HBase Tier Based Compaction

by Akashnil Dutta

1. Overview

The goal of the compaction selection algorithm is to schedule compactions efficiently. The
current algorithm takes a set of candidate files as input, and produces a subset as output. If
there is no eligible compactions, the output set can be empty. The candidate set is made of all
the files in one region which are not already scheduled for another compaction.

Each file has a special property, called 'sequence id' which indicates the relative recentness
of the data in them. Smaller sequence ID implies an older file and vice versa. One additional
constraint on the compaction algorithm is that the output subset must have a consecutive

range according to sequence ID.*

<- Older Files Newer Files ->
Candidate
Files
/. 7 J J 7 s J J
Sequence ID 5 7 15 21 27 28 29 30

It is expected that older files are larger, however this is not a requirement. For convenience,
the files are kept sorted according to sequencelD. Suppose there are n candidate files, {f[0],
f[1], ..., f[n-1] from oldest to newest. the algorithm selects a range, [start, end), which
specifies the compaction selection {f[start], f[start+1], .., flend-1]}. It is important to have

only contiguous sub-sequence of files in a compaction selection because we must maintain a
total ordering of the store-files according to recentness, which is used to optimize query
performance. Whenever an entry is found in a store-file, we don't need to read any older
store-files, because the most recent one must contain the most recent version.

2. Default Compaction Algorithm

The default algorithm always selects a subset consisting of the most recent k files, i.e. in this
case end = n always. It picks the smallest value of start which satisfies the following
condition:

Here ratio is a configurable constant. The default value is usually close to 1.0. Higher values
result in more aggressive compactions which keeps the store-file count low but increases the
amount of IOPs consumed by compactions.

Suppose the file sizes are given by [1200, 500, 150, 80, 50, 25, 12, 10]. Assume that ratio =
1.0 In this case the subset with the last 6 files are selected, i.e. selection = [150, 80, 50, 20, 12,
10]

<- Older Files Newer Files ->

Candidate
Files
4 v v . v v
Serial no. 0 1 2 3 4 5 6 7
Size 1200 500 150 80 50 25 12 10

If the candidate sizes are [1200, 500, 150, 80, 25, 10], then there is no admissible
compactions. Additionally there are several other criteria apart from the ratio test, that
needs to be considered for an eligible compaction, which use more configurable parameters.

A selection must have a minimum number of files to be eligible.

2. If there is more than a threshold number of files, it is shortened to a smaller one, with
upper-bound number of files.

3. Nofile larger than a threshold is included in any compactions.
All files smaller than a threshold is included without the ratio test.

5. Bulk load files are never included in compaction, if configured in that way etc.

3. Tier Based algorithm

The motivation for the tier based algorithm is to provide more fine-grained control, while
retaining the efficiency. In the default algorithm, the aggressiveness of the algorithm depends
on a single parameter, the ratio. there is no way to control it for different files. In case of the
new algorithm, it is possible to set different parameters for different groups of files (based on
time-range or size). Old files less likely to be accessed can be given a smaller priority. It is
possible to stop compactions for very recent files if cache-on-write is enabled. During every
compaction-selection, all the files are assigned to a few different tiers. Next we apply the

same ratio test for each tier, although with different parameter-values. By default, a
compaction selection consists of files from a single tier only. Under special circumstances,
there is room for exception (configurable).

3.1 Tier Assignment

There are two ways of categorizing files into tiers. The first one is age-based and the second
one is size based.

3.1.1 Age based

In case of default algorithm, we needed only two pieces of information for each file, the
sequencelD and the size, for each storefile. For age based assignment, we need to use a time-
stamp for the data present in a file. We do not use the use-case specific time-stamps for this
purpose, since that can be unreliable. Instead, we add a new metadata field for the minimum
flush time for all the data present in a file. In case of a flush file, this value is the time when
the file is written to disk. In case of a compacted file, this value is the minimum of the flush-
times of its member files. Each tier has a configurable time range. The files are assigned
according to this time stamp.

<- Older Files Newer Files ->
Level 2 Level 1 Level 0
maxAgelnDisk INF 100 40
Candidate
Files
J J J / J J J J

Serial no. 0 1 2 3 5 6 7
agelnDisk - - 150 80 50 25 12 10

Note: minimum flush time should be strictly increasing with sequence ID. This is a pre-
condition for tier assignment. When some of the files don't have minFlushTime field, they are
assigned to the highest assigned tier. It is recommended to not use age based tier assignment

immediately following the update to new version, until all files have minFlushTime field, so
that files contain the flush time field, before turning on tier based algorithm with timed tier
assignment. (See below for online configuration updating)

3.1.2 Size base

Since the file sizes are already available, they can be assigned to tiers according to size ranges.
However, tiers must contain consecutive files according to sequence ID. Hence, we make sure
that older files always go to higher tiers even if they have smaller size than tier-requirements.

<- Older Files Newer Files ->
Level 2 Level 1 Level O
maxSize INF 50 30
Candidate
Files
J /. J J J J J 4

In this example, f[3].size < tier[0].maxSize. However, since f[4].size>tier[0].maxSize, f[3] is
assigned to tier[1].

3.2 Compaction Selection

Following the tier assignment, we execute the default selection criteria on each tier, until an
admissible selection is found. Suppose tier[i] has files f[u],f[u+1],...f[v-1]. Then for each
pair [start, end) = [i,v) will be tried for i = u,u+1,..,v-1. Every such [start, end) pair will be
checked using the ratio test and other criteria until an admissible selection is found. The

order of traversing the tiers is configurable. By default it is set as lower to higher tier. This
order can be flipped by setting a Boolean parameter.

For example, consider the tier assignment from the last example. Suppose the ratio for tier
0,1,2 is respectively 0.5,0.5,1.0. Ignore all other checks other than the ratio test. In that case,
compactions are admissible in tiers 1 and 2 both. By default, the more recent tier will be
selected, i.e., the selection [start, end) = [3, 5) consisting of {f[3], f[4]}.

<- Older Files Newer Files ->

Level 2 Level 1 Level O
maxSize INF 50 30
Candidate
Files

J J J J J J J J
Serial no. 0 1 2 3 4 5 6 7
Size 100 80 45 15 35 20 25 10

If the ratio are 1.0,0.4,0.0 for tiers 0,1,2, then selection is admissible in tier 0 only, given
by [start, end) = [5,8) consisting of files {f[5], f[6], {[7]}

3.3 Setting parameters

All of the compaction parameters should be located in the file hbase-compactions.xml

The set of all parameters can be different for different column families too. For example, It is
possible to use the default algorithm on one column family, the tier based algorithm with one
set of parameters for another, and a different set of parameters on a third one. The general
template for each parameter is of the form

"hbase.hstore.compaction.$schema.$attribute"

The schema can be specified in the form "tbl.$TableName.cf.$FamilyName" or as the
string "default". If the settings for some column family is not specified individually, the
default settings are used in that case.

There are two kinds of parameters for the algorithm, the tier specific parameters, and the
tier independent parameters. Tier independent parameters are set for the overall algorithm.
On the other hand, tier specific parameters can be different for each tier and are used while
executing the subroutine for a particular tier only.

For a tier independent parameter, "$schema" is just the parameter name. For a tier specific
parameter, "$schema" is of the form "tier.$num.$parameterName". A tier specific parameter
can be set without specifying the tier. Then that value will be used as a default value for any
tier for which that parameter has not been set explicitly.

For example, NumCompactionTiers, MinCompactSize are tier independent parameters. It can
be set in the following way"

"hbase.hstore.compaction.default. MinCompactSize"

"hbase.hstore.compaction.tbl.tablel.cf.family1l.MinCompactSize"

If not set for family2, the default value is used for that case. CompactionRatio is a tier specific
parameter. We can set parameters by using all of the following keys:

"hbase.hstore.compaction.default.CompactionRatio"
"hbase.hstore.compaction.tbl.table1.cf.family1l.CompactionRatio"

"hbase.hstore.compaction.tbl.tablel.cf.family1.tier.2.CompactionRatio"

In this case, the tier 2 for the store corresponding to tbl.tablel.cf.family1 will use the third
parameter, for all other tiers in that store, the second parameter will be used. If there are
other column-families for which no parameter has been set, the first value will be used for
them.

3.3.1 Tier independent compaction paramenters

Parameter

CompactionPolicy

MaxCompactSize

MinCompactSize

ShouldExcludeBulk

ShouldDeleteExpired

ThrottlePoint

MajorCompactionPeriod

MajorCompaction]itter

NumCompactionTiers

IsRecentFirstOrder

Description
The policy to be used, default or tier-based

Upper bound on the file size in minor

compaction, in bytes

Lower bound below which every file is

compacted, in bytes

Whether bulk load files should be excluded

from minor compactions

Whether TTL-expired files should be first

deleted by compaction

The threshold size for assigning
compactionSelections into the small/large

queue, in bytes

The interval at which major compactions are

selected periodically, in milliseconds

The fractional deviation from
MajorCompactionPeriod which is randomly
effected to avoid having major compactions

in many stores at the same time.

The number of tiers to assign storeFiles in

Whether the tiers will be tried for eligible

compactions from newest to oldest

Default Comments/Caution

DefaultCompactionPolicy|Must be a valid class name

INF Set high enough value

0 Set small enough

Make sure bulk load files are the

default*

oldest ones, for now
default Set as true

Too large or too small will starve
default

one of the queues

default keep long enough
default default is good
1 Careful to set this correct

Set as false if mixing tiers. Beware
true of starvation of small

compactions.

3.3.2 Tier specific parameters

Parameter Description Default
The maximum age of a file which can belong
to this tier, in milliseconds. tier([i] contains all
MaxAgelnDisk INF
files with age between (tier[i-
1].maxAgelnDisk, tier[i].maxAgelnDisk]
The maximum size of a file which can belong
to this tier, in bytes. tier[i] contains all files
MaxSize INF

with size between (tier[i-1].maxSize,

tier[i].maxSize]
CompactionRatio | The parameter used for ratio test in this tier default

Minimum number of files to be in a selection
MinFilesToCompact default

in this tier

Maximum number of files to be in a selection
MaxFilesToCompact default

in this tier

This is a special feature which allows

compaction selection across more than one

tier. Suppose tier[i].endInTier =

j, tier[i] contains filesf[u],f[u+1,...,]f[v],

EndInclusionTier this.tierIndex

and tier[v] contains files upto f[w]. Then all
pairs [start, end) = [i,w) will be tried for i =
u,u+1,...,v-1 using the parameter-set for this

tier.

Comments/Caution

Set this carefully (No default value). should be

increasing from lowest to highest tier.

Usually use only one
of MaxAgelnDisk and MaxSize criteria for tier

assignment. However it is possible to use both.

The most important parameter for each tier. Set as zero
to block all compactions for this tier. Set higher for

more aggressive compactions.

An important parameter. Should be at least 2.

Setting this small will result in more IOPs in long term,

but finish compactions quicker.

Be careful when setting this parameter. Following
condition must be
true:i>=tier[i].endInclusionTier>=tier[i-
1].endInclusionTier>=0 for all i>0 (The second
inequality is important for avoiding not-in-order

compactions).

Default indicates the parameter from the default compaction algorithm. Even

if ShouldExcludeBulk is not set for the tier based compaction algorithm, if tier based

algorithm is turned on, it will use the parameter from the default algorithm.

3.3.3 Online updating of configuration

It'll be possible to update the configuration without restarting. An RPC call will be sent from
the client. All of the parameters will be reloaded from the files into the compound
configuration object. The compaction related ones will take effect. However it is
recommended not to change any other parameters before updating, as it may result in
inconsistent behavior and local caching problems.

It will be possible to update only one region-server by passing an argument.

