

VideoLat - an Extensible Tool for Multimedia Delay
Measurements

Jack Jansen
CWI: Centrum Wiskunde & Informatica

Science park 123
1098 XG Amsterdam, the Netherlands

+31 20 5924300

Jack.Jansen@cwi.nl

ABSTRACT
When using a videoconferencing system there will always be a
delay from sender to receiver. Such delays affect human
communication, and therefore knowing the delay is a major factor
in judging the expected quality of experience of the conferencing
system. Additionally, for implementors, tuning the system to
reduce delay requires an ability to effectively and easily gather
delay metrics on a potentially wide range of settings. In order to
support this process, we make available a system called videoLat.
VideoLat provides an innovative approach to understand glass-to-
glass video delays and speaker-to-microphone audio delays.
VideoLat can be used as-is to do audio and video roundtrip delays
of black box systems, but by making it available as open source
we want to enable people to extend and modify it for different
scenarios, such as measuring one-way delays or delay of camera
switching.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and Reliability - Performance
Analysis and Design Aids; H.4.3 [Information System
Applications] Communication Applications - Computer
conferencing, teleconferencing, and videoconferencing.

General Terms
Measurement, Performance, Experimentation, Human Factors.

Keywords
Delay measurement; video conferencing.

1. INTRODUCTION
Audio and video playout delays are a fact of life for conferencing
systems and other multimedia processing systems. These delays
are unavoidable: each and every component in a digital
conferencing chain will introduce a non-zero delay, and even in
an ideal world where all processing was instantaneous and all
networks were infinitely fast, there would still be the delays

introduced by time-slotted standards (such as frame rates), and by
the physical distance between sender and receiver and the fact that
the speed of light is finite.

Delays in videoconferencing have a large effect on the way people
communicate [4][5][6] and are an important factor in the quality
of experience of a conferencing system. Therefore, being able to
measure this delay is a first step in evaluating the performance of
a video conferencing system, and possibly optimizing it. Being
able to measure audio and video delays is valuable in a wide range
of scenarios and target audiences, such as

• evaluating closed commercial conferencing systems for their
applicability to a certain use case (end users),

• determining the effect of the latest codec optimizations
implemented (developers),

• comparing network protocol change implications (network
operators).

The current standard way to measure user-perceived delay (as
opposed to measuring only the network or codec delay, which is
only part of the picture) is to presume that audio delay is less - or
less important - than video delay and measure only the latter.
Video delay is then measured by putting sending and receiving
system side by side, capture input and output of the system being
measured in a single shot with an extra camera, augmented by a
timer. The footage of this extra camera is then examined offline,
usually manually, after which the delay is computed. This is
potentially a time-consuming and error-prone process. Xu et al [7]
improve on this by using OCR for the offline matching, but their
system still requires sender and receiver to be physically side by
side. The vDelay [1] and AvCloak [3] tools go a step further and
can do automatic measurements in realtime of a real conferencing
setup, with the latter also measuring audio/video synchronization.
However, neither can be used on turnkey systems, because they
simulate hardware or require screen scraping to do their job. This
method also means these systems do not include all camera and
display delays as perceived by the end user.

In this paper we present videoLat, an open source tool that enables
glass-to-glass video delay measurements, and sound-to-sound
audio delay measurements. VideoLat is open source, and designed
to be extensible, making it adaptable to other multimedia delay
measurements. For example, measuring stream switching delays,
or A/V synchronization requires only a minimal amount of code.

A previous version of videoLat was described in [2] but while the
principle of operation is the same, this version is a completely
modified code base to enable a better user interface, extensibility,
and support for non-visual media (such as audio).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MM '14, November 03 - 07 2014, Orlando, FL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3063-3/14/11…$15.00.
http://dx.doi.org/10.1145/2647868.2654891

2. DESIGN
VideoLat is intended to be the “digital multimeter” for multimedia
delay testing: a tool you pick up to get a quick idea of how a
system performs, from an end user point of view, independent of
the system under test, and easy to use. This has led to a number of
design principles:

• results reported should be as close as possible to user-perceived
delays,

• videoLat itself runs on a dedicated system, not on the system
under test,

• setup and operation should not put much of a burden on the
operator.

The general design is based on videoLat generating images (or
sounds) that are computer-detectable. These are then fed through
the system under test, which should reproduce them (after a delay)
on their output device, from which the videoLat system will pick
them up again. Figure 1 shows how this works for a video delay
measurement: the videoLat display shows a QR-code which the
conferencing camera picks up and transmits. The remote
conferencing camera is pointed at the screen (or at a mirror so it
can see the screen) and transmitted back. Here the videoLat
camera picks it up again and the QR-code detector will trigger
once the previous QR-code transmitted is received. The delay is
computed, and the whole procedure repeated with a new QR-
code. After a large number of measurements the average delay
and standard deviation are computed.

There is one caveat: this delay includes the delay caused by the
internal processing of videoLat itself. Therefore, before doing a
real measurement, the operator should first do a calibration run
with the exact same videoLat system, as shown in figure 2. This
self-delay will then be subtracted from the real measurement.

3. EXAMPLE USE CASE
Doing a video delay measurement of Skype (or any other
conferencing videoconferencing tool) from scratch requires a
MacBook and an external USB webcam, in addition to the
machine used for Skype. Technically a desktop Mac or a builtin
camera work, but then positioning the hardware becomes difficult.
After downloading videoLat via http://www.videolat.org (or
building it as explained in section 5) you do a calibration run by
selecting the New Measurement command and selecting Video
Roundtrip Calibration. Figure 3 show how this setup works in
practice. Builtin help is available on the details. You point the
camera at the videoLat screen and run the calibration, which
shows the running average and standard deviation. Typically you
would do about thousand measurements, but you can watch the
average and standard deviation to guide this.

After you press Stop you see the results of your calibration as
shown in figure 4 and if the distribution looks reasonable you save
the calibration. Practically speaking, the calibration run shown in
figure 4 is less than optimal: ideally the delays of the calibration
run should be close to normally distributed because this will
reduce the impact of measurement system idiosyncrasies on your
real measurement.

You now setup a Skype call, and instruct the remote participant to
either point their camera at their screen (if physically possible) or
use a mirror so the camera can see the Skype window. Locally,
you make sure the Skype camera see the MacBook screen and the
MacBook camera sees the Skype screen. You then run videoLat
again, this time selecting a Video Roundtrip measurement and

System under testSystem under test

Audio
detection

Audio
generation

Measurement
and control

Light
detection

Light
generation

QR code
generation

QR code
detection

videoLat system

Figure 1 - Black Box Measurement

Audio
detection

Audio
generation

Measurement
and control

Light
detection

Light
generation

QR code
generation

QR code
detection

videoLat system

Figure 2 - Calibration Self-measurement

Figure 3 - Calibration setup, picture (a) and screen shot (b)

using the previous calibration measurement as the base. During
the preparation phase you position cameras and screens such that
the QR codes are best visible, and videoLat will determine
whether mirroring is involved and determine an estimated value
for the expected delay.

After running the measurement (which will probably take
considerably longer than the calibration) you get a results display
similar to the one for the calibration. You can also open older
measurements, for comparison, and you can save the
measurement for future reference. You can also export the results
as three CSV files, which can be imported into a spreadsheet or
graphing application for further processing.

4. IMPLEMENTATION
VideoLat only runs on MacOSX, with an iOS version expected in
the near future. The reason for this is that initial experiments
showed that AVFoundation, the Apple media capture framework,
was the only framework that was able to produce timestamped
video frames where the timestamps showed some semblance to
the actual time of grabbing. Because videoLat intends to do user-
perceived measurements this is an important feature:
discrepancies between the actual capture time and the recorded
capture time can skew the results, especially if these discrepancies
are not normally distributed or dependent on some hidden variable
(such as operating system scheduler policy).
VideoLat is structured around a plugin paradigm. For each
measurement type there are four objects that need to be
implemented: a measurement controller, a media generator, a
media grabber and a detector. The controller handles the user
interface of the measurement run (to allow selection of the camera
to use, for example) and drives the other three components to do
successive measurements.

Aside from the QR-code components mentioned previously there
is also a complete set of audio components (generator, recorder,
detector) to do audio delay measurements. In addition there are
video components to do video delay measurements using simple
black or white images (or light/no light conditions) and
components that can generate and detect light/no light using
dedicated arduino or (commercial) LabJack hardware. The video
black/white modules are compatible with the hardware light/no-

light modules, so these can be mixed to do a delay measurement
of only a camera or only a screen.

Beside the measurement functionality there is code to display and
compare measurement results, and to export to CSV-files so the
data can be plotted or analyzed in a spreadsheet or another
external tool.
The core of videoLat is implemented in Objective C, but the APIs
are all available in Python as well, and because Python also has a
good interface to Foundation and other OSX toolkits it is possible
to create new components either in Objective C or Python. C++ is
a third option.

VideoLat uses the open source libraries libzbar [8], libzint [9] and
libpng [10] for QR-code generation and detection, and the freely
available libLabJack [11] when interfacing to that specific
hardware. VideoLat is licensed under the GPL license.

5. BUILDING AND EXTENDING
VideoLat can be built on MacOSX 10.7 or later. To build
videoLat from source go to
http://sourceforge.net/projects/videolat/ and download either the
source tar file or clone the subversion repository. To build without
any modifications open a Terminal window and run
scripts/build.sh which will build videoLat after building
the third-party libraries libzbar and libzint, and possibly warning
you that you need to build libpng yourself (which is included with
some OSX versions but not always). It will tell you where the
application can be found after building.

If you want to extend, modify or debug videoLat you open the
project file videoLat.xcodeproj and build in XCode. The
Debug and Release targets are what you would normally use, the
Distribution target you use if you want to create a signed copy for
distribution (in which case you probably know about all the
Apple-enforced rules for this).

The main APIs to use when extending videoLat are defined and
documented in Protocols.h, and generic base class
implementations for those are available. Detailed documentation
on extending videoLat can be found on http://www.videolat.org.

6. EXTENSION AREAS
VideoLat is made available as open source because we feel there
are many other types of delay measurements that can provide
interesting insights into the operation of conferencing systems that
cannot be handled by a turnkey measurement system. As an
example, if the system under test has an API to switch cameras it
is possible to extend VideoLat so that it emits such an API call.
Then, by pointing the two cameras at different printed QR-codes
videoLat can be used to measure the delay until a human viewer
sees the result of a camera switch.

There are also a number of areas in which videoLat could use
some improvement that are of general application. For example:

• one-way measurements are not supported as well as round-trip
measurements, and some use cases, such as broadcasting,
would benefit from one-way measurements,

• a mobile version (iPhone, iPad) would greatly enhance the
“digital multimeter” role, especially with one-way
measurements,

• audio delay measurements are currently painful because of
audio feedback and echo cancellation and suppression,

• audio/video synchronization measurements as in [3] would be a
great addition.

Figure 4 - Calibration Results

The author would be delighted to cooperate with people interested
in these areas.

7. ACKNOWLEDGEMENTS
This work was supported in part by funding from the European
Community's Seventh Framework Programme (FP7/2007-2013)
Vconect project, under grant agreement no. ICT-2011-287760.

8. REFERENCES
[1] Boyaci, O., Forte, A., Baset, S. and Schulzrinne, H.. vDelay:

A Tool to Measure Capture-to-Display Latency and Frame
Rate. 11th IEEE International Symposium on Multimedia,
2009, pp. 194-200. DOI=10.1109/ISM.2009.46

[2] Jack Jansen and Dick C. A. Bulterman. User-centric video
delay measurements. Proceeding of the 23rd ACM
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV '13). ACM, New
York, NY, USA, 37-42. DOI=10.1145/2460782.2460789

[3] Kryczka, A., Arefin, A. and Nahrstedt, K... AvCloak: A Tool
for Black Box Latency Measurements in Video Conferencing
Applications. IEEE ISM (2013) pp. 271-278.
DOI=10.1109/ISM.2013.52

[4] Claire O'Malley, Steve Langton, Anne Anderson, Gwyneth
Doherty-Sneddon and Vicky Bruce. Comparison of face-to-
face and video-mediated interaction. Interacting with
Computers (1996) vol. 8 (2) pp. 177-192. Elsevier,
Amsterdam, the Netherlands. DOI=10.1016/0953-
5438(96)01027-2

[5] Karen Ruhleder and Brigitte Jordan. Co-constructing non-
mutual realities: Delay-generated trouble in distributed
interaction. Computer Supported Cooperative Work (CSCW)
(2001) vol. 10 (1), pp. 113-138. Springer, Heidelberg,
Germany. DOI=10.1023/A:1011243905593

[6] Jennifer Tam, Elizbeth Carter, Sara Kiesler, and Jessica
Hodgins. 2012. Video increases the perception of naturalness
during remote interactions with latency. In Proceedings of
the 2012 ACM annual conference extended abstracts on
Human Factors in Computing Systems Extended Abstracts
(CHI EA '12). ACM, New York, NY, USA, 2045-2050.
DOI=10.1145/2223656.2223750

[7] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu. 2012.
Video telephony for end-consumers: measurement study of
Google+, iChat, and Skype. In Proceedings of the 2012 ACM
conference on Internet measurement conference (IMC '12).
ACM, New York, NY, USA, 371-384.
DOI=10.1145/2398776.2398816

[8] Zbar bar code reader. URL=http://zbar.sourceforge.net.
Downloaded at 2014-05-18.

[9] Zint Barcode Generator. URL=http://zint.github.io.
Downloaded at 2014-05-18.

[10] Portable Network Graphics. URL=http://www.libpng.org.
Downloaded at 2014-05-18.

[11] LabJack. URL=http://labjack.com/support/software.
Downloaded at 2014-05-18.

