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Abstract. Regionalization methods dependent on hydrolog-
ical models comprise techniques for transferring calibrated
parameters in instrumented watersheds (donor basins) to
non-instrumented watersheds (target basins). There is a lack
of flow regionalization studies in regions with humid sub-
tropical and hot temperate climates, and one of the main
novelties of this research is to assess the regionalization of
low flows in Paraná in the south of Brazil. In addition to
filling this gap, this research presents innovative artificial-
intelligence techniques for transferring parameters from hy-
drological models. This study aims to evaluate regionaliza-
tion methods for transferring GR4J parameters and predict-
ing river flow in catchments from the south of Brazil. We
created a dataset for the state of Paraná with daily hydrolog-
ical time series (precipitation, evapotranspiration, and river
flow) and watershed physiographic and climatological in-
dices for 126 catchments. Rigorous quality-controlling tech-
niques were applied to recover data from 1979 to 2020. The
regionalization methods compared in this study are based on
simple spatial proximity, physiographic–climatic similarity,
and regression by random forest techniques. Direct regres-
sion of Q95 was calculated using random forest techniques
and compared with indirect methods, i.e. using regional-
ization of GR4J parameters. A set of 100 basins was used
to train the regionalization models, and another 26 catch-
ments (pseudo-non-instrumented) were used to evaluate and
compare the performance of regionalizations. The GR4J
model showed acceptable performances for the sample of
126 catchments, with 65 % of watersheds presenting a log-

transformed Nash–Sutcliffe coefficient greater than 0.70 dur-
ing the validation period. According to the evaluation car-
ried out for the sample of 26 basins, regionalization based
on physiographic–climatic similarity was shown to be the
most robust method for the prediction of daily and Q95 ref-
erence flow in basins from the state of Paraná. When increas-
ing the number of donor basins, the method based on spa-
tial proximity has comparable performance to the method
based on physiographic–climatic similarity. Based on the
physiographic–climatic characteristics of the basins, it was
possible to classify six distinct groups of watersheds in
Paraná. Each group shows similarities in forest cover, urban
area, number of days with more than 150 mm of precipita-
tion, and average duration of consecutive dry days. Although
the physiographic–climatic similarity method obtained the
best performance, the use of machine learning algorithms
to regionalize the model parameters had good performance
using climatic and physiographic indices as inputs. This re-
search represents a proof of concept that basins without flow
monitoring can have a good approximation of streamflow if
physiographic–climatic information is provided.

1 Introduction

According to Razavi and Coulibaly (2013), regionalization
methods dependent on rainfall–runoff models comprise tech-
niques for transferring calibrated parameters in instrumented
basins (donor basins) to non-instrumented basins (target

Published by Copernicus Publications on behalf of the European Geosciences Union.



3368 L. A. Kuana et al.: Regionalization of GR4J model parameters for river flow prediction in Paraná

basins). The study carried out by Arsenault et al. (2019)
presents three techniques based on physical similarity, spatial
proximity, and regression to estimate the parameters of three
different hydrological models, with the purpose of predicting
flows in watersheds that do not have monitoring. Although
many advances have been made in this area of hydrology,
there are still uncertainties in methods for estimating flows in
ungauged basins (Guo et al., 2020). Part of this is due to the
uniqueness of each region across the globe, which concerns
not only the uniqueness of each location but also the issue
of availability of information (e.g. descriptive characteristics
of basins and availability of hydrometeorological data). Ad-
ditionally, hydrological systems are dependent on temporal
and spatial scales with interactions between climate, vegeta-
tion, topography, and soil (Blöschl et al., 2013; Hrachowitz
et al., 2013) that make the task of estimating hydrological
information in basins with little or no data challenging.

The watersheds analysed in this research belong to the
southern region of Brazil, with an area of approximately
199 315 km2. The hydrography of Paraná is composed
mainly of the Iguazu River, Paraná River, Paranapanema
River, Tibagi River, Ivaí River, and Piquiri River. The study
of low flows and droughts is critical in the context of water
availability in Brazil; river dams and reservoirs are used for
power generation (70 % of Brazilian energy sector), to pro-
vide drinking water for the population, to irrigate crops, and
to distribute water for industrial use (Carneiro et al., 2020).
The Paraná basin, a major hydroelectricity-producing region
with 32 % (60 million people) of Brazil’s population, experi-
enced very severe drought in 2000 and 2014, compromising
the water supply for 11 million people in São Paulo (Melo
et al., 2016). The state of Paraná faced one of the worst
droughts in its history between 2020 and 2021 (Cunha et al.,
2019; Juliani et al., 2020). There are few studies of flow
regionalization in the south of Brazil (Kaviski et al., 2002;
Bazzo and Almeida, 2016); at the same time, the hydrolog-
ical measurements and field work in the area are declining
(Burt and McDonnell, 2015; Melo et al., 2020). Our work
brings novel contributions for watersheds with similar cli-
mate and geography; also, it provides more information for
governmental planning and management.

In order to reveal research gaps and how our study goes
beyond the existing literature, we highlight the following
points: (i) the need to better understand regionalization tech-
niques in a subtropical climate, which has very distinct and
specific runoff generation mechanisms; (ii) a proof of con-
cept that basins without flow monitoring can have a good ap-
proximation of streamflow if other physiographic–climatic
indices are provided; and (iii) the fact that machine learn-
ing algorithms perform better with physiographic–climatic
indices as inputs.

The aim of this article is to improve the methodology for
transferring parameters of the GR4J model calibrated in in-
strumented watersheds to predict daily flows in basins with
little or no hydrological information. The performance of dif-

ferent regionalization methods are verified in Paraná basins
that have a history of hydrometeorological data records.
Other objectives are the following: (i) build a hydrological
database for the state of Paraná, Brazil (the database consists
of daily flow, precipitation, and evapotranspiration time se-
ries and catchment-related descriptive indices); (ii) develop
and improve methods for transferring GR4J calibrated pa-
rameters through regionalization techniques based on spatial
distance, physiographic–climatic similarity, and non-linear
regression; and (iii) compare regionalization methods and
random forest techniques to estimate the Q95 reference flow.

2 Data for state of Paraná

The study area was delimited based on the hydrographic net-
work of the state of Paraná, Brazil, which is available at In-
stituto Água e Terra (IAT) (IAT, 2020), and on a rectangu-
lar polygon demarcated between latitudes of 22°15′36′′ and
26°54′00′′ S and longitudes of 48°00′00′′ and 54°42′00′′W.
Therefore, the study area includes the state of Paraná and ex-
tends into parts of the states of Santa Catarina and São Paulo,
not completely covering the Paranapanema and Paraná river
basins (Fig. 1).

Time series of hydrometeorological observations were
obtained at Agência Nacional de Águas e Saneamento
Básico (ANA) via HidroWEB Portal, Instituto Nacional de
Meteorologia (INMET), Sistema de Tecnologia e Monitora-
mento Ambiental do Paraná (Simepar), Água e Terra In-
stitute (IAT), and Instituto de Desenvolvimento Rural do
Paraná (IAPAR-EMATER).

Although there are datasets at a national level, such as
CAMELS-BR (Chagas et al., 2020) and CABra (Almagro
et al., 2021), the authors decided to construct a new dataset
based on the hydrographic network of the state of Paraná.
This network has a consistent topology and codification; its
hierarchization was proposed by Otto Pfafstetter (Pfafstetter,
1989) and allows the extraction of information upstream and
downstream of each river section (Sousa et al., 2009).

2.1 Precipitation time series

The Llabrés-Brustenga et al. (2019) quality control method
was used to evaluate daily rainfall data series from 1389 sta-
tions, which are shown in Fig. 2. The method can be divided
into four steps. First, stations coordinates, the period of oper-
ation, and the percentage of available data are checked. In the
second stage, data that are not physically possible are identi-
fied and discarded, such as negative precipitation values and
extreme events greater than 300 mm.

The third stage consists of analysing the historical series
of each station individually. For each year, a quality index is
calculated, which depends on five factors, namely (i) the per-
centage of data available in each year of the series; (ii) the
distribution of failures throughout the year, for which the
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Figure 1. River flow stations and watershed delineation.

Figure 2. Location of pluviometric stations.

penalty becomes greater for a series that has long continu-
ous periods of failures; (iii) the probability that the series is
formed by possible failures that have been padded with ze-
ros, which penalizes the series that have monthly cumulative
data equal to zero, indicating that “false zeros” are possi-
ble; (iv) the probability of systematic accumulation of two
or more days of the week, which penalizes the station if a
day of the week with a tendency for less rain than other days
of the week is detected at the station; and (v) the probability
that the series contains outliers. The quality index can range
from 0 % to 100 %. Values equal to 100 % indicate absolute
quality; values above 80 % are considered to be acceptable;
and for values below 50 %, the quality is considered to be
very low.

The verification process between what was recorded at the
station to be analysed (candidate station) and at neighbour-

ing stations (auxiliary stations) is carried out in the fourth
stage, also known as the relative quality control. At this stage,
there are two indices that are relevant to the classification of
daily values for the candidate post, which can be labelled as
valid, “V ”; doubtful, “D”; invalid, “N”; or insufficient in-
formation, “I”. The records identified as having insufficient
information denote that there are fewer than two auxiliary
stations in the region and in the same period to be properly
evaluated. The first index, called the representativeness in-
dex, verifies the daily values for each station pair, candidate–
auxiliary; this index considers the distance between stations,
the altitude difference, and the correlation with measured
data. A maximum distance of up to 50 km was defined be-
tween candidate and auxiliaries stations. The second index
is used to analyse the monthly cumulative data. From the
Simepar stations, maximum limits of monthly accumulation
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were established and were applied to evaluate the historical
series of each candidate station.

Validated daily data were spatialized on a 1 km× 1 km
grid using space–time kriging, where precipitation values
were estimated on a daily scale using weighted averages
between neighbourhood data. Then, a second spatialization
method was applied to the most recent precipitation history.
The method presented by Calvetti et al. (2017) was used to
estimate precipitation spatially within the area of interest,
where the Poisson equation was used to combine radar and
satellite data with the records observed by telemetry precip-
itation stations. Finally, average rainfall was measured us-
ing the arithmetic mean of the grid points located within the
drainage area of each watershed.

2.2 River flow data and delineation of watersheds

We constructed the river flow dataset in two ways: (i) by di-
rectly obtaining river flow time series, where observed water
levels were previously transformed into flow by the agency
responsible for operating the station, and (ii) by time series
of water levels which still had not been transformed into
flow; therefore, when available, the station’s rating curves
were obtained, and then the quota was transformed into flow.
We have considered it to be acceptable to use stations with
at least 5 years of river flow records for the application of
regionalization methods. Time series from stations down-
stream of flow regularization (dams and reservoirs) were
discarded or considered partially in the periods prior to the
dams’ construction.

Conventional stations were obtained from the IAT and
HidroWEB Portal databases. Although both banks preserve
information from stations of different operators, it was ac-
cepted that information coming from the IAT bank would
have priority over the ones from the HidroWEB Portal. The
inventory provided by the technician responsible for the IAT
informs us that there are 413 river flow stations in the study
area with time series greater than 5 years. From the ANA
metadata catalogue, only 15 different stations with at least
5 years of river flow records were identified. The telemetric
series of 83 IAT stations and 57 Simepar stations were ob-
tained from the Simepar database.

Locations of the stations were checked through the man-
ual procedure of hydro-referencing using the hydrographic
network of the IAT. Finally, a quality control was carried
out, in which non-consistent data were disregarded, such
as sudden ruler changes clearly altering the base flow, se-
ries with large gaps alternating with short measurement peri-
ods, low-precision measurements, or measurements that pre-
sented constant values for long periods. In the end, a total
of 284 river flow stations were obtained, with observations
ranging from 1926 to 2020, as shown on the map in Fig. 1.

2.3 Potential evapotranspiration

The FAO Penman–Monteith (Allen et al., 1998) equation
was used to estimate potential evapotranspiration (ET). This
method requires time series of air temperature, air relative
humidity, wind speed, and solar radiation, which were ob-
tained through Simepar telemetric stations with records rang-
ing from 1997 to 2020. ET was based on long-term average
daily values, which means the same potential evapotranspi-
ration series was repeated every year for each station. Sub-
sequently, the punctual information was spatialized using a
method of regression followed by interpolation, also known
as regression kriging or a hybrid method of interpolation
(Hengl et al., 2007).

2.4 Catchment descriptors

Table A1 in the Appendix shows catchment descriptor statis-
tics (mean, standard deviation, quartiles, minimum and max-
imum) for the 126 basins of the Paraná dataset. It has 39 de-
scriptive indices divided into four categories: physiographic,
climatological, land use or land cover, and soil type. Quanti-
tative indices were used to describe the landscape, relief, cli-
mate, topology of the hydrography, land use, and soil type of
the watershed. Physiographic indices were obtained for each
geographic location and for the topography of the drainage
networks for the selected basins. From the hydrographic net-
work, areas and drainage sections were obtained, which were
used as a basis for calculating the indices described in Ta-
ble A1. A digital elevation model (DEM) with a resolu-
tion of 30 m from NASA’s Shuttle Radar Topography Mis-
sion (SRTM) was used to estimate slopes and altitudes. Land
use and land cover maps for the year 2019, provided by Map-
Biomas (Souza et al., 2020), were used for calculating the
fractions of area that each class occupies in the basins and
to determine the dominant class. The soil map was obtained
from Embrapa (2020) for the state of Paraná, with a scale
of 1 : 250000.

The curve number (CN) method developed by Soil Con-
servation Service (1972) relates soil and land use and land
cover information to classify the region based on its storm
water retention potential. The ANA metadata catalogue was
used to estimate the CN in Paraná basins. Average precipita-
tion series and potential evapotranspiration estimates, which
were previously determined for each watershed, were used
to calculate the indices related to precipitation and poten-
tial evapotranspiration. Furthermore, Barbieri et al. (2017)
provided atlases of the state of Paraná with monthly aver-
age temperatures and average solar radiation for each season
of the year. The atlases were produced based on measure-
ments from the INMET, Simepar, and Instituto de Desen-
volvimento Rural do Paraná (IDR-Paraná) stations during the
period of 2006 to 2016. This information was used to com-
pute average indices in basins located within the state, and
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for the catchments on borders or in other states, the average
values of the nearest watershed were adopted.

2.5 Watershed selection

The watershed selection consists of 126 river basins that have
at least 15 years of flow data between 1979 and 2020, with
each year counted having a maximum of 10 % of gaps. In
addition, it was preferred that the historical series also had
more recent data, which extended beyond the year 2010, and
were limited to homogeneous historical series that passed the
Pettitt test (Pettitt, 1979). The non-parametric Pettitt test was
calculated using the library pyHomogeneity in Python; it is
able to indicate the year in which a sudden change in the
temporal trend occurred. The selected 126 watersheds are de-
picted in Fig. 3. Figure A1 shows the availability of data over
the years; darker green indicates a greater amount of data be-
ing available in that year.

3 Methods

The application of the physiographic–climatic similarity
method implicitly considers two assumptions. The first as-
sumption is that, if there is similarity between basins, there
are similar hydrological responses. The second assumption
is that the similarity between sets of calibrated parameters
of the hydrological model between two or more river basins
may reflect the similarity in terms of their behaviour in rela-
tion to the transformation of rainfall into flow (Oudin et al.,
2008, 2010; Parajka et al., 2005; Blöschl et al., 2013). Spatial
proximity assumes that neighbouring basins have similarities
in climate, soil type, land use and cover, slope, altitude, and
other characteristics (Arsenault et al., 2019). Non-linear re-
gression models seek to equate the relationship between de-
pendent variables (e.g. hydrological model parameters) with
different independent variables (e.g. descriptive characteris-
tics; He et al., 2011).

After the dataset construction, calibration and validation of
the GR4J model was performed in all basins. The hydrolog-
ical model, GR4J (Génie Rural à 4 paramètres Journalier),
proposed by Perrin et al. (2003), has been implemented in
different countries, such as France (Oudin et al., 2008, 2010),
Australia (Pagano et al., 2010), Brazil (Neto et al., 2021),
South Korea (Shin and Kim, 2016), Mexico (Arsenault et al.,
2019), and Russia (Ayzel et al., 2019). This parsimonious
model has been showing promising results and stands out due
to its dependence on only a few parameters and its use of two
meteorological forcing variables on a daily scale; these vari-
ables are the total precipitation and potential evapotranspi-
ration averaged at the basin scale, requiring historical series
of observed flows for the adjustment of its four parameters.
Three regionalization methods of the GR4J constants were
tested; they are based on (i) physiographic–climatic similar-
ity, (ii) simple spatial proximity, and (iii) non-linear regres-

sion. Estimates of Q95 flow using a machine learning algo-
rithm based on the dataset were also compared with data. All
these methods are explained in next subsections.

3.1 Calibration and validation of the hydrological
model

GR4J model parameters are obtained through calibration, a
process of making simulated flow be as close as possible to
observed flow. Table 1 summarizes the minimum and maxi-
mum values used for searching each constant of the model.

The simulation period was divided into three parts: warm-
up, calibration, and validation. The first 5 years of the simu-
lation were used as a warm-up to eliminate the uncertainties
in the initial conditions (Daggupati et al., 2015). The calibra-
tion and validation periods were defined as 70 % and 30 %,
respectively, of the remaining time series after the warm-up.

The differential evolution (DE) optimization method was
used for GR4J calibration. This method was initially pro-
posed by Storn and Price (1997) and is part of SciPy library
in Python. DE is used in optimization problems that use a
single objective function, as in our case. According to Krause
et al. (2005) and Muleta (2012), the use of the Nash–Sutcliffe
logarithmic coefficient (logNSE) as an objective function is
more influenced by low flows; therefore, this metric can be
used to evaluate the performance of minimum-flow predic-
tions. The logNSE can range from −∞ (poor fit) to 1.0 (per-
fect fit) and is calculated as follows:

logNSE= 1−

N∑
i=1

(
ln
(
Qsim
i + 0.001

)
− ln

(
Qobs
i + 0.001

))2
N∑
i=1

(
ln
(
Qobs
i + 0.001

)
−Q

obs
ln

)2
, (1)

where Qsim
i and Qobs

i correspond to simulated and observed

flow on day i, respectively. The average term Q
obs
ln is calcu-

lated by Q
obs
ln =

1
N

N∑
i=1

ln(Qobs
i + 0.001).

Other metrics used to evaluate the performance of region-
alization methods are the Pearson correlation coefficient (R);
the Nash–Sutcliffe coefficient (NSE); and the Nash–Sutcliffe
square root coefficient (sqrtNSE), where flow is transformed
by the square root.

3.2 Regionalization methods

In this work, classical regionalization techniques based on
physiographic–climatic similarity, simple spatial proximity,
and non-linear regression were used. Regionalization based
on physiographic–climatic similarity starts by identifying
and grouping the watersheds that have the greatest physical,
climatic, and geographic similarities. The purpose of cluster-
ing is to identify homogeneous regions based on descriptive
indexes. Regionalization based on simple spatial proximity
considers the fact that the study region is homogeneous and,
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Figure 3. Location of selected watersheds in the state of Paraná.

Table 1. Descriptions and ranges for GR4J model parameters.

Parameters Description Interval

X1 Production tank capacity (mm) 0 to 6000
X2 Coefficient of underground exchanges (mm d−1) −20 to 10
X3 Propagation reservoir capacity (mm) 0 to 4000
X4 Unit hydrograph base time (days) 0.04 to 20

therefore, that nearby basins are similar based on climate,
relief, vegetation, landscape, and soil type. Although both
assume that physical similarities can be closely correlated
with hydrological responses, if the region is heterogeneous,
regionalization based on physiographic–climatic similarity
transfers information between basins that are not necessarily
geographically neighbours. A second assumption to be con-
sidered is that the similarity between parameters from two or
more river basins may reflect on the similarity of their be-
haviour in relation to the transformation of rainfall into flow
(Oudin et al., 2008, 2010; Parajka et al., 2005; Blöschl et al.,
2013). On the other hand, regression methods consider the
fact that hydrological model parameters may be related to
some physical processes that occur in watersheds and, conse-
quently, are associated with some descriptive characteristics
(Arsenault et al., 2019). In this way, it is possible to build a
regression model for each parameter of the model.

The diagram in Fig. 4 briefly summarizes the application
of regionalization methods in this work. After calibrating the
GR4J model for each of the 126 river basins, catchments
were randomly divided into training and validation sets, with
80 % of the initial sample basins comprising the training set
and 20 % forming the validation set.

The training set is formed by river basins considered to
be possible donors of GR4J parameters and which were
also used to train and build regionalization models. Basins
of the validation set are considered to be pseudo non-
instrumentalized (indicated by the blue arrow in the dia-
gram of Fig. 4), even if it is known that these catchments
have hydro-meteorological data and were calibrated. Each
of the regionalization methods consists basically of differ-
ent methodologies for selecting donor basins for transferring
the parameters of the GR4J model to target basins.

3.2.1 Physiographic–climatic similarity

When applying methods of predictions in ungauged
basins (PUBs), we must take into account the uniqueness of
each region across the globe and all the available information
in each dataset. Bearing in mind the uniqueness of each loca-
tion, possible basin descriptors were carefully chosen so that
they would synthesize different characteristics of river basins
and would be capable of transmitting the diversity between
catchments within the same sample. Thus, the following de-
scriptors were initially selected: basin area, length of main
river, altitude and average basin slope, latitude of the basin
centroid, daily averages of precipitation and potential evap-
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Figure 4. Diagram summarizing the regionalization methods.

otranspiration, aridity index, average number of days with
extreme precipitation events and fraction of area covered by
forest, and agriculture and urbanization.

Descriptors were normalized so that the mean and stan-
dard deviation corresponded to 0 and 1, respectively. This
procedure ensures that different variables share the same
scale without significant loss of information and, thus, al-
lows categories with different magnitudes to be compared
equally. Then, characteristics that showed variability, i.e. that
described the set of watersheds as being heterogeneous, were
selected.

Table A1 shows the descriptive statistics adopted; it re-
veals that Paraná basins have diverse areas, main-river
lengths, and average altitudes. On the other hand, the frac-
tion of urban area showed little variation; despite this, it was
preferable to keep this descriptor since urban infrastructure,
as well as other anthropogenic activities, can seriously dis-
turb the processes of the hydrological cycle.

High multicollinearity between the descriptors can lead
clustering algorithms to make wrong decisions during the
formation of groups (Boutsidis et al., 2014). Therefore, two
analyses were performed to identify the correlation between
descriptors. First, the Pearson correlation (R) between each
pair of descriptors was calculated. Second, the variance in-
flation factor (VIF) was determined to measure the degree
of multicollinearity between descriptors. VIF ranges from
1 (when there is no multicollinearity) to infinity (when there
is perfect multicollinearity); the threshold used in this work
was below 5. Correlations between descriptors can be seen in
Fig. B1. High correlations, with R values above 0.70, were

found between the following pairs of descriptors: aridity in-
dex and days of monthly accumulated precipitation above
150 mm, average duration of days without rain and latitude
of basin centroid, average slope of the basin and fraction of
forest, fraction of agricultural area and fraction of forest, and
annual potential evapotranspiration and average altitude of
the basin. To reduce the dimensionality of data, the follow-
ing descriptors were selected: area, forest fraction, urban area
fraction, average duration of extreme events with high pre-
cipitation (days of monthly accumulated precipitation above
150 mm), and average duration of days without rain.

The Euclidean distance (dist), calculated using Eq. (2) be-
low, is a metric that can express similarities (small distances)
or differences (large distances) between n attributes of two
basins (a and b) in an n-dimensional space of attributes (Vivi-
roli et al., 2009).

dist(a,b)=

√√√√ n∑
k=1

[atribk(a)− atribk(b)]2 (2)

Clusters were produced using the K-means method, which
was implemented using the scikit-learn package. The appli-
cation of theK-means algorithm involves the following: first,
define the number of K groups; second, for each group, ini-
tialize a centroid randomly within the range of each category;
third, assign each point to the centroid that has the smallest
Euclidean distance with respect to the point; four, compute
a new location of K centroids based on the average of all
points assigned to it. The iterative process from the third to
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the fourth step is repeated until there are no more changes in
the centroids (Wilks, 2011).

The value ofK directly affects how groups will be formed.
Increasing the number K leads to more groups, but conse-
quently, each group will have fewer members (which brings
homogeneity but does not guarantee representativeness). On
the other hand, creating fewer groups generates groups with
more members (which does not allow proper identification of
the different groups). Two ways to evaluate if the appropriate
number of clusters resulting from the agglomeration method
is using the silhouette coefficient (Si) and the elbow method.

According to Rousseeuw (1987), the silhouette coeffi-
cient (Si) consists of calculating the average Euclidean dis-
tance (ap) of a point p, with all points belonging to the same
group. Then, the average distance (bp) of the point p with re-
spect to all the points belonging to the nearest neighbouring
group is calculated. Thus, the coefficient can be determined
using the following equation:

Si=
bp− ap

max
(
bp,ap

) . (3)

Si can vary between [−1,1], and the closer to 1 it is, the more
distant the point p is from the neighbouring group. Values
close to 0 indicate that the point p is close to the limit that
divides both groups, and measurements close to −1 indicate
that the point p may have been associated with the wrong
group.

The elbow method is a graphical tool for evaluating an op-
timal number of clusters. This technique involves calculating
an agglomeration coefficient; in this work, the criterion used
was the sum of the squared distances of each sample (xi) and
the respective centroid (µj ) of the grouping that the sample
is part of, which can be expressed as the sum of squared er-
rors (SSE):

SSE=
n∑
i=1

(
xi −µj

)2
. (4)

As number of clusters grows, distances between samples and
their respective centroids decrease. However, the number of
groups and the clustering coefficient are expected to be small.
Thus, from a graph with the agglomeration coefficient on the
y axis and the number of groups on the x axis, it is possible
to identify the point at which there is a sharp flattening or a
rapid drop in this coefficient, suggesting an optimal number
of clusters (Ketchen Junior and Shook, 1996).

3.2.2 Simple spatial proximity

The distance between two points – in this case, the centroids
of target and donor basins – that have known latitudes and
longitudes can be calculated using the Haversine distance,
DH:

DH =2r arcsin[√
sin2

(
x1− x2

2

)
+ cos(x1)cos(x2)sin2

(
y1− y2

2

)]
, (5)

where DH refers to the distance in kilometres; r is the aver-
age radius of the Earth (approximately 6371 km); and x and
y are, respectively, the latitudes and longitudes of points 1
and 2.

3.2.3 Regression

Multiple regression models, whether linear or non-linear,
seek to find the best relationship between a dependent vari-
able and independent variables; this is done by finding the
minimum error given a target. In our case, the GR4J model
parameters are dependent variables which will be calculated
based on descriptive characteristics of the basins (indepen-
dent variables). The non-linear regression method of random
forests (Breiman, 2001), which was chosen for this work, is
able to perform well when dealing with large datasets and is
able to distribute weights for the independent variables ac-
cording to their degree of importance. Thus, two types of
regression methods were constructed: random forest I and
random forest II.

Random forest I used 1000 decision trees and was trained
using basin descriptors. For this technique, it is necessary
to produce a regression model independently for each pa-
rameter (X1, X2, X3, and X4); however, the parameters of
a hydrological model generally present dependent relation-
ships among themselves and sometimes cannot be observed
independently. Thus, a second method, defined as random
forest (RF) II, included the calibrated parameters of train-
ing basins as descriptors. The second method followed the
following steps: (i) a correlation analysis between GR4J pa-
rameters was performed, and, thus, an ordered list of param-
eters from highest to lowest correlation index was created,
and (ii) a first regression was done for the parameter with the
lowest correlation index – in this case, only the descriptive
characteristics were used to train the model. Then, regression
was performed for the parameter with the second lowest cor-
relation index; here, we used descriptive characteristics and
the previous parameter that had the lowest correlation index.
This process was followed until all the parameters had their
regressions.

3.3 Q95 flow estimate

Instituto Água e Terra (IAT), the environmental agency re-
sponsible for legal permissions for the use of water resources
in the state of Paraná, uses the river flow with 95 % perma-
nence (Q95) as a reference flow rate for permission licenses
for water use (AGUASPARANÁ, 2010). We have proposed
estimating Q95 flow through regression techniques based on
basin information and, thus, comparing it with Q95 flow cal-
culated using regionalized simulated flows. The construction

Hydrol. Earth Syst. Sci., 28, 3367–3390, 2024 https://doi.org/10.5194/hess-28-3367-2024



L. A. Kuana et al.: Regionalization of GR4J model parameters for river flow prediction in Paraná 3375

of permanence curves involved (i) ordering the flows Q in
ascending order for N days; (ii) assigning to each ordered
flow Qm the corresponding ranking order m; (iii) comput-
ing the frequency or probability of the ordered flows Qm to
be equalled or surpassed (P(Q≥Qm)), which can be calcu-
lated using the Weibull plot position shown in the following
equation (Pugliese et al., 2014):

P (Q≥Qm)= 1−
m

N + 1
. (6)

After obtaining Q95 reference flows for the training set, a
transformation of units (from m3 s−1 to L s−1 km−2) was per-
formed, ensuring that the variable is not dependent on basin
area. Then, another random forest regression method was
trained and evaluated for the test set. This RF used 1000 de-
cision trees and watershed descriptors that presented weights
greater than 0.01.

As terminology may sound ambiguous, here, it is impor-
tant to distinguish the training and test (or validation) sets
used throughout this work. There are warm-up, calibration,
and validation periods for river flow simulation, and there are
also training and validation sets for machine learning perfor-
mance evaluation. The 126 basins were divided into training
and validation sets for regionalization evaluation. Also, for
estimating GR4J parameters and Q95 reference flows, addi-
tional training and test (or validation) sets were created for
applying random forest regressions.

4 Results

4.1 Performance of the GR4J model

The GR4J model showed acceptable performances for the
sample of 126 watersheds, as shown in Fig. 5, with about
65 % of Paraná watersheds presenting logNSE equal to or
greater than 0.70 during the validation period. Basins located
close to the Paraná coastline reached a lower efficiency when
compared to other regions. Some river basins presented su-
perior performances in the validation period when compared
to the calibration period; however, inverse situations also oc-
cur. These phenomena may be associated with changes or
improvements in measurement techniques, as well as being
influenced by changes in land use and land cover.

4.2 Performance of regionalization methods

The results of each regionalization method are described be-
low.

4.2.1 Physiographic–climatic similarity

The regionalization method by physiographic–climatic sim-
ilarity starts with defining the number K of clusters used to
group the basins. The elbow method indicated that K = 6
was appropriate, which is the point of abrupt slope change

or curve flattening in Fig. 6. Accordingly, the silhouette co-
efficient (Si) was higher when the number of clusters K was
equal to 6, as shown in Fig. 7. After defining K , we used
80 % of the 126 watersheds for training the K-means al-
gorithm, which was used to group similar watersheds. The
remaining 20 % were used to test and evaluate the clusters
formed.

The geospatial distribution of watersheds and clusters
formed by the K-means algorithm can be seen in Fig. 8 for
basins in the training set (Fig. 8a) and validation set (Fig. 8b).
Watershed location per group in the training set was similar
to the basin spatial distribution in the validation set. Addi-
tionally, geographically close basins do not always belong to
the same formed group.

Descriptor distributions for each group in the training set
are shown in boxplots in Fig. 9. Group 4 contains basins with
the largest drainage areas, located in the second and third
plateaus in the centre of the state of Paraná. Group 5 con-
tains basins that have smaller drainage areas when compared
to group 4, but these end up sharing similar characteristics
to catchments in group 4. Groups 2 and 3 have a higher per-
centage of forests, but group 3 has a greater tendency to have
more rainfall, smaller areas, and shorter periods of consec-
utive dry days. On the other hand, group 1 stands out for
containing the basins that have the longest average duration
of consecutive dry days. Finally, group 6 stands out from the
others because it contains basins with the highest percentages
of urban area and, therefore, may be more influenced by an-
thropogenic activities. Although the descriptors point to het-
erogeneities between the formed groups, it is still possible to
see overlaps, mainly in relation to the calibrated parameters
of the GR4J model, as shown in Fig. 10.

Basins from group 2, which are located on both the first
and second plateaus of the state of Paraná, are similar in size
to the basins of group 1 but have a higher percentage of for-
est as a distinct characteristic. Basins of group 3 are found
mainly in the Paraná coastal region, near Serra do Mar, a
long system of mountain ranges and escarpments, where oro-
graphic rain is more likely to occur. Group 5, which is present
in greater quantity, contains hydrographic basins located in
all plateaus of the state.

Looking at parameter distributions (Fig. 10) from a pro-
cess perspective, we can find some relations with the catch-
ment descriptor distributions (Fig. 9). Parameter X1 repre-
sents the runoff-producing capacity of the watershed reser-
voir. Our result shows that group 2, which has a higher
percentage of forests, also has the highest X1 median and
spread. This can support the hypothesis that more forest may
improve the catchment capacity for generating runoff. Pa-
rameter X4 represents the base time of the instantaneous unit
hydrograph. The boxplots show that larger basins (group 4)
have higher X4 parameters; i.e. bigger watershed areas may
increase the base time of a hydrograph. Parameter X3 rep-
resents the propagation reservoir capacity. Our results show
that group 6, which has more urban areas, also has the
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Figure 5. Performance of GR4J model during calibration and validation periods.

Figure 6. Elbow method for training set basins with K ranging
from 1 to 20.

smaller X3 parameter. This reflects the effect of city im-
permeabilization in terms of the flow propagation capacity;
i.e. after a precipitation event, the watersheds with more ur-
ban area have a smaller propagation capacity or a fast re-
sponse in terms of the flow peak.

4.2.2 Simple spatial proximity

The simple spatial proximity regionalization method consid-
ers the fact that the region near the basin of interest is ho-
mogeneous and that it therefore has hydrological similarity.
Assuming this hypothesis to be true, we have used the Haver-
sine distance between pairs of receiving basins (pseudo-
non-monitored) and donor basins (instrumented basins) to

Figure 7. Silhouette coefficients for training set basins withK rang-
ing from 1 to 20.

transfer parameters from the GR4J model. In both methods,
namely physiographic–climatic similarity and simple spatial
proximity, the receiving basins are all catchments within the
validation set, and the possible parameter donor basins are
those from the training set that reached logNSE equal to or
greater than 0.70 during the validation period.

We have allowed more than one donor basin to trans-
fer the GR4J parameters to target basins. When there is
more than one donor catchment, the four parameters of each
donor basin were used to estimate flow in the pseudo-non-
instrumented target basin. Once the flows were simulated
with the donor basin parameters, the averages of modelled
flows were calculated and used for the target basin.
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Figure 8. Clusters produced by the K-mean method for the 100 training basins (a) and 26 validation basins (b).

We compared the ability of both methods (spatial proxim-
ity and physiographic–climatic similarity) to generate good
results in parameter regionalization. For this, we varied the
number of donor catchments from 1 to 10 and evaluated the
median logNSE of the receiving-catchment river flow simu-
lations in the validation period. The analysis to identify the
number of donor basins, shown in Fig. 11, indicates that the
similarity method presented a maximum median logNSE for
a total of one basin, and the proximity method presented bet-
ter results using seven basins as donors.

4.2.3 Regression of GR4J parameters

To train the random forest regression model, known informa-
tion about the watersheds in the training set was used, namely
the descriptive characteristics (independent variables) and
the calibrated parameters of the GR4J model (dependent
variable). The descriptive characteristics that the random for-
est pointed out to be most relevant were the slope of the main
river and the average slope of the basin for parameterX1, the
average altitude and the average radiation in winter for pa-
rameterX2, the average radiation in winter for parameterX3,
and the fraction of Gleissol for parameter X4. These rein-
force that machine learning algorithms perform better with
physiographic–climatic indices as inputs.

4.3 Q95 flow estimation

In order to compare the performance of estimating the
Q95 reference flow between direct (regression) and indi-
rect (regionalization of parameters) techniques, the regres-
sion method of random forest, which was named random for-
est Q95, was applied to directly regionalize Q95 flow.

The construction of the random forest Q95 regression
model used known information about the watersheds in the
training set, namely the watershed descriptor (independent

variables) and the Q95 (in L s−1 km−2), estimated from the
observed historical series (dependent variable). The most
relevant characteristics identified by the random forest Q95
method were days of precipitation with monthly accumu-
lation of 150 mm, basin centroid longitude, basin average
slope, pasture fraction, and forest fraction. Q95 was calcu-
lated, for both observed and simulated flows, using calibra-
tion and validation periods. Thus, at least 15 years of fluvio-
metric records were used to estimate the reference flow.

Correlations between observed Q95 flows and those pre-
dicted by calibration and regionalization methods were cal-
culated. Regionalizations with the highest performances
were obtained by the physiographic–climatic similarity
method, with a correlation (R) of 0.973, and then the random
forest Q95 method, with a correlation of 0.965. Q95 flows
predicted by calibration of the GR4J model had a correla-
tion of 0.9956, the regionalization method based on proxim-
ity had a correlation of 0.9386, and the random forest method
reached a correlation equal to 0.9392.

5 Discussion

In dry periods, the flows of rivers in Paraná are sustained
basically by two mechanisms: baseflow and groundwater
recharge. Even in periods with no precipitation, there can
be movements of water from underground aquifers and sat-
urated soil layers into surface waterbodies, such as rivers,
lakes, or wetlands. All basins studied in this research drain
into the Paraná River, beneath which there resides the
Guarani aquifer, one of the largest sandstone aquifers in
the world (Hirata and Foster, 2021). Karst terrains are also
widespread throughout the Paraná basin, with the Açungui
karst and non-carbonate karsts being the most important ones
(Auler and Farrant, 1996; Vestena and Kobiyama, 2007). The
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Figure 9. Basin descriptor distributions for training set clusters.
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Figure 10. GR4J parameter distribution for basins in training set groups.

Açungui carbonate karst is characterized by large areas of
horizontally bedded limestones and dolomites, which form
extensive regions of little or no relief and are drained by low-
gradient rivers (Auler and Farrant, 1996). Interbasin ground-
water flow may also play an important role in the water bal-

ance during dry periods in karst catchments (Vestena and Ko-
biyama, 2007).

Bartiko et al. (2019) identified that the rainfall season oc-
curs in the months of December, January, and February in the
south of Brazil. The basins under study in the state of Paraná
are in a region of climatic transition, with reasonably well-
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Figure 11. Evaluating the optimal number of donor basins based on logNSE medians during the validation period of receiving-basin simu-
lations. The green and blue lines represent spatial proximity and physiographic–climatic similarity regionalization methods, respectively.

distributed rainfall throughout the year. The region’s sea-
sonality is generally divided between the 6 months centred
around summer, from October to March, which correspond
to the wet period, and the remaining months, from April to
September, which correspond to the dry period. However, the
occurrence of cold fronts, low-pressure areas, and instability
systems during the Brazilian winter can provoke large floods
– even though this is the dry period – and interrupt the reces-
sion process of the hydrographs.

In Appendix C, we show the hydrographs by
physiographic–climatic similarity group. The comparison
of hydrographs separated by groups of similar watersheds
show the seasonality and strength of smaller flow rates. In
these climatic conditions, the predominance of low flows
is expected from April to September. The slow release of
groundwater volumes after the cessation of surface runoff
causes a recession curve that is strongly influenced by river–
aquifer interaction. This curve, which conceptual models
try to capture through simple mathematical relationships,
is influenced by various factors, namely soil properties,
hydraulic characteristics and the extent of aquifers, the
rate and amount of groundwater recharge, evaporation and
evapotranspiration of the basin, and the spatial distribution
of vegetation cover, among others (Musy et al., 2014).

Due to the complexity of hydrological processes and the
specificities existing in the river basins, representing the re-

cession curve and simulating low flows using conceptual
models is an arduous process, sometimes requiring a basin-
by-basin hydrological analysis. Attempts to improve this rep-
resentation in the design of hydrological models have re-
sulted in an increase in parameters, as is the case of tra-
ditional Sacramento Soil Moisture Accounting (SAC-SMA)
model, which uses two conceptual reservoirs to simulate low
flows with an overlay effect that allows us to better capture
low-flow variability for a wider range of river basins (Bur-
nash, 1995). The model applied in our study has an improved
version, the GR6J, dedicated to low flows, which uses two
additional parameters to better represent exchanges between
the river and groundwater (Pushpalatha et al., 2011). In both
cases, a better representation of low flows is achieved at the
cost of increased model degrees of freedom, which is not
ideal for regionalization issues.

In general, the vast majority of basins from the validation
group presented results with logNSE greater than 0.50 for
different regionalization methods, and only two basins within
this group presented low performance. Another general be-
haviour was that basins with logNSE equal to or greater
than 0.77 using calibrated parameters also achieved compa-
rable performances with regionalized parameters. Addition-
ally, in some cases where regionalization methods used more
than one donor basin, they provided a diversified set of pa-
rameters. When combining this set of parameters, GR4J with
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Table 2. Median values of error statistics calculated for validation
period. In bold are the best results for each index among the region-
alization methods.

Efficiency metrics in the validation period

Calibrated Proximity Similarity Random
forest

NSE 0.621 0.635 0.602 0.643
logNSE 0.758 0.702 0.736 0.679
sqrtNSE 0.736 0.707 0.726 0.713

the average of each parameter can result in superior perfor-
mance compared to the use of calibrated parameters in a pe-
riod prior to validation.

Results were evaluated using the Pearson correlation co-
efficient (R), the Nash–Sutcliffe coefficient (NSE), and their
variations: the flow transformed by the square root (sqrtNSE)
and by the logarithm (logNSE). NSE gives more emphasis
to the performance of higher flows, logNSE is more sen-
sitive to low flows, and sqrtNSE provides an intermediate
performance (Oudin et al., 2008). Table 2 shows the me-
dian values of error statistics for estimated flows in the val-
idation period of the 26 watersheds from the validation set.
Among the regionalization methods, values that achieved the
best results for each index are highlighted in bold. Thus,
the physiographic–climatic similarity stands out positively
by reaching logNSE and sqrtNSE equal to 0.736 and 0.726,
respectively. Another point to be highlighted is that the spa-
tial proximity method presents, in general, median results for
the three coefficients. Table 2 also reveals that regionalization
method performances – in particular for proximity and ran-
dom forest – can reach median NSE values equal to or greater
than when parameters were calibrated in a period prior to val-
idation.

The review carried out by Guo et al. (2020) included
the analysis of articles from different regions of the globe,
which were recently published between 2013 and 2019 and
in which the researchers also applied similar regionalization
techniques (proximity, similarity, and regression). The same
authors show evidence that regionalization methods based
on distances (proximity and similarity) generally present su-
perior performances compared to methods based on regres-
sion. The study carried out by Kuentz et al. (2017) in Eu-
rope explored the correlation between 16 different indices
of hydrological-behaviour responses (e.g. baseline flow in-
dex, Q5 and Q95) and 35 physical descriptors (e.g. area,
slope, and aridity index), concluding that there are strong
connections between the physical descriptors and the re-
sponse rates of the hydrological behaviour.

Mohamed et al. (2019) explain that, due to the non-linear
and multidimensional relationship between basin descriptive
characteristics and model parameters, the application of re-
gression methods that use machine learning techniques are

becoming more common to extrapolate hydrological model
parameters. In our study, random forest methods performed
better when the average radiation in winter and the days
of precipitation with monthly accumulation above 150 mm
were used to inform the algorithm, which reveals key vari-
ables required for understanding regionalization techniques
in humid subtropical and hot temperate climates.

6 Conclusions

In this study, three regionalization methods were developed
and deployed with the purpose of estimating daily flows in
basins of the state of Paraná. A set of hydrometeorological
data was created and presented together with catchment de-
scriptive indexes. The amount of collected data is greater
than that of national-level datasets for the region since a
higher density of fluviometric stations was used. GR4J was
employed for 126 watersheds and achieved optimistic perfor-
mances in the validation period (logNSE≥ 0.70) for 65 % of
the watersheds.

All regionalization methods showed positive perfor-
mances. Median values of logNSE in regionalizations were
equal to 0.702, 0.736, and 0.679 for spatial proximity,
physiographic–climatic similarity, and random forest meth-
ods, respectively. When comparing the median NSE between
the three methods, random forest is slightly better. How-
ever, the median sqrtNSE was higher for the physiographic–
climatic similarity method. The regionalization based on
physiographic–climatic similarity proved to be the most ro-
bust method for predicting daily flow andQ95 reference flow.
When increasing the number of donor basins, the method
based on spatial proximity has comparable performance to
the method based on physiographic–climatic similarity.

Based on the physiographic–climatic characteristics of the
basins, it was possible to classify six distinct groups of wa-
tersheds in Paraná. Basins within each group showed sim-
ilarities in their size, urban-area fraction, average duration
of consecutive dry days, number of days with more than
150 mm of precipitation, and forest fraction. Interestingly,
the last two descriptors were also relevant for the random
forestQ95 model. The use of machine learning algorithms to
regionalize streamflow had good performance using climatic
and physiographic indices as inputs. This research represents
a proof of concept that basins without flow monitoring can
have a good approximation of streamflow if physiographic–
climatic information is provided.

Our regionalization study showed that parameters are sen-
sitive to basin physiographic characteristics and soil use, and
this has a direct effect on the streamflow response, i.e. hydro-
graph peak time, hydrograph base time, production capacity,
and propagation capacity. Urban impermeable areas produce
a fast response in terms of the flow peak. Forests play a sig-
nificant role in groundwater recharge and low-flow genera-
tion through various mechanisms: interception and slowing

https://doi.org/10.5194/hess-28-3367-2024 Hydrol. Earth Syst. Sci., 28, 3367–3390, 2024



3382 L. A. Kuana et al.: Regionalization of GR4J model parameters for river flow prediction in Paraná

infiltration, enhancing soil structure and porosity, and reduc-
ing erosion through root system soil stabilization. Overall,
forests act as natural sponges, slowing down the movement
of water, enhancing infiltration, and promoting groundwa-
ter recharge. Protecting and maintaining forest ecosystems is
essential for sustaining groundwater resources and ensuring
water availability for both human and natural systems.

We recommend for future studies the use of stochastic op-
timization techniques for model calibration and the use of
different hydrological models for parameter regionalizations.
In addition, we suggest the estimation of confidence intervals
for the regionalized parameters and the use of regionalization
methods based on geostatistical techniques. Another recom-
mendation is to include flow seasonality indices (Burn et al.,
1997; Parajka et al., 2010) as descriptors to better character-
ize the physiographic–climatic similarity of the basins.

Appendix A: Data availability and
physiographic–climatic indices

Figure A1 shows the availability of data over the years; the
darker the shade of green, the more data. Watershed descrip-
tive characteristics are shown in Table A1. Note that the re-
gion can be classified as having a humid subtropical climate
(Matallo Junior, 2001).
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Table A1. Descriptive statistics for the Paraná dataset.

Descriptors Mean Standard Min 25 % 50 % 75 % Max
deviation

Physiographic indices

Mean altitude of the centroid (m) 743.16 210.64 62.00 611.25 773.50 892.25 1132.00
Area (km2) 4474.15 7001.22 13.87 510.70 1523.48 4120.90 34 440.18
Average height of the basin (m) 804.33 171.96 262.85 666.36 835.74 920.45 1150.88
Average slope of the basin (m m−1) 0.16 0.06 0.06 0.12 0.14 0.18 0.33
Strahler number 6.69 1.29 3.00 6.00 7.00 7.00 9.00
Main river length (m) 185 335.43 164 551.04 7336.06 66 867.87 122 924.13 236 343.96 748 033.70
Drainage density (km km−2) 2.55 1.04 0.72 1.81 2.33 3.28 5.59
Main river slope (m m−1) 0.04 0.02 0.02 0.03 0.03 0.04 0.10

Climatological indices

Coefficient of variation of annual precipitation 0.17 0.02 0.13 0.16 0.17 0.18 0.21
July average temperature (°C) 15.55 0.58 14.56 15.16 15.42 15.98 17.02
January average temperature (°C) 22.96 0.46 22.26 22.56 22.89 23.31 24.07
Precipitation days with monthly accumulation of 10 mm 152.86 17.45 112.79 142.02 151.56 162.55 213.14
Precipitation days with monthly accumulation of 50 mm 146.07 17.55 104.38 133.40 145.44 156.40 208.45
Precipitation days with monthly accumulation of 150 mm 82.84 17.43 51.38 70.54 81.52 93.96 159.12
Annual potential evapotranspiration (mm) 1255.95 78.02 1139.88 1192.19 1243.22 1326.41 1423.14
Average annual precipitation (mm) 1678.61 216.08 1357.26 1511.72 1614.79 1828.01 2618.98
Average solar radiation in winter months (kwh m−2) 3.39 0.15 3.13 3.27 3.39 3.50 3.70
Average solar radiation in summer months (kwh m−2) 5.53 0.19 5.16 5.37 5.54 5.71 5.86
Aridity index 1.34 0.18 0.97 1.24 1.30 1.45 2.02
Average daily precipitation (mm d−1) 4.60 0.59 3.72 4.14 4.42 5.00 7.17
Frequency of days without rain (d yr−1) 208.28 17.94 148.24 197.65 209.87 219.21 249.17
Average length of days without rain (d) 4.54 0.43 3.41 4.29 4.57 4.78 5.71

Land use and land cover

(1) Forest (%) 0.48 0.25 0.06 0.29 0.41 0.71 0.98
(2) Agriculture (%) 0.27 0.21 0.00 0.07 0.26 0.42 0.79
(3) Urban area (%) 0.03 0.07 0.00 0.00 0.01 0.02 0.53
(4) Exposed soil (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(5) Pasture (%) 0.23 0.13 0.01 0.14 0.19 0.29 0.80
(6) Water (%) 0.00 0.01 0.00 0.00 0.00 0.00 0.08
Curve number 77.37 4.68 57.93 75.90 77.88 80.39 87.91

Soil type

(1) Latosol (%) 0.24 0.18 0.00 0.08 0.25 0.35 0.78
(2) Neosol (%) 0.20 0.18 0.00 0.02 0.15 0.33 0.70
(3) Argisol (%) 0.14 0.17 0.00 0.00 0.11 0.21 0.91
(4) Nitosol (%) 0.10 0.13 0.00 0.00 0.04 0.15 0.65
(5) Cambisol (%) 0.20 0.23 0.00 0.02 0.11 0.31 0.95
(6) Gleissol (%) 0.01 0.03 0.00 0.00 0.00 0.02 0.21
(7) Organosol (%) 0.01 0.03 0.00 0.00 0.00 0.00 0.18
(8) Spodosol (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(9) Rocky outcrop (%) 0.02 0.04 0.00 0.00 0.00 0.01 0.27
(10) Urban area (%) 0.01 0.05 0.00 0.00 0.00 0.00 0.43
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Figure A1. Availability of flow data by station. The darker the green colour is, the more data are available for that year.
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Appendix B: Comparison of descriptors

Figure B1 shows the Pearson correlation coefficients be-
tween watershed descriptors.

Figure B1. Pearson correlation coefficients between descriptors.

Appendix C: Hydrographs by physiographic–climatic
similarity group

Below, we show the hydrographs separated by groups
of watersheds with physiographic–climatic similarity. The
hydrographs were produced based on flow records ob-
served from 2009 to 2016, and the y axis was limited to
400 L s−1 km−2 for comparison. Figures C1–C6 show hydro-
graphs from the catchments of groups 1, 2, 3, 4, 5, and 6,
respectively.
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Figure C1. Hydrographs from basins of group 1.

Figure C2. Hydrographs from basins of group 2.

Figure C3. Hydrographs from basins of group 3.
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Figure C4. Hydrographs from basins of group 4.

Figure C5. Hydrographs from basins of group 5.

Figure C6. Hydrographs from basins of group 6.
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