
Safe Pinned Initialization in Rust

Benno Lossin (y86-dev@proton.me)

September 7, 2022

Overview

Why Pinned Initialization is a Problem

Initial Solution

Current Solution
Introduction
Usage
How It Works Internally
Shortcut: Immediate Initialization
Init-Functions
Limitations
Kernel Examples

Outlook

Discussion

Why Pinned Initialization is a Problem

I pinning requires unsafe a lot

I safe pin-projection already solved by pin-project
(without proc-macros by pin-project-lite)

I but that is not the only use of unsafe:

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 3

Why Pinned Initialization is a Problem

I pinning requires unsafe a lot
I safe pin-projection already solved by pin-project

(without proc-macros by pin-project-lite)

I but that is not the only use of unsafe:

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 3

Why Pinned Initialization is a Problem

I pinning requires unsafe a lot
I safe pin-projection already solved by pin-project

(without proc-macros by pin-project-lite)
I but that is not the only use of unsafe:

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 3

Why Pinned Initialization is a Problem

I pinning requires unsafe a lot
I safe pin-projection already solved by pin-project
I but that is not the only use of unsafe:

1 pub struct SelfReferential {
2 value: u32,
3 ptr: *const u32,
4 _pin: PhantomPinned,
5 }
6

7 impl SelfReferential {
8 /// # Safety
9 /// The caller guarantees to call `init`

10 /// before they use the returned value.
11 pub unsafe fn new(value: u32) -> Self { ... }
12 }

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 3

Why Pinned Initialization is a Problem

samples/rust/rust_miscdev.rs
1 let mut state = Pin::from(UniqueRef::try_new(Self {
2 // SAFETY: `condvar_init!` is called below.
3 state_changed: unsafe { CondVar::new() },
4 // SAFETY: `mutex_init!` is called below.
5 inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
6 })?);
7
8 // SAFETY: `state_changed` is pinned when `state` is.
9 let pinned = unsafe {

10 state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
11 };
12 kernel::condvar_init!(pinned, "SharedState::state_changed");
13
14 // SAFETY: `inner` is pinned when `state` is.
15 let pinned = unsafe {
16 state.as_mut().map_unchecked_mut(|s| &mut s.inner)
17 };
18 kernel::mutex_init!(pinned, "SharedState::inner");
19
20 Ok(state.into())

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 3

My Initial Attempt at a Solution

I type tracks initialization via const generics:

transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:

I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added

I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow

I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data

I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

My Initial Attempt at a Solution

I type tracks initialization via const generics: transmute pointer
with an uninitialized pointee Struct<Init = false> →
Struct<Init = true> after initialization

I relying on proc-macros to insert these generics and functions:
I each field of Struct gets Init added
I init() function calls the init function for each field

I overall very complex, especially the initialization code flow
I tried to solve a bigger issue: storing partially initialized data
I on top of that it is unsound

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 4

Current Solution

Why Pinned Initialization is a Problem

Initial Solution

Current Solution
Introduction
Usage
How It Works Internally
Shortcut: Immediate Initialization
Init-Functions
Limitations
Kernel Examples

Outlook

Discussion

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 5

Current Solution

“I disagree. There are things that should not be
proc-macros – at all – and I hope Rust does not make
the mistake of leaving everything up to a proc-macro. For
instance, I hope let else is not rejected just because it
could be done as a proc macro.”

—Miguel Ojeda, Github Issue 772

central idea: use a struct initializer!

struct MyStruct {
a: u32,
b: u64,
c: usize,

}

let my_struct = MyStruct {
a: todo!(),
b: todo!(),
b: todo!(),

// ^ used more than once
};
// ^^ missing `c` in initializer

the compiler can already do everything we need!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 6

Current Solution

central idea: use a struct initializer!

struct MyStruct {
a: u32,
b: u64,
c: usize,

}

let my_struct = MyStruct {
a: todo!(),
b: todo!(),
b: todo!(),

// ^ used more than once
};
// ^^ missing `c` in initializer

the compiler can already do everything we need!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 6

Current Solution
central idea: use a struct initializer!

struct MyStruct {
a: u32,
b: u64,
c: usize,

}

let my_struct = MyStruct {
a: todo!(),
b: todo!(),
b: todo!(),

// ^ used more than once
};
// ^^ missing `c` in initializer

the compiler can already do everything we need!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 6

Current Solution
central idea: use a struct initializer!

struct MyStruct {
a: u32,
b: u64,
c: usize,

}

let my_struct = MyStruct {
a: todo!(),
b: todo!(),
b: todo!(),

// ^ used more than once
};
// ^^ missing `c` in initializer

the compiler can already do everything we need!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 6

Current Solution
central idea: use a struct initializer!

struct MyStruct {
a: u32,
b: u64,
c: usize,

}

let my_struct = MyStruct {
a: todo!(),
b: todo!(),
b: todo!(),

// ^ used more than once
};
// ^^ missing `c` in initializer

the compiler can already do everything we need!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 6

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: u32,
3 b: u64,
4 c: usize,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: u32,
3 b: u64,
4 c: usize,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let my_struct: Pin<Box<MyStruct>> =

10 init! { my_struct => MyStruct {
11

12

13

14 }
15 };

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: u32,
3 b: u64,
4 c: usize,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let my_struct: Pin<Box<MyStruct>> =

10 init! { my_struct => MyStruct {
11 .a = 42;
12 .b = 84;
13 .c = 0;
14 }
15 };

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: Mutex<u32>,
3 b: Semaphore<u64>,
4 c: Custom<usize>,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let struct_init = init! { my_struct => MyStruct {

10

11

12

13

14

15 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: Mutex<u32>,
3 b: Semaphore<u64>,
4 c: Custom<usize>,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let struct_init = init! { my_struct => MyStruct {

10 Mutex::init(.a, 77);
11

12

13

14

15 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: Mutex<u32>,
3 b: Semaphore<u64>,
4 c: Custom<usize>,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let struct_init = init! { my_struct => MyStruct {

10 Mutex::init(.a, 77);
11 init_semaphore!(.b, 42);
12

13

14

15 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Current Solution

The new API provides a macro to initialize structs:
1 struct MyStruct {
2 a: Mutex<u32>,
3 b: Semaphore<u64>,
4 c: Custom<usize>,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9 let struct_init = init! { my_struct => MyStruct {

10 Mutex::init(.a, 77);
11 init_semaphore!(.b);
12 ~let (yay, pattern) = unsafe {
13 crazy_custom_init(.c, "magic?!").await
14 }?;
15 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 7

Under the Hood

1 struct MyStruct {
2 a: u32,
3 b: u64,
4 c: usize,
5 }
6

7 let my_struct: Pin<Box<MaybeUninit<MyStruct>>> =
8 Box::pin(MaybeUninit::uninit());
9

10 let my_struct: Pin<Box<MyStruct>> =
11 init! { my_struct => MyStruct {
12 .a = 42;
13 .b = 84;
14 .c = 0;
15 }
16 };

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

.a = 42; expands to:

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

.a = 42; expands to:
unsafe {

ptr::write(
mem::addr_of_mut!(

}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

.a = 42; expands to:
unsafe {

ptr::write(
mem::addr_of_mut!(

(*init::place::PartialInitPlace::___as_mut_ptr(
&mut my_struct,
&(|_: &MyStruct| {}),

)).a
),

}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

.a = 42; expands to:
unsafe {

ptr::write(
mem::addr_of_mut!(

(*init::place::PartialInitPlace::___as_mut_ptr(
&mut my_struct,
&(|_: &MyStruct| {}),

)).a
),
42,

);
}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

At the end we want to call
unsafe {

init::place::PartialInitPlace::___assume_init(my_struct)
}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Under the Hood

Macro remembers each field that is initialized and then adds
generates this:
let ___check_all_fields_init = || {

let _struct: MyStruct = MyStruct {
a: panic!(),
b: panic!(),
c: panic!(),

};
};
unsafe {

// SAFETY: all fields have been initialized, or
// a compile error exists.
init::place::PartialInitPlace::___assume_init(my_struct)

}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 8

Current Solution
Introduction
Usage
How It Works Internally
Shortcut: Immediate Initialization
Init-Functions
Limitations
Kernel Examples

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 9

Immediate Initialization

one often writes
let my_struct = Box::pin(MaybeUninit::uninit());
and then invokes init! so I created a shortcut:

1 let my_struct = init! { @Pin<Box<MyStruct>> => MyStruct {
2 .a = 42;
3 .b = 84;
4 .c = 0;
5 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 10

Immediate Initialization

one often writes
let my_struct = Box::pin(MaybeUninit::uninit());
and then invokes init! so I created a shortcut:

1 let my_struct = init! { @Pin<Box<MyStruct>> => MyStruct {
2 .a = 42;
3 .b = 84;
4 .c = 0;
5 }};

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 10

Immediate Initialization

one often writes
let my_struct = Box::pin(MaybeUninit::uninit());
and then invokes init! so I created a shortcut:

1 let my_struct = init! { @Pin<Box<MyStruct>> => MyStruct {
2 .a = 42;
3 .b = 84;
4 .c = 0;
5 }};

this essentially calls
1 let my_struct = Box::pin(MaybeUninit::uninit());
2 let my_struct = init! { my_struct => MyStruct {
3 .a = 42;
4 .b = 84;
5 .c = 0;
6 }}?;

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 10

Immediate Initialization

one often writes
let my_struct = Box::pin(MaybeUninit::uninit());
and then invokes init! so I created a shortcut:

1 let my_struct = init! { @Pin<Box<MyStruct>> => MyStruct {
2 .a = 42;
3 .b = 84;
4 .c = 0;
5 }};

It is implemented for:
I Box<T>
I Ref<T>
I UniqueRef<T>

As well as Pin<P> where P is any of the above.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 10

Current Solution
Introduction
Usage
How It Works Internally
Shortcut: Immediate Initialization
Init-Functions
Limitations
Kernel Examples

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 11

Init-Functions

We already introduced init functions before:
1 struct MyStruct {
2 mutex: Mutex<u32>,
3 }
4

5 let struct_init = init! { my_struct => MyStruct {
6 Mutex::init(.mutex, 77);
7 }}

But we did not specify how to declare one!

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 12

Init-Functions

Declaring an init-function:
1 struct MyStruct {
2 mutex: Mutex<u32>,
3 }
4

5 impl MyStruct {
6 pub fn init(
7 this: PinInitMe<'_, Self>
8) {
9 init! { this => Self {

10 Mutex::init(.mutex, 77);
11 }}
12 }
13 }

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 12

Init-Functions

Declaring an init-function:
1 struct MyStruct {
2 mutex: Mutex<u32>,
3 }
4

5 impl MyStruct {
6 pub fn init<G: Guard>(
7 this: PinInitMe<'_, Self, G>
8) -> InitProof<(), G> {
9 init! { this => Self {

10 Mutex::init(.mutex, 77);
11 }}
12 }
13 }

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 12

Current Solution
Introduction
Usage
How It Works Internally
Shortcut: Immediate Initialization
Init-Functions
Limitations
Kernel Examples

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 13

Limitations

I init-functions can only initialize a singular field

I need to specify structurally pinned fields via pin_data!
which does not fully support the complete struct syntax

I you cannot partially initialize the struct using new(),
everything has to be done in init!

I you cannot combine normal rust statements with the special
init statements

I When a panic/error occurs inside init!, then the fields
initialized until then are leaked.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 14

Limitations

I init-functions can only initialize a singular field
I need to specify structurally pinned fields via pin_data!

which does not fully support the complete struct syntax

I you cannot partially initialize the struct using new(),
everything has to be done in init!

I you cannot combine normal rust statements with the special
init statements

I When a panic/error occurs inside init!, then the fields
initialized until then are leaked.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 14

Limitations

I init-functions can only initialize a singular field
I need to specify structurally pinned fields via pin_data!

which does not fully support the complete struct syntax
I you cannot partially initialize the struct using new(),

everything has to be done in init!

I you cannot combine normal rust statements with the special
init statements

I When a panic/error occurs inside init!, then the fields
initialized until then are leaked.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 14

Limitations

I init-functions can only initialize a singular field
I need to specify structurally pinned fields via pin_data!

which does not fully support the complete struct syntax
I you cannot partially initialize the struct using new(),

everything has to be done in init!
I you cannot combine normal rust statements with the special

init statements

I When a panic/error occurs inside init!, then the fields
initialized until then are leaked.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 14

Limitations

I init-functions can only initialize a singular field
I need to specify structurally pinned fields via pin_data!

which does not fully support the complete struct syntax
I you cannot partially initialize the struct using new(),

everything has to be done in init!
I you cannot combine normal rust statements with the special

init statements
I When a panic/error occurs inside init!, then the fields

initialized until then are leaked.

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 14

How does this look like in the Kernel?

samples/rust/rust_miscdev.rs (before):
1 let mut state = Pin::from(UniqueRef::try_new(Self {
2 // SAFETY: `condvar_init!` is called below.
3 state_changed: unsafe { CondVar::new() },
4 // SAFETY: `mutex_init!` is called below.
5 inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) },
6 })?);
7
8 // SAFETY: `state_changed` is pinned when `state` is.
9 let pinned = unsafe {

10 state.as_mut().map_unchecked_mut(|s| &mut s.state_changed)
11 };
12 kernel::condvar_init!(pinned, "SharedState::state_changed");
13
14 // SAFETY: `inner` is pinned when `state` is.
15 let pinned = unsafe {
16 state.as_mut().map_unchecked_mut(|s| &mut s.inner)
17 };
18 kernel::mutex_init!(pinned, "SharedState::inner");
19
20 Ok(state.into())

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 15

How does this look like in the Kernel?

samples/rust/rust_miscdev.rs (after):

1 init! { @Pin<Ref<Self>> => Self {
2 condvar_init!(.state_changed, "SharedState::state_changed");
3 mutex_init!(
4 .inner,
5 "SharedState::inner",
6 SharedStateInner { token_count: 0 }
7);
8 }}

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 15

How does this look like in the Kernel?

samples/rust/rust_semaphore.rs (before):
1 let mut sema = Pin::from(UniqueRef::try_new(Semaphore {
2 // SAFETY: `condvar_init!` is called below.
3 changed: unsafe { CondVar::new() },
4
5 // SAFETY: `mutex_init!` is called below.
6 inner: unsafe {
7 Mutex::new(SemaphoreInner {
8 count: 0,
9 max_seen: 0,

10 })
11 },
12 })?);
13
14 // SAFETY: `changed` is pinned when `sema` is.
15 let pinned = unsafe { sema.as_mut().map_unchecked_mut(|s| &mut s.changed) };
16 condvar_init!(pinned, "Semaphore::changed");
17
18 // SAFETY: `inner` is pinned when `sema` is.
19 let pinned = unsafe { sema.as_mut().map_unchecked_mut(|s| &mut s.inner) };
20 mutex_init!(pinned, "Semaphore::inner");

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 15

How does this look like in the Kernel?

samples/rust/rust_semaphore.rs (after):

1 let sema = init! { @Pin<UniqueRef<Semaphore>> =>
2 Semaphore {
3 condvar_init!(.changed, "Semaphore::changed");
4 mutex_init!(
5 .inner,
6 "Semaphore::inner",
7 SemaphoreInner {
8 count: 0,
9 max_seen: 0,

10 }
11);
12 }
13 }?;

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 15

Outlook

I pin-project-lite support

I formal verification?
I at the moment arbitrary expressions and statements are

allowed, is this unsound?

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 16

Outlook

I pin-project-lite support
I formal verification?

I at the moment arbitrary expressions and statements are
allowed, is this unsound?

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 16

Outlook

I pin-project-lite support
I formal verification?
I at the moment arbitrary expressions and statements are

allowed, is this unsound?

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 16

Discussion

I follow development at
https://github.com/y86-dev/simple-safe-init

I integration into the kernel at
https://github.com/y86-dev/linux

I please give feedback/discuss syntax/wanted features/other
remarks

Benno Lossin (y86-dev@proton.me)
Safe Pinned Initialization in Rust 17

https://github.com/y86-dev/simple-safe-init
https://github.com/y86-dev/linux

	Why Pinned Initialization is a Problem
	Initial Solution
	Current Solution
	Introduction
	Usage
	How It Works Internally
	Shortcut: Immediate Initialization
	Init-Functions
	Limitations
	Kernel Examples

	Outlook
	Discussion

