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The Laguerre polynomials Lhal(x) are considered for large values of the degree n. The paper surveys 
results of ERD~LYI (1960), that gives for fixed a;;.O and for xelR as uniformity parameter two asymptotic 
forms: the Bessel function case and the Airy function case. Next, more recent results of BAUMGARTNER 
(1980) and OLVER (1980) for Whittaker functions are inteirpreted for Laguerre polynomials; the parameter a 
can then be considered as a second uniformity parameter. A new method is given for obtaining similar 
asymptotic forms by using integral representations of Lh">(x). 
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Applications, Segovia (Spain), 22-27 September, 1986. 

1. INTRODUCTION 
We consider the Laguerre polynomials 

L~a>(x) = ± [~ ~:] <-xr 
m=O m. 

(1.1) 

for large values of the degree n. A number of writers have dealt with this problem. The earlier investi­
gations are summarized in SzEGO ( 1958). Depending on the value of x, several asymptotic forms are 
given. For x=4n+tl(Vn) an Airy function is used, and it describes the transition of the oscillatory 
to the monotonic region in the x-interval. A more complete description is given by TRICOMI (summar­
ized in [2]). Let 

K = n +(a+ 1)/2. 

Tricomi distinguished four cases: 

(i) x near 0, 
(ii) 0<x<4K, 
(iii) x near 4K, 
(iv) x>4K, 

Hilb's type formula 
osillatory region, 
turning point region 
monotonic region. 

(1.2) 

In (i) a Bessel form is used and it describes the transition of x <0 (a monotonic region) to the oscilla­
tory region. The early zeros of L~"'>(x) can be approximated in terms of zeros of the Bessel function 
J ,,(z). The transition of (ii) to (iv) is described by an Airy asymptotic form. The regions of validity in 
Tricomi's results do not overlap. ERDEL YI (l 960) has given two essentially new asymptotic forms that 
cover the whole real x-axis. This seems to be the state of the art, in September 1986. 

In this paper we summarize Erdelyi's results, and we interprete more recent results of 
BAUMGARTNER (1980) and OLVER (1980) for Whittaker functions to Laguerre polynomials. These 
results allow a to be a second uniformity parameter. Olver's asymptotic form is written in terms of an 
Hermite polynomial. We modify his result in order to obtain a larger uniformity domain for a. 

The asymptotic forms of Erdelyi, Baumgartner and Olver are obtained from differential equations 
(Liouville-Green, WKB-method). We describe a method for obtaining similar expansions from 
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integral representations of L~"l(x). The same method can be used for the more general Laguerre func­
tions, or Whittaker functions. OLVER (1975) mentioned this type of problem as an unsolved problem 
in the asymptotic estimation of special functions. 

2. ERDEL YI'S ASYMPTOTIC FORMS 

Let a,a,b be fixed numbers, a;;;.O, O<a <b < 1, and let v = 41e, where K is given in ( 1.2). 

2.1. Bessel function as approximant 
Let x.;;;;b. Then 

L~")(41ex) = f(n +a+ I) 2-a-+ K-"x-(a+1)12e2Kx(if;h//)+ {la(41Cif;)+E:/K}, 
n! 

as n-H~, where 

if.i(x) = +i["Vx 2 -x -arcsinhv=:;], x.;;;;O, 

= +[Vx -x 2 +arcsinVx], O.;;;;x<I. 

The prime in if.i' denotes differentation with respect to x; E: in (2.1) is estimated by means of 

E: = B{Vixl/(l-x)la(4K.P)}, as _!_ Vixif(l-x).....:,Q, 
n 

-

(2.1) 

uniformly with respect to xE(-oo,b]. The function J,,(z) is defined by: let o be a fixed positive 
number so that J ,,(z)=;;z!=O when O<lzJ.;;;;o and a;;;.O; then 

J ,,(z) = J ,,(z) if z is imaginary or Q.;;;;z .;;;;8, 
I 

= {IJ ,,(z)i2 +I Ya(z)i2 } 2 , if z >o. 

2.2. Airy function as approximant 
Let x;;;.a, then 

L~a)(4KX) = ~ y' _ 77-/cp' 2516,! + 1!6(xv)-(a+ 1)12e2"x -" {Ai(-v2/3cp) +E: }, (2.2) 
n. 

as n.....:,oo, where 

cp(x) = [3,B(x )/2]213 , O<x.;;;; 1, 

= -[3y(x )/2]213 , x;;;. J, 

/3(x) = i11-if,i(x)=+[arccosVx -Vx -x2 ], 

y(x) = +[Vx 2 -x -arccoshVx]. 

The error E: in (2.2) is estimated by means of 

l -
E: = '9[-Ai(-v213 cj>)] as n.....:,oo, 

llX 

uniformly with respect to xE[a,oo). The function Ai(z) is defined by 
-
Ai(z) = Ai(z) if z ;;;.o, 

I 

= {IAi(z)i2 +IBi(z)i2} 2 , if z<O. 
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K = n+(a+l)/2, T = a/(2K), /J = 4K, b = 2e- 112 (l+T)(l+T)/4T(l-TiT-l)/4T, (3.1) 

and let x 1,x 2 be the zeros of 

I + . R = jx2-x+4~I-' (3.2) 

that is 

J_ - J_ \!"17 x 2 2 2 , (3.3) 

Then 

(3.4) 

as n-HXJ, uniformly with respect to 'TE[0,T0 ] and x E[0,x0x 2], where T0 ,x0 are fixed numbers in (0,1). 
A bound for lei in (3.4) is available, and also error estimates in terms of ti-symbols. Our notation is 
slightly different from Baumgartner's notation. The relation between x and ~ is as follows. 

If O~x~x 1 , O<T<l, we have 0~~~~ and 

{ l-2x-2R} {TR-x++~ l 
- 2R + ln \!"17 +Tin \!"17 I- Tlnx 

=2Tln{T+ ~}-Tln~-2~. 

If x 1 o;;;;x<x 2 , O<T<I, we have~~~ and 
I 

x--~ 
l -2x 2 'TT 

2R - arcsin _ c---1 - T arcsin _ r.--:;- + -( 1 - T) = 
Vl-~ x VI-~ 2 

= 2 ~ -2Tarctan V~/~ -1. 

(3.5) 

(3.6) 

At the turning point x =x 1 (~=~),the argument of the Bessel function in (3.4) equals 2KT=a. When 
a is large the Bessel function then describes the transition of the monotonic region (x <x 1) to the 
oscillatory region (x 1<x<x2). When in J,,(az) order and argument are nearly equal (z"-'l), Airy 
functions can be used to describe the asymptotic behaviour for a-'>OO. 

Baumgartner has not interpreted his result for negative x-values. When we replace in (3.5) Tlnx, 
Tin~ with Tln(-x), Tin(-~), respectively, we can use (3.5) also for x<O, where ~<0. The Bessel func­
tion in (3.4) becomes a modified Bessel function if ~<0. 

The uniformity domain for a follows from 0~T~T0 , i.e., 

0 ~ a ~T 
2n+a+I 0 ' 

TQ 
or O~a~--(2n+I). 

1 -70 

In other words: O~a~aon, where a0 is any fixed positive number. 

(3.7) 
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4. 0LVER'S (MODIFIED) ASYMPTOTIC FORM 

Since in OLVER (1980) the analogue of a plays the part of the large parameter, we modify Olver's 
result to obtain a more appropriate form for Laguerre polynomials. The relation between Laguerre 
polynomials and Whittaker functions is 

(a) _ i=..!.L_ -+(a+l) fz _ f(a+n+l) -+(a+l) +z (4.l) 
Ln (z) - z e W,q,(z)- r z e MK,,(z), 

· n ! · n ! (a+ 1) · 

with K as in (3.1) and µ.=a.12. 
The change of parameters in Olver's paper (§2) is r-tv;, x-Tx/4. We repeat the basic steps in 

Olver's method in terms of our choice of parameters. 
The functions MK,µ.(z), WK,µ.(z) are solutions of Whittaker's equation 

!b:_ - {_!_-~ µ.2-+1 
2 - 4 + 2 ry(z ). 

dz z z J 

A first transformation z =4Kx enables us to write 

d 2 w _ { 2 4(x -xi)(x -x2) __ !_} 
2 - K 2 2 w(x), 

dx x 4x 

where x 1,x 2 are given in (3.3), with solutions MK,µ.(4KX), WK,µ.(4Kx). 

(4.2) 

We consider K as the large parameter, .x and r=µ. / K=a / (2K) as uniformity parameters, x E(O, oo ), 

rE(O, I]. Baumgartner has used (4.2) to obtain the Bessel asymptotic form. We apply the Liouville­
Green transformation to (4.2) by introducing 11=11(x) and W(11) by writing 

w(x) = ~ jd;-W(1J), (r,2- p2) [!!.!1]2 4(x - x i)(x - X2) (4.3) 
V d:;; dx x 2 

where p is the non-negative number defined by 

Evaluation of the integrals yields 

p = V2(l-T). 

The relation between 7J and x is one-to-one, with 

'IJ(O)=-oo, 11(xi)=-p, 11(x2)=p, 11(+00)=+00. 

(4.4) 

(4.5) 

Solving the differential equation for 'IJ in ( 4.3) with the above boundary conditions, we obtain the fol­
lowing relations. Let O<T< l and let R be given by (3.2). 

(i) P~11<00, x2~x<oo: 

7JY112 -p2 -p2arccosh21. = 4R-27ln{ 2x-~- 27R}-21n{ 2R+ 2x-l }; (4.6) 
P 2x Vl=1 Vl=1 

x-J_~ 
71Vp2 -112 +p2arcsin21. = 4R -27arctan 2 

P 'TR 

(iii) -00<11~-p, 0<x~x 1 : 

l-2x 
- 2arctan--- · 

2R ' 
(4.7) 
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-'T)Vp2-'T)2 -p2arccosh-=:!2.;::: -4R +2Tln{r2- 2x +1rR }+21n{ l-2x- 2R}. (4.8) 
P 2x~ ~ 

If T= 1 we have 

~ 'IJ2 = 2x-ln(2x)- l, sign('T/) = sign(x -f). 
The differential equation (4.2) transforms into 

d 1 W 
dri2 = { K2('1)2 - p2)+1fi(p2' ri)} W('I)) 

in which 
• 2 I 2 I 

x +. T d (. -2), --- x -- x x 
4x 2 d'l)2 

As in Olver's paper, it can be shown that 

i/;(p2 ,'I)) = 0{1/(ri2 +1)}, 'l)EIR, 

with rE(O, 1). 

dx -;;;; , 

(4.9) 

(4.10) 

The above results can be interpreted for r> 1, but for the Laguerre polynomial these values do not 
make sense. 

From Olver's theory it follows that the Whittaker function w •. µ(z) can be written as 
__L __L I K(l - __L p' ) 

W<.µ(4KX) = (2K) 4 X 2 (2e- 1K(l-4p2)j 4 

2_ 2 I _ ~ 
·{ 'I) pi }l/4{U(-2KP2,'l)V2K)+t:}, 

x2-x+4r2 
(4.11) 

in which U(a,z) is a parabolic cylinder function. The remainder t: is, in some sense, small when 
K~oo, x E(O, oo ), rE(O, l]. From Olver's theory an upper bound for lt:I can be constructed. 

By using ( 4.1) it follows that for the Laguerre polynomials the quantity - 112Kp2 in the U-function 
in (4.11) can be written as (see (3.1), (4.4)) - l/2Kp2 = -(K-µ)= -n -112. Hence, the parabolic 
cylinder function reduces to a Hermite polynomial: 

I -+n --!-z 2 _ r;:: 
U(-n-2,z)=Dn(z)=e - e Hn(z!v2), ( 4.12) 

where D .(z) is another notation for parabolic cylinder functions. 
By combining ( 4.1 ), ( 4.11 ), it follows that 

L~")(4Kx) = i=.11'.._2-a-2n-4 K-2a-4 2 X -2a 
1 .i 1 1 [n+a+l..ln+a++ 1 

n! e 

• { T/2 _ p2 } f /"x -+.-ri' { Hn('IJy';) +€}, 
x 2 -x +l..r2 4 

(4.13) 

where rand K are given in (3.1), pin (4.4) and µ=a/2. This form can be viewed as an 4asymptotic 
estimate with K as the large parameter. It holds for x E(O, oo), TE(O, 1). 

The latter gives for a the condition 



6 

0< 2 +~+ <l, n a 

which is indeed satisfied for all aE(O,oo). 
We cannot claim that (4.13) holds uniformly in the (x,T)-domain [O,oo)X(O, l], that is, inclusive the 

origen in both intervals. The reason is that for ,.._...o the mapping x-11(x) tends to a limit mapping in 
a non-uniform way. For instance, ,.=o gives in (3.3) x 1 =O, and in (4.5) 17(0)= -oo, as well as 
17(0) = - V2. However, ,. ...... o is allowed as long as x is bounded away from x i. x > x 1. 

A safe condition is to exclude in the (x,T) domain a small rectangle (O,xo]X(O,To], where Xo,To are 
arbitrarily small fixed positive numbers. . 

Recall that Baumgartner's result (3.4) is valid for x bounded away from x 2 (x <x2) and for a satis­
fying (3.7). It follows that (3.4) and (4.13) describe the asymptotic behaviour of L~"\4icx) in overlap­
ping domains of the (a,x) quarter plane (0, oo) X (0, oo ). 

Olver's asymptotic estimate of the Whittaker function WK,µ.(z) also yields (4.13) after reparametriza­
tion. He shows that his result is valid for a ...... oo, uniformly with respect to x E[O, oo) and n E[O,noa], 
where n 0 is positive and fixed. It follows that in (4.13) these conditions can be used also. 

The asymptotic estimate (4.13) has the Hermite polynomial as approximant. This polynomial has 
the same number of zeros as L~")(4icx) itself. The zeros of L~"l(4icx) occur in the region x 1 <x<x2. 
Let fn~l,,,,hn.m be the m-th zeros of L~"l(z),Hn(z), m = 1,2, · · · ,n. For given a and n, we can compute· 

m = 1,2, · · · ,n (4.14) 

with ic defined in (3.1). Upon inverting (4.7) we can obtain xn.m• giving the estimate 

!~~~ ,..._, 4icxn.m• m = 1,2, · · · ,n. (4.15) 

From asymptotic expansions of Hermite polynomials (see, for instance, SKOVGAARD ( 1959)) it follows 
that hn. 0 , hn,n have the asymptotic estimate 

-hn.O = hn,n = &+! -E(n) 

where Eis a positive function of n, E(n)='9(n- 116 ), as n ...... oo. It follows that the numbers 1Jn,m of 
(4.14) belong to the interval [-p,p], when n is large, a;;;;.:O . 

. The estimate (4.15) is valid for n-oo, uniformly with respect to mE{l,2, · · · ,n} and a;;;;.O. 

a 0 1 5 10 25 50 75 100 
m 

1 1.7 2.3 3.2 3.7 4.4 5.0 5.3 5.6 
2 2.4 2.7 3.4 3.8 4.5 5.0 5.4 5.6 
3 2.8 3.0 3.5 3.9 4.5 5.1 5.4 5.6 
4 3.0 3.2 3.6 4.0 4.6 5.1 5.4 5.7 
5 3.2 3.4 3.8 4.1 4.6 5.1 5.5 5.7 
6 3.4 3.5 3.9 4.2 4.7 5.2 5.5 5.7 
7 3.5 3.6 4.0 4.2 4.7 5.2 5.5 5.8 
8 3.7 3.8 4.1 4.3 4.8 5.3 5.6 5.8 
9 3.8 3.9 4.1 4.4 4.9 5.3 5.6 5.8 
10 3.9 4.0 4.2 4.5 4.9 5.4 5.6 5.8 

TABLE 4.1 Correct decimal digits in the approximations of zeros of L~';}(x). 

In Table 4.1 we show for n = JO the "correct number of decimal digits" in the approximation 
(4.15). That is, we show 

l)"J [<>) 
JO log ,m - 10,m 

l\"Jm 
m=l, .. -,10 
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where ~~~ is the approximation obtained by the procedure described in ( 4.14), ( 4.15). It follows that 
the large zeros are better approximated than the small zeros. Furthermore, large values of a give 
better approximations, and the approximations are quite uniform with respect to m. 

The asymptotic representation (4.13) of L~al(z) in terms of the Hermite polynomial seems to be 
new. In [5, p. 251] the limit 

(4.16) 

is given, without reference to a source. We verify this relation by using special values of the parame­
ters in (4.13). When a is large with respect ton, we have r~l. In the limit r= l, the relation between 
T/ and x is given by (4.9), and p=O. So we have if a>>n 

[ 

I l(n+a+'h)/2 
i 1 n+a+-

L~a)(4icx),....., 1=.!.L 2-a-'hn-4 K -•,t,a-4 2 
n! e 

R(2ex )" Hn(T/-v;;). 

Writing 4icx =a+t Va, we observe that x~l/2. In this limit, T/ can be replaced with x -112. A few 
further calculations give indeed ( 4.16). It is valid for fixed values of t and n, although ( 4.16) can be 
replaced with an asymptotic relation in which t=o(Va), n=o(a), as a~oo. 

5. ASYMPTOTIC METHODS BASED ON INTEGRAL REPRESENTATIONS 

In this section we show how asymptotic forms like (3.4) and (4.13) can be obtained by using integral 
representations of L~al(x ). This approach is not discussed earlier in the literature, and it deserves a 
more detailed analysis than we can give in the present paper. A completely different method now 
produces the relations between ~ and x (in § 3) or between T/ and x (in § 4). 

The generating series 
00 

:LL~a)(z)tn = (l-t)-a-lezrl(r-1), \t\<1 
n =O 

yields the Cauchy type integral 

L~a>(z) = _21 _Jezr!(t-1\1-t)-a-lt-n-ldt, 
1Tl 

where the contour is a small circle around t =O. 

5.1. Bessel asymptotic form 
The transformation t = 1-s gives for (5.1) 

4KX (Q+) ds 
L~a}(4icx) = ~ J e"<l>(s) ' 

2m -oo s~ 
where 

-4x 1-s 
~s) = -- +rln-- -ln(l-s); 

s s1 

(5.1) 

(5.2) 

" and T are given in (3.1 ). Initially, the contour in (5.2) is a small circle around s = 1. In (5.2) this 
circle is deformed and the new contour runs from s = - oo (phases= -77) to s = -oo (phases =77) 
and it encircles the origen counter-clockwise, cutting the real axis between 0 and 1. We introduce 
branch cuts from 1 to + oo, and from 0 to - oo, although the integrand in (5.2) has only a pole at 

I 
l 
j 
I 
il 

I 
I 
I 
I 
i 
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s=O. 
The saddle points of cp(s) are defined by tf>'(s)=O, giving 

r+2x -2 yx2 -x +fr2 r+2x +2 yf x2 -x +i-? 
SJ = ' S2 = 

r+l r+l 
(5.3) 

The saddle points coincide when x =x 1 or x =x 2, where X; are given in (3.3). As in § 3 we assume 
that Oo;;;;r<l, x<x 2• When x=x 1 the saddle points are 

s 1 = s2 = 1- V(l -r) / (1 +r) . (5.4) 

When T is small this value is small. At s =O the integrand of (5.2) has an essential singularity, com­
bined with an algebraic singularity. Also, when X-'>0 and T-'>0 both s"s2 approach s =O. In the 
same sense these phenomena occur in the integral representation of the Bessel function 

If 12 (0+) dt 
J p(2tel/i) = --. J el<l/l(r)_ • (5.5) 

2m t -oo 

with 

if;(t) = t -g!t-2alnt, 2a=f3/te. (5.6) 

Saddle points are 

11 = a-Vu2-g, t2 =a+~. (5.7) 

For O<x<xi. the graphs of ip(s), if;(t) on (0,1), (O,ao), respectively are shown in Fig. 5.1. If x<x 1 

the saddle points s2,t2 are used for a saddle point contour; when x 1 o;;;;x<x 2 both saddle points si.s 2 

and t 1 ,t 2 are used. 

,/'""\. 
I \ 

l \ 
,• \ 
I \ 
I '1 

I I 

V' 
FIGURE 5.1. Graphs of cp(s), i/;(t); O<s <l, O<t <oo. 

Fors E(O, I), te(O, ao) we define the mapping s-'>t(s), by writing 

cp(s) = if;(t)+A (5.8) 

where A and g, a of (5.6) are to be determined. The mapping is one-to-one when we prescribe the 
corresponding points 

s=O~t=O, s=s;~t=t; (i=l,2), s=l~t=+oo. 
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In order to use this mapping for transforming (5.2) to (5.5) we need the analytic continuation of the 
mapping (5.8) to complex s and t-values, Also, to use values of x near x 1 and x-o, T-0, a more 
detailed analysis is needed, which will not be given here. 

For a uniform representation of L~a)(z) in terms of the Bessel function, we require that the mapping 
s-t(s) is analytic at s =O, t =O. The cancellation of singularities -4x/s in #_s) and -~It in tf;(t) is 
possible if an only if s-(4xl~)t as 1-0. To make the mapping single valued at t =O, the log-terms Ins 
and lnt should have the same multiplying constants. This determines the value a in (5.6): a=T. 

The value~ in (5.6) follows from 

<fl<:s1)-<fl<:s2) = t/;(t1)-l/,{h), 

giving (3,5), (3,6). Finally, the value A in (5.8) is given by t/;(s;)-iP(t;) (i = 1 or 2), giving 
I I 

A = -7-2x +1(1 +T)ln(l +T)-2(1-T)ln(l-T)+rln(~l4x). 

We proceed without a detailed discussion of the mapping (5.8). We obtain for (5.2) 

where 

(0+) 
e4KX +KA dt 

L~a)(4icx) = j e"•it<J)j (t)-t ' 
2'1Ti 

-oo 

f (t) = Ji-=; dsdt = 
s 1-s 

s~ (t -t1)U-t2) 

('T+ l)t (s -si)(s -s2> 

(5.9) 

(5.10) 

In (5.6), (5.7) the value a equals T=al(2ic). When O~x<x1> t2 is the dominant saddle point in (5.9). 
A first approximation is obtained by replacing f (t) with 

l_r,::; i2-t ..L 
f(t2)=2v2{ "'1 }•, 

x2-x +4~ 

which value follows from (5.10) by using l'Hopital's rule. 
We obtain 

L~a)(4i.:x) ........ e4"x+KA~-a12f(t2)./a(2KV'i) 

(confer (3.4)), with 

= Cf(n +a+ 1) (bK)-aX-(a+l)/2e2icx(~/ n+ J a(2KV'i) 
n! 

C - (.l b2)a n ! = 1 +!9(ic-1), 
- 2 " f(n +a+l) 

(5.11) 

as ic-oo, uniformly with respect to 'TE[0,'T0 ], To a fixed number in (0,1). 
More terms in the asymptotic estimate of L~a>(z) can be obtained by using an integration by parts 

procedure. For a similar approach, see [10, §6]. Write 

I (t-t1)(t-t2) 
f (t) = c0 + 2d0(t -~It)+ t g(t) 

with 

(5.12) 

Then (5.9) can be written as 

L~a)(4icx) = e 4KX +KAca/2 { coJ a(2icV'f )+ V'f dol'a(2i.:V'f )+S} (5.13) 

where 
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8 = ~ /eiaf{r) (t - t' )(t -t2) g(t)dt = ~1.2 jg(t)deiaf{t) = ~ ff1 {t)eiaf{r) dt 
2'1Tl t 2 2'1Tl IC 2'1Tl IC t 

with/1{t)= -tg'(t). Repeating this procedure we obtain the formal expansion 

L~a)(41Cx) "' e4a +KACa12 {J a(2K~) ~ C3 1C-s + ~J a'(2ic~) ~ d5 1C-s }. (5.14) 
s =O s =O 

The coefficients c3 ,d5 follow from (5.12) and 

_ I _ ..!.. (t-t,)(t -t2) 
fs(t) - - tg s-1 (t)-C3 + 2 d9(t -~It)+ g.(t), S ~ 1, 

t 

where /o = f, go= g. Observe that in (5.13) 8 is a remainder. Each step in the integration by parts pro­
cedure gives a new remainder 83 , say. Since j(t1)=/(t2), d0 =0 and 8 in (5.13) satisfies Cc08=E, 
where Eis the remainder in (3.4); C,c0 are given in (5.11), (5.12). 

5.2. Hermite polynomial as approximant 
The transformation t =(s -1) / (s + 1) gives for (5.1) 

( -l)n+I2-ae2u (!+) ds 
L~a>(41CX) = - - J ed>(s)_.,== 

2wi +oo ~ 
(5.15) 

where 

2 l+s <P(s) = -2xs+rln(l-s )+ln--; 
1-s 

(5.16) 

"and Tare given in (3.1). We define a branch cut from 1 to +oo for the multi-valued functions in 
4>(s ), although the point s = 1 is only a pole of the integrand in (5.15). The saddle points of <P(s) are 

St= (5.17) 
x 

When TE(O, 1) and x is large, we have 

1 + T+ 1 +Jc.( -2) 
S1 = - ~ vX , 

When x crosses the turning point x 2 from above, the saddle points collide and become complex at 

S1 = S2 =7/(l + v'l=;2). 

When x decreases further the saddle points turn around s =l, they collide (when x =x 1) at 

S1 = S2 =(l + v'l=;2)/or, 

and they become real with values in ( 1, oo ). When T is close to unity ( T< 1 ), the collisions occur near 
s = l, a singular point of 4>(s), but in fact a pole of order n + 1 of the integrand of (5.15). 

We give a representation of the parabolic cylinder function showing similar asymptotic phenomena. 
We have (see (1, p. 687)) 

(5.18) 

·where 
1 

i'(t) = -t2 +271t-2p21nt. (5.19) 

The saddle points are 
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t = J...'l'I _ 1.. v' .,.,2 - p2 t = 1...,., + 1.. v' '1'12 - p2 I 2 ., 2 '1 ' 2 2 ., 2 '1 ' 
(5.20) 

It is easily verified that the behaviour of t1>t 2 is quite similar to that of si.s 2• When '11 crosses the 
turning points + p and when p is small, the interesting area in the t-plane is the neighborhood of 
t =O. In Fig. 5.2 we sketch the paths of steepest descent for the three different situations. In the 

-1 

-1 

-1 

-------+­______ 

52 ---..! 
---------+-----

------+------ --.. 

------+------

12 

-- t 
2 

·------'----+---

t1 
-----+-....._--+----

....... _ ----
/_,.,.---

.,, < - r 

FIGURE 5.2. Steepest descent curves in s and t plane 

third situation (O<x <x 1) the contributions from s 1 to + oo (on both sides of the cut) cancel, since 
for Laguerre polynomials s = I is a pole. The same conclusion holds for the t-plane when 
(1 +1ep2)/2=n, a positive integer. Ifs= 1 (t =O) is indeed an algebraic singularity, the saddle point 
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s =s 2 (t =ti) gives an important contribution. This change in behaviour is typical for U(-a -1/2,z) 
when a crosses non-negative integer values and - z is a large positive number. 

Now we define the mapping s-t(s) by writing 

IP(s) = 'l'(t)+B (5.21) 

with corresponding points t(-1)= +oo, t(s 1)=t2, t(s 2)=t1> t(l)=O. To obtain a mapping that is 
analytic at s = 1, we must have l/2p2 =1-T, see (4.4). The value 1/ in (5.19) is computed by eliminat­
ing B in (5.21): tP(si)-tP(s 2)='1'(t2)-'1'(t 1). Finally, B follows from B =IP(s 1)-i'(t2), giving 
B = - l/2(T+ 1)-Tln.x + l/2(T+ l)ln(T+ 1) -112112 - l/2(1-T)ln2. 

Again, a more detailed discussion of the mapping (5.21) is needed to show that the transformation 
of (5.15) to an integral of type (5.18) is well defined. We only give the result 

where 

Yr ds 
h(t) = ~di 

-~ (t-t1)(t-t2) 

xvt (s-si)(s-s2) 

with s;,t; given in (5.17), (5.20). At the saddle point t 1 the value of h is 
I 2 2 I 

h(ti) = -2-J2{ 1/ -p I }'. 
x 2 -x+-~ 

4 

A first approximation now reads 

(- lt + 12-aK'/2e2u +icB 
L~a)(4KX) ~ - 1 h(t1)Hn(1/v;;), 

n. 

(5.22) 

which is exactly the estimate in (4.13). More terms follows from an integration by parts procedure. 
Write 

h(t) = Yo+80t+(t-ti)(t -t 2)g(t), 

with 

t1h(t2)-t2h(t1) h(ti)-h(t2) 
Yo = ------ ' 80 = -----

t1 -t2 t1 -t2 
(5.23) 

It follows that 

(-l)n+12-ae2•x+.BK'l2 80 -
L~a)(4Kx) = 1 (yoHn(1/v;;)+ . / H/(1/-v,;)+8], 

n. 2VK 

- n '"-nlZ dt I . r d . r 
8 = 2 . J e""'(1>h 1(t) _ r ' h 1{t) = 2 vt-d [ vrg(t)]. 

v~ Vt t 

Since h(ti)=h(t2), 80 =0, and Bis the same as E in (4.13). Continuing the above procedure, we 
obtain the formal expansion 

(-l)n+12-aK'/2e2"x+icB co 1 oo 
L~a)(4Kx)~ 1 {Hn(1/\[;)~YsK-s+ _ 1 Hn'('rly;;)~8sK-s}. 

n. s=O 2VK s=O 

The coefficients follow from (5.23) and 

hs(t) = f vt :i [Ytgs-1(t)]=ys +8st +(t -ti)(t -t2)g.(t), s;;;o 1, 

where ho =h, go =g. 
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