precipitation amounts.
For hydrological applications, it can be assumed that a pre-
cipitation model preserving these properties has a better
chance of adequately reproducing flood properties for small
sub-basins as well as for large basins. This statement is sup-
ported by empirical evidence provided by Froidevaux (2014)
and Froidevaux et al. (2015) for our study area (i.e., Switzer-
land). Using 60 years of gridded precipitation data, Froide-
vaux et al. (2015) show that, in Switzerland, high discharge
events are usually triggered by meteorological events with a
duration of several days, in late summer and autumn. Typi-
cally, the 2-day precipitation sum before floods is most cor-
related with flood frequency and flood magnitude.

The performance of the different multi-site precipitation
models is thus assessed for multiple spatial and temporal
scales. We investigate whether or not the statistical proper-
ties of precipitation data are adequately reproduced at the
scale of the stations and for different partitions of the Aare
River basin (see Fig. 1). In order to achieve this, 100 daily
precipitation scenarios are generated, each scenario having a
length of 100 years.

For the different evaluated statistics, performance is cate-
gorized according to the comprehensive and systematic eval-
uation (CASE) framework proposed by Bennett et al. (2017).
The CASE framework enables a systematic comparison of
stochastic models and offers a consistent way of comput-
ing the performance metrics, which is important in order
to obtain a fair assessment of the strengths/weaknesses of
the different model versions. This approach consists in as-
signing one of three categories: “good”, “fair”, and “poor”
performance, to each metric, according to the agreement be-
tween the observed metric and the simulated metrics com-
puted from the 100 scenarios. Table 1 summarizes the tests
leading to each performance category. A good performance is
obtained when the observed metric is inside the 90 % prob-
ability limits of the 100 simulated metrics (case 1). It indi-
cates that simulated metrics are in good agreement with the
observed metric. However, an observed metric can obviously
lie outside these limits without necessarily indicating a fail-
ure of the model. In this case, fair performance may be as-
signed if either of the following two rules is satisfied.

1. Case 2. The observed metric is outside the 90 % prob-
ability limits but within 3 standard deviations (SD) of
the simulated mean, which corresponds to the 99.7 %
probability limits if we assume that the uncertainty in
the statistics is normally distributed. This case covers
the situation where we could expect that the observed
metric is outside the 90 % limits due to sampling uncer-
tainty.

Table 1. Performance categorization criteria from Bennett et al.
(2017).

Performance Key Test
classification

Good Observed metric inside 90 % limits
(case 1)

Fair Observed metric outside 90 % limits but
within the 99.7 % limits (case 2) OR
absolute relative difference between the
observed metric and the average simu-
lated metrics is 5 % or less (case 3)

Poor Otherwise (case 4)

Table 2. Hydrological regimes and characteristics of extreme floods
in Switzerland (Froidevaux, 2014).

Mean elevation Season Triggering
(m) events

Glacial > 1900 summer showers and snow
melt

Nival 1200–1900 summer, showers, long
spring rain

Pluvial < 1200 summer long rain

2. Case 3. The absolute relative difference |(Sobs−

Ssim)/Sobs| between the observed metric Sobs and the
mean of the simulated metrics Ssim is 5 % or less. If the
variability of the simulated metrics is very small, it can
happen that the observed metrics lie outside the 99.7 %
limits without being too far from the simulated mean in
terms of relative difference.

Otherwise, we consider that performance is poor, indicat-
ing that the model fails to reproduce this particular statistical
properly.

In summary, good performance represents cases for which
the observed metric is clearly well reproduced by the model,
whereas fair performance indicates a reasonable match be-
tween the observed and the simulated metrics. The number
of metrics for which poor performance is obtained is thus the
first criterion indicating the overall performance of a model.

For illustration purposes, we also present the results of the
evaluation for three precipitation stations corresponding to
different hydrological regimes (see Table 2). Figure 1 shows
the 3 (out of 105) selected precipitation stations. Station ANT
(at Andermatt) is located in a glacial basin, station GLA (at
Glarus) in a nival basin, and station MUR (at Muri) in a plu-
vial basin.

Hydrol. Earth Syst. Sci., 22, 655–672, 2018 www.hydrol-earth-syst-sci.net/22/655/2018/



G. Evin et al.: Multi-site daily precipitation model for extreme events 663

5 Results

This section presents the results of the multi-scale evaluation
framework (see Sect. 4) for several metrics related to the oc-
currence process of the precipitation events, daily amounts,
and precipitation extremes. Summary assessments are pro-
vided, with several statistics provided for all the spatial scales
of interest.

The precipitation observations are split into two sets. (1) A
total of 45 years randomly chosen among the period 1930–
2014 are used to estimate the parameters, and (2) the 40 re-
maining years are used to evaluate the performance of the
models. This separation between an estimation set and a val-
idation set is crucial to test the ability of the model to ad-
equately represent the statistical properties of events which
have not been used during the fitting procedure. In this study,
the multi-scale evaluation is only applied to the 40-year val-
idation set.

5.1 Parameter estimation and generation of scenarios

The different model parameters are estimated with the 45-
year estimation set of observations, following the method-
ology described in Sect. 3.3, except for the ξ parameter of
the E-GPD, which is estimated using all available precipita-
tion data in Switzerland. This approach ensures that robust
estimates are obtained for this parameter, which is crucial in
our context since extreme simulated precipitation amounts
are highly sensitive to the ξ parameter.

For GWEX, the estimation of the ξ parameter is performed
at a daily scale. In order to highlight spatial patterns of ξ over
Switzerland, we show the maps of the interpolated parame-
ter estimates in Fig. 4. Fat tails are obtained in the southern
and eastern parts of the Aare River basin, particularly dur-
ing spring and summer seasons. In the south of Switzerland,
a region with high estimates (ξ ∼ 0.2), highlighted in red, is
obtained for the summer and autumn seasons. These high ξ
estimates are consistent with the presence of strong convec-
tive storms in this mountainous region during this period of
the year (Rudolph and Friedrich, 2012).

For GWEX_Disag, the regionalization method is applied
at a 3-day scale (see Fig. 5). The resulting estimates are sim-
ilar to the ones obtained at a daily scale. However, note that
the very high estimates obtained during the summer season
at a daily scale are lower at a 3-day scale. This seems to con-
firm the interpretation of these high ξ estimates; i.e., the re-
lationship between summer convective storms and high ξ es-
timates is not as strong at a 3-day scale since storms of this
type usually have a shorter duration. Note that non-zero ξ
estimates in Figs. 4 and 5 (in green, yellow, and red) indi-
cate that low-tailed distributions lead to an underestimation
of extreme precipitation in these regions.

Figure 6 compares empirical and fitted distributions (mix-
ture of exponentials and E-GPD) at a daily scale, for three il-
lustrative stations and for the months of January, April, July,

and October. Both distributions fit the observed precipitation
amounts reasonably well. Concerning the highest precipita-
tion intensities, it is hard to draw conclusions on a significant
over- or underestimation. Indeed, local assessments of pre-
cipitation extremes are often inconclusive due to insufficient
information on the distribution tails (Papalexiou and Kout-
soyiannis, 2013).

For each multi-site precipitation model investigated in this
paper (Wilks, Wilks_EGPD, GWEX and GWEX_Disag), we
generate 100 daily precipitation scenarios with these param-
eter estimates, each scenario having a length of 100 years.
These scenarios are compared to the precipitation observed
for the 40-year validation period.

5.2 Occurrence process

The monthly number of wet days obtained from observed
and simulated precipitation data are compared in Fig. 7.
The average number of wet days is adequately reproduced
by all models, with approximately 30 % of cases with poor
performance. These poor performance cases seem to occur
mainly during the winter and spring seasons. The SD of the
monthly number of wet days indicates the inter-annual vari-
ability of this metric. While the magnitudes of the SD from
the simulated precipitation roughly match the corresponding
observed SD, it seems that the highest observed variabilities
are underestimated by all the models, most markedly by the
Wilks model.

Figures 8 and 9 show the distributions of observed and
simulated dry and wet spells, respectively, for the three il-
lustrative stations. Concerning the distributions of dry spell
lengths, the Wilks_EGPD, GWEX, and GWEX_Disag mod-
els lead to adequate performance, the performance being
classified as good in 48, 48, and 49 % of the cases, respec-
tively. The performance of the Wilks model is slightly lower
because of an imprecise reproduction of the frequency of
the shortest dry spells. This difference in performance is ex-
plained by the order of the Markov chain used to simulate
the transitions between dry and wet states, which is the only
difference between the occurrence processes of Wilks and
Wilks_EGPD or GWEX. The fourth-order Markov chain of
the Wilks_EGPD and GWEX models seems to provide a
more adequate representation of these transitions than the
first-order Markov chain of the Wilks model, confirming pre-
vious findings (Srikanthan and Pegram, 2009).

The frequencies of wet spell lengths are adequately re-
produced by the Wilks, Wilks_EGPD, and GWEX models,
with more than 50 % of good performance. The lower over-
all performance of GWEX_Disag for this metric is due to a
slight underestimation of the longest wet spells for some sta-
tions (which is however not the case for the stations shown
in Fig. 9).
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Season 1: Dec, Jan, Feb Season 2: Mar, Apr, May

Season 3: Jun, Jul, Aug Season 4: Sep, Oct, Nov
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Figure 4. Regionalized ξ parameters at a daily scale, for the different seasons. Here, we present the spatial interpolation of at-site estimates
for a better readability of their variability.
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Figure 5. Regionalized ξ parameters at a 3-day scale, for the different seasons. Here, we present the spatial interpolation of at-site estimates
for a better readability of their variability.

5.3 Inter-site correlations of precipitation amounts

Figure 10 compares observed and simulated inter-site cor-
relations for the different model versions. Unlagged cross-
correlations, which represent the spatial dependence, are
close to the 1 : 1 diagonal line, as expected given that these
correlations are explicitly taken into account by all model
versions. However, a slight underestimation can be observed,

especially concerning correlations above 0.8. This underesti-
mation is a side effect of the transformation applied to obtain
a positive-definite matrix (see Sect. 3.3).

An adequate reproduction of lag-1 inter-site correlations
is important for the reproduction of persistent precipita-
tion events. Simulated lag-1 cross-correlations are close to 0
for the Wilks and Wilks_EGPD models, as expected given
that these versions ignore the temporal dependence. Con-
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Figure 6. Empirical and fitted distributions (dashed curves for mixture of exponentials and solid curves for E-GPD) at a daily scale, for the
three illustrative stations and for the months of January, April, July, and October.
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Figure 7. At-site number of wet days for all sites and months: inter-annual mean and standard deviation (SD). The 90 % probability limits
are shown for the different seasons. Overall performance is represented by the indicated percentages of good, fair, and poor performance for
all sites and months (105× 12= 1260 cases).

sequently, these two model versions significantly underes-
timate observed lag-1 cross-correlations, which range be-
tween 0 and 0.4. Concerning GWEX, lag-1 serial autocor-
relations at the stations (black points in the bottom plots)
are perfectly aligned along the 1 : 1 line, as expected given
that they are explicitly fitted by the MAR(1) process. Sim-
ulated and observed lag-1 cross-correlations are roughly in
agreement, though the largest observed cross-correlations are
underestimated. This is also the case, to a lesser extent, for
GWEX_Disag. However, the agreement between observed
and simulated cross-correlations is much stronger.

5.4 Daily amounts

The reproduction of precipitation amounts at a daily scale is
assessed in Fig. 11, for all spatial scales and months. For all
models, we obtain a reasonable agreement between observed
and simulated average daily amounts (90 % limits close to
the 1 : 1 line), with more than 40 % of good cases and less
than 30 % of poor cases. The SD of these daily amounts are
also adequately reproduced (Fig. 11, bottom plots).

5.5 Extreme precipitation amounts

Figures 12 and 13 show the relative differences, expressed
as a percentage, between observed and simulated 10- and
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Figure 8. Distribution of dry spell lengths at the stations: the 90 % probability limits are shown. Overall performance is represented by the
indicated percentages of good, fair, and poor performance for all sites. Inset plots provide a zoom for durations of 1 to 5 days.
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Figure 9. Distribution of wet spell lengths at the stations: the 90 % probability limits are shown. Overall performance is represented by the
indicated percentages of good, fair, and poor performance for all sites. Inset plots provide a zoom for durations of 1 to 5 days.

50-year return periods, at daily and 3-day scales, respec-
tively, for all spatial scales. The percentiles corresponding
to these return periods are estimated empirically using the
Gringorten formula (Gringorten, 1963). These figures pro-
vide an overview of model performance regarding extreme
precipitation amounts.

At the daily scale (Fig. 12), there is no major differ-
ence in performance between the four models. For the 10-
year and 50-year return periods, the number of poor perfor-

mance cases is below 20 % for all models. The relative dif-
ferences are globally centered around zero, which means that
the mixture of exponentials (Wilks model) and the E-GPD
(Wilks_EGPD, GWEX and GWEX_Disag models) all pro-
duce a reasonable performance at this temporal scale. How-
ever, if we compare the 50-year return periods simulated by
the Wilks and Wilks_EGPD models, we note an increase of
10 % of good performance cases (from 65 to 75 %), which
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autocorrelations at the stations.

2 3 4 5 6 7

2
3

4
5

6
7

0 25 50 75 100
44 % 27 % 29 %

Station
15 basins
5 basins
Entire basin

●

2 3 4 5 6 7

2
3

4
5

6
7

0 25 50 75 100
45 % 27 % 29 %

●

2 3 4 5 6 7

2
3

4
5

6
7

0 25 50 75 100
50 % 25 % 24 %

●

2 3 4 5 6 7

2
3

4
5

6
7

0 25 50 75 100
47 % 27 % 26 %

●

4 6 8 10 12 14 16 18

4
6

8
10

12
14

16
18

0 25 50 75 100
50 % 27 % 22 %

●

4 6 8 10 12 14 16 18

4
6

8
10

12
14

16
18

0 25 50 75 100
47 % 27 % 26 %

●

4 6 8 10 12 14 16 18

4
6

8
10

12
14

16
18

0 25 50 75 100
51 % 26 % 23 %

●

4 6 8 10 12 14 16 18

4
6

8
10

12
14

16
18

0 25 50 75 100
54 % 30 % 16 %

Wilks Wilks_EGPD GWEX GWEX_Disag

Simulated

O
bs

er
ve

d
D

ai
ly

 m
ea

n 
[m

m
]

D
ai

ly
 S

D
 [m

m
]

Figure 11. Daily amounts for all spatial scales and months: inter-annual mean (top) and standard deviation (SD, bottom). The 90 % proba-
bility limits are shown. Overall performance is represented by the indicated percentages of good, fair, and poor performance for all spatial
scales and months.

can be explained by a slight underestimation of the largest
maxima with Wilks, for some stations.

Comparing Wilks_EGPD and GWEX, the scores are al-
most identical, which suggests that the tail dependence in-
troduced by the Student copula in GWEX does not produce
a significant improvement for the reproduction of extremes.
However, if we focus on the largest spatial scales (at the
basins), and in particular on the entire Aare River basin (or-
ange lines), it seems that the slight underestimation of the 50-
year return periods obtained with Wilks_EGPD is reduced
thanks to this tail dependence. GWEX_Disag also repro-
duces the largest precipitation amounts at all spatial scales
adequately, even if a slight overestimation of the maxima at
the largest spatial scales can be suspected. Nevertheless, this
performance shows that the disaggregation process leads to
an adequate reproduction of the daily maxima.

At the 3-day scale (Fig. 13), the underestimation of the
maxima by Wilks and Wilks_EGPD is clear at all spatial
scales. GWEX does not suffer from the same shortcomings,
which means that the MAR(1) process (Eq. 10) improves the
temporal structure of the largest 3-day precipitation amounts.
As GWEX_Disag is fitted at a 3-day scale, this model logi-
cally leads to an adequate reproduction of extreme 3-day pre-
cipitation amounts. The strategy consisting of simulating 3-
day precipitation amounts, which are then disaggregated at a
daily scale, presents several advantages.

– As the model is fitted at a 3-day scale, 3-day maxima
are adequately reproduced.

– As the method of fragments uses observed 3-day tempo-
ral structures to disaggregate 3-day amounts, the daily
amounts resulting from a generated 3-day maxima are
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Figure 13. The 3-day annual maxima for all spatial scales: relative differences, expressed as a percentage, between observed and simulated
10-year (top plots) and 50-year (bottom plots) return periods. The 90 % probability limits are shown. Overall performance is represented by
the indicated percentages of good, fair, and poor performance for all spatial scales.

physically plausible. In particular, the temporal and spa-
tial structures of large and persistent observed precipi-
tation events are used, which ensures consistency be-
tween the generated extreme events at the daily and 3-
day scales.

GWEX and GWEX_Disag both adequately reproduce ex-
treme precipitation amounts at daily and 3-day scales, as well
as at all spatial scales. As indicated above, these models will
be used to generate long precipitation scenarios, which will
feed a hydrological model in order to produce flood scenar-
ios. Ultimately, the reproduction of the flood properties us-
ing GWEX and GWEX_Disag will indicate which model is
the most adequate. Since they correspond to the same model
version fitted at daily and 3-day scales, respectively, we can

expect that resulting floods will have slightly different prop-
erties.

6 Conclusions and outlook

Precipitation models are usually developed for the purpose of
risk assessment in relation to natural hazards (e.g., droughts,
floods). Most existing precipitation models aim to reproduce
a wide range of statistical properties of precipitation, at dif-
ferent scales, in order to be used as a general tool in differ-
ent contexts. In this study, our main objective was to provide
a precipitation generator that could be used together with a
hydrological model for the evaluation of extreme flooding
events in a region covering approximately half of Switzer-
land. As a consequence, we were especially interested in the
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reproduction of extreme precipitation amounts at medium
to large spatial scales. As the daily and 3-day precipitation
amounts are a major determinant of flood magnitudes in large
Swiss basins (Froidevaux et al., 2015), an adequate reproduc-
tion of precipitation at these timescales was also required.

In this paper, we considered different multi-site precipita-
tion models targeting the reproduction of extreme amounts
at multiple temporal (daily, 3-day) and spatial scales. Dif-
ferent extended versions of the model introduced by Wilks
(Wilks, 1998) have been proposed. A first direct extension,
Wilks_EGPD, considers a Markov chain (of order 4 instead
of order 1) for the at-site occurrence process. Furthermore,
taking advantage of recent advances regarding extreme pre-
cipitation, a heavy-tailed distribution (instead of a mixture of
exponential distributions), the E-GPD, is applied to the pre-
cipitation intensities at each station. Two important exten-
sions of Wilks_EGPD, named GWEX and GWEX_Disag,
are then considered. In the GWEX model, temporal and spa-
tial dependencies of the occurrence and intensity process are
introduced using the copula theory and a multivariate autore-
gressive process. A second version, GWEX_Disag, applies
the same model, but at a 3-day scale. The 3-day simulated
amounts are then disaggregated using an adaptation of the
method of fragments (Wójcik and Buishand, 2003).

In this study, we support the use of a systematic evaluation
framework. The CASE framework proposed by Bennett et al.
(2017) provides a useful tool in this respect, making it pos-
sible to compare performance between precipitation models
fairly. Regarding the reproduction of extreme precipitation,
evaluations until now have usually been qualitative (e.g., in-
terpretations based on one or two examples) and limited in
terms of spatial scales (often only at the stations). The eval-
uation of extreme precipitation amounts proposed in this pa-
per is multi-scale in time (daily and 3-day scale) and space
(at the stations, for two different divisions of the study area
into sub-basins, and for the entire Aare River basin).

The different multi-site precipitation models have been ap-
plied to 105 stations located in Switzerland. A multi-scale
evaluation led to the following conclusions.

– A fourth-order Markov chain outperforms a first-order
Markov chain for the transitions between dry and wet
states, notably for the reproduction of dry spell lengths.

– At the scale of the stations, daily amounts (average, SD,
and extremes) are reasonably well reproduced by all the
models.

– With only three parameters, the E-GPD provides a par-
simonious and flexible representation of the whole of
precipitation amounts. Its GPD tail is in agreement
with recent results, showing that extreme precipitation
amounts must be modeled by heavy-tailed distribu-
tions (Papalexiou and Koutsoyiannis, 2013; Serinaldi
and Kilsby, 2014a). Furthermore, robust estimates of
the parameter controlling the heaviness of the distribu-
tion tail are obtained using a regionalization method.
In our study area, the E-GPD does not bring a signifi-
cant improvement of the performance compared to the
mixture of exponential distributions. However, the gen-
eral framework proposed in this paper can be applied
to very distinct precipitation regimes, and the possible
heavy tail of the E-GPD might be valuable in other ar-
eas.

– At a 3-day scale, precipitation extremes are severely un-
derestimated by Wilks and Wilks_EGPD. This underes-
timation can be explained by an incorrect representation
of the persistence by these models.

– GWEX and GWEX_Disag adequately reproduce ex-
treme precipitation amounts at daily and 3-day scales,
and at all spatial scales. These models are deemed ade-
quate for the evaluation of extreme flood events.

Future research will investigate whether the floods simu-
lated by a hydrological model using the generated precipi-
tation scenarios have statistical properties in agreement with
observed floods. An extensive investigation is currently un-
derway with a distributed version of the HBV hydrological
model, applied to 87 sub-basins of the whole study area and
using precipitation scenarios produced by GWEX as inputs.
This hydrological evaluation of our weather scenarios will be
presented in future publications.
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Appendix A: Temporal disaggregation from a 3-day
scale to a daily scale

For a 3-day period D= {d,d + 1,d + 2} starting on a day d,
the observed and simulated precipitation amounts at a station
k are denoted by YD(k) and ỸD(k), respectively. We want
to disaggregate the simulated 3-day amount for the period
D̃= {d̃, d̃ + 1, d̃ + 2}. This disaggregation is achieved in the
following steps.

1. A set of observed 3-day sequences are retained as can-
didate periods D according to two criteria.

– Season. Periods D̃ and D must belong to the same
season, as defined in Sect. 3.3.

– Mean intensity. Simulated and observed precipita-
tion fields must have the same order of magnitude.
Let q0.5, q0.75, q0.9, and q0.99 denote the quantiles
of the mean observed precipitation intensities over
all the stations associated with probabilities 0.5,
0.75, 0.9, and 0.99, respectively. Observed and sim-
ulated 3-day periods are classified into five groups
according to their mean intensity Y= 1

n

∑
kYD(k):

dry periods (Y< q0.5), moderately wet periods
(q0.5 ≤ Y< q0.75), wet periods (q0.75 ≤ Y< q0.9),
very wet periods (q0.9 ≤ Y< q0.99), and extremely
wet periods (q0.99 ≥ Y).

This first selection of candidate periods aims to increase
the chance of retaining periods corresponding to similar
meteorological events.

2. For each observed 3-day candidate period D, we com-
pute the following score:

SCORE(D̃,D)=
∑
k

∣∣∣∣ Ỹd̃−1(k)∑
kỸd̃−1(k)

−
Yd−1(k)∑
kYd−1(k)

∣∣∣∣
+

∣∣∣∣ ỸD(k)∑
kỸD(k)

−
YD(k)∑
kYD(k)

∣∣∣∣.

This score measures the similarity between the simu-
lated spatial field for the period ỸD(k) and the observed
spatial field for the period D̃ and also takes into account
the similarity between the spatial fields for the previous
days d̃ − 1 and d − 1.

Absolute differences between relative precipitation in-
tensities are computed (the lowest scores are therefore
obtained for spatial fields with similar shapes) among
the observed periods, corresponding to the same season
and order of magnitude selected in the previous step.

3. For each simulated period D̃, the observed precipitation
fields corresponding to the 10 lowest scores are retained.
For each station k, if a positive precipitation amount
has been simulated (ỸD̃(k) > 0), we look at the corre-
sponding observed amount YD(k). If YD(k)= 0, this ob-
served period cannot be used to disaggregate ỸD̃(k) and
we look at the next best observed field among the 10
selected fields. If the observed field contains a positive
precipitation amount at this station (YD(k) > 0), then we
obtain the simulated daily amount for day d̃ as follows:

Ỹd̃(k)= Yd(k)×
ỸD̃(k)

YD(k)
, (A1)

with similar expressions for days d̃ + 1 and d̃ + 2.
Simulated daily amounts correspond to the observed
daily amounts, rescaled by the ratio between the simu-
lated and observed 3-day amounts. The 3-day simulated
amounts and observed temporal structures are thus pre-
served.

4. While the 3-day spatiotemporal consistency is generally
conserved by applying the preceding steps, it can hap-
pen that the simulated 3-day amount is positive even
though there is no positive precipitation among the 10
best 3-day observed fields. In this case, we seek simi-
lar observed amounts at this station only and randomly
choose one 3-day period among the 10 best 3-day peri-
ods.
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