
pin-init: safe initialisation of pinned structs
Xuan Guo (Gary)

Department of Computer Science and Technology, University of Cambridge, UK

Kangrejos 2022 The Rust for Linux Workshop 7 Sep 2022

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.

▶ How about the time before the value is pinned?
▶ Pinning is originally designed for async Futures, which does not create

self-references until the first poll.
▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to

initialise it. This requires unsafe.
▶ We can lazily initialise a struct upon first usage. This has additional overhead.
▶ We can provide abstraction for self-referential structs and always box them

internally. This requires memory allocation.

2 of 22

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.
▶ How about the time before the value is pinned?

▶ Pinning is originally designed for async Futures, which does not create
self-references until the first poll.

▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to
initialise it. This requires unsafe.

▶ We can lazily initialise a struct upon first usage. This has additional overhead.
▶ We can provide abstraction for self-referential structs and always box them

internally. This requires memory allocation.

2 of 22

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.
▶ How about the time before the value is pinned?
▶ Pinning is originally designed for async Futures, which does not create

self-references until the first poll.

▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to
initialise it. This requires unsafe.

▶ We can lazily initialise a struct upon first usage. This has additional overhead.
▶ We can provide abstraction for self-referential structs and always box them

internally. This requires memory allocation.

2 of 22

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.
▶ How about the time before the value is pinned?
▶ Pinning is originally designed for async Futures, which does not create

self-references until the first poll.
▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to

initialise it. This requires unsafe.

▶ We can lazily initialise a struct upon first usage. This has additional overhead.
▶ We can provide abstraction for self-referential structs and always box them

internally. This requires memory allocation.

2 of 22

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.
▶ How about the time before the value is pinned?
▶ Pinning is originally designed for async Futures, which does not create

self-references until the first poll.
▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to

initialise it. This requires unsafe.
▶ We can lazily initialise a struct upon first usage. This has additional overhead.

▶ We can provide abstraction for self-referential structs and always box them
internally. This requires memory allocation.

2 of 22

What is the problem with pinning?

▶ Once pinned, it will be pinned forever until the destructor of T is called.
▶ How about the time before the value is pinned?
▶ Pinning is originally designed for async Futures, which does not create

self-references until the first poll.
▶ We can create the value in an uninitialised state, and pass in a Pin<&mut T> to

initialise it. This requires unsafe.
▶ We can lazily initialise a struct upon first usage. This has additional overhead.
▶ We can provide abstraction for self-referential structs and always box them

internally. This requires memory allocation.

2 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.
▶ Fallible. No assumption is made about success of initialisation.

3 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.
▶ Fallible. No assumption is made about success of initialisation.

3 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.
▶ Fallible. No assumption is made about success of initialisation.

3 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.
▶ Fallible. No assumption is made about success of initialisation.

3 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.

▶ Fallible. No assumption is made about success of initialisation.

3 of 22

What do we want?

▶ Safety. We should be able to create and use such pinned type without unsafe.
(Obviously the pinned type themselves are still unsafe to implement).

▶ Zero-cost. The abstraction provided should be able to be optimised away and
leave no runtime cost.

▶ No Implicit Allocation. Allocation should not be required during initialisation. User
should be able to dictate whether it’s initialised in a box or on the stack.

▶ Aggregatable. A struct containing multiple pinned types can be safely created and
initialised together.

▶ Ergonomics. The abstraction should not be too different from normal Rust.
▶ Fallible. No assumption is made about success of initialisation.

3 of 22

Starting point

impl RawMutex {
// Unsafe because user needs to be initialise it before use
unsafe fn uninit() -> Self;
// Unsafe because it cannot be initialised twice
unsafe fn init(self: Pin<&mut Self>);

}

Problem: We don’t want the type to have a dedicated uninitialised state. Does
MaybeUninit work?

4 of 22

Starting point

impl RawMutex {
// Unsafe because user needs to be initialise it before use
unsafe fn uninit() -> Self;
// Unsafe because it cannot be initialised twice
unsafe fn init(self: Pin<&mut Self>);

}

Problem: We don’t want the type to have a dedicated uninitialised state.

Does
MaybeUninit work?

4 of 22

Starting point

impl RawMutex {
// Unsafe because user needs to be initialise it before use
unsafe fn uninit() -> Self;
// Unsafe because it cannot be initialised twice
unsafe fn init(self: Pin<&mut Self>);

}

Problem: We don’t want the type to have a dedicated uninitialised state. Does
MaybeUninit work?

4 of 22

MaybeUninit

impl RawMutex {
// Caller must treat this as `Pin<&mut Self>` after returning and respecting drop
guarantee.↪→

unsafe fn init(this: Pin<&mut MaybeUninit<Self>>);
}

Problem: init function still unsafe to call.

5 of 22

MaybeUninit

impl RawMutex {
// Caller must treat this as `Pin<&mut Self>` after returning and respecting drop
guarantee.↪→

unsafe fn init(this: Pin<&mut MaybeUninit<Self>>);
}

Problem: init function still unsafe to call.

5 of 22

Abstraction

struct PinUninit<'a, T> { ... }

impl<'a, T> PinUninit<'a, T> {
// Creator must call an initialiser, and treat `ptr` as `Pin<&mut Self>` after
it is being initialised.↪→

unsafe fn new(ptr: &'a mut MaybeUninit<T>) -> Self;
}

impl RawMutex {
fn init(this: PinUninit<'_, Self>);

}

Problem: this is unsound as there is no guarantee that ‘init‘ actually initialises.
We want the init function to be unsafe to define but safe to call.

6 of 22

Abstraction

struct PinUninit<'a, T> { ... }

impl<'a, T> PinUninit<'a, T> {
// Creator must call an initialiser, and treat `ptr` as `Pin<&mut Self>` after
it is being initialised.↪→

unsafe fn new(ptr: &'a mut MaybeUninit<T>) -> Self;
}

impl RawMutex {
fn init(this: PinUninit<'_, Self>);

}

Problem: this is unsound as there is no guarantee that ‘init‘ actually initialises.
We want the init function to be unsafe to define but safe to call.

6 of 22

Abstraction

struct PinUninit<'a, T> { ... }

// Unsafe to create token indicating that indeed something is initialised.
struct InitOk;

impl RawMutex {
fn init(this: PinUninit<'_, Self>) -> InitOk;

}

Problem: this is still unsound.

7 of 22

Abstraction

struct PinUninit<'a, T> { ... }

// Unsafe to create token indicating that indeed something is initialised.
struct InitOk;

impl RawMutex {
fn init(this: PinUninit<'_, Self>) -> InitOk;

}

Problem: this is still unsound.

7 of 22

Reentrancy

fn rogue_init(this: PinUninit<'_, RawMutex>) -> InitOk {
static PROOF: Spinlock<Option<InitOk>> = Spinlock::new(None);
if PROOF.lock().is_some() /* reentrance */ {

PROOF.lock().take()
} else {

let proof = RawMutex::init(this);
*PROOF.lock() = Some(proof);
some_func_that_calls_rogue_init();
loop {}

}
}

8 of 22

Solution: Lifetime branding

// Lifetimes of these are made invariant instead of the default covariant.
struct PinUninit<'a, T> { ... }
struct InitOk<'a, T> { ... }

impl<'a, T> PinUninit<'a, T> {
unsafe fn init_ok(self) -> InitOk<'a, T>;
fn init_with_value(self, value: T) -> InitOk<'a, T>;

}

impl RawMutex {
fn init<'a>(

this: PinUninit<'a, Self>
) -> InitOk<'a, Self>;

}

9 of 22

Fallible initialisation

// Note that branding is still needed for soundness.
struct InitErr<'a, E> { ... }

impl<'a, T> PinUninit<'a, T> {
fn init_err<E>(self, err: E) -> InitErr<'a, E>;

}

impl RawMutex {
fn init<'a>(

this: PinUninit<'a, Self>
) -> Result<InitOk<'a, Self>, InitErr<'a, Error>>;

}

10 of 22

Some transformation

type InitResult<'a, T, E> = Result<InitOk<'a, T>, InitErr<'a, E>>;

trait Init<T, E>: Sized {
fn init<'a>(self, this: PinUninit<'a, T>) -> InitResult<'a, T, E>;

}

fn init_from_closure<T, E, F>(f: F) -> impl Init<T, E>
where

F: for<'a> FnOnce(PinUninit<'a, T>) -> InitResult<'a, T, E>;

impl RawMutex {
fn new() -> impl Init<Self, Error>;

}

11 of 22

Nice APIs

impl<T> PtrPinWith<T> for Box<T> {
fn pin_with<E, I>(init: I) -> Result<Pin<Self>, E>

where I: Init<T, E>;
}

// Usage
let boxed_raw_mutex = Box::pin_with(RawMutex::new()).unwrap();

// Pinning on stack
init_stack!(raw_mutex_on_stack = RawMutex::new());

12 of 22

Structural initialisation

struct Mutex<T> {
mutex: RawMutex,
value: UnsafeCell<T>,

}

impl<T> Mutex<T> {
fn new<F>(value: F> -> impl Init<Self, Error>

where F: Init<T, Error>;
}

Can we write such a new function without any unsafe?

13 of 22

Structural initialisation

struct Mutex<T> {
mutex: RawMutex,
value: UnsafeCell<T>,

}

impl<T> Mutex<T> {
fn new<F>(value: F> -> impl Init<Self, Error>

where F: Init<T, Error>;
}

Can we write such a new function without any unsafe?

13 of 22

Builder pattern

struct MutexBuilder<'this, T>(PinUninit<'this, Mutex<T>>, ...);

impl<'this, T> MutexBuilder<'this, T> {
fn mutex<E, F: Init<RawMutex, E>>(self, f: F)

-> Result<Self, InitErr<'this, E>

fn value<E, F>(self, f: F: Init<T, E>)
-> Result<Self, InitErr<'this, E>

fn finish(self) -> InitOk<'this, Mutex<T>>;
}

// Usage
builder.mutex(RawMutex::new()).value(...).finish()

14 of 22

Builder pattern

struct MutexBuilder<'this, T>(PinUninit<'this, Mutex<T>>, ...);

impl<'this, T> MutexBuilder<'this, T> {
fn mutex<E, F: Init<RawMutex, E>>(self, f: F)

-> Result<Self, InitErr<'this, E>>;

fn value<E, F>(self, f: F: Init<T, E>)
-> Result<Self, InitErr<'this, E>>;

fn finish(self) -> InitOk<'this, Mutex<T>>;
}

How to ensure that each field is initialised once and only once?

15 of 22

Builder pattern

struct MutexBuilder<'this, T>(PinUninit<'this, Mutex<T>>, ...);

impl<'this, T> MutexBuilder<'this, T> {
fn mutex<E, F: Init<RawMutex, E>>(self, f: F)

-> Result<Self, InitErr<'this, E>>;

fn value<E, F>(self, f: F: Init<T, E>)
-> Result<Self, InitErr<'this, E>>;

fn finish(self) -> InitOk<'this, Mutex<T>>;
}

How to ensure that each field is initialised once and only once?

15 of 22

Typestates using generics

struct MutexBuilder<'this, T, const MUTEX: bool, const VALUE: bool>(...);

impl<...> MutexBuilder<'this, T, false, VALUE> {
fn mutex<E, F: Init<RawMutex, E>>(self, f: F)

-> Result<MutexBuilder<'this, T, true, VALUE>, ...>;
}

impl<...> MutexBuilder<'this, T, MUTEX, false> {
fn value<E, F>(self, f: F: Init<T, E>)

-> Result<MutexBuilder<'this, T, MUTEX, true>, ...>;
}

impl<'this, T> MutexBuilder<'this, T, true, true> {
fn finish(self) -> InitOk<'this, Mutex<T>>;

}

16 of 22

Macro to rescue

#[pin_init]
struct Mutex<T> {

#[pin]
mutex: RawMutex<T>,
#[pin]
value: UnsafeCell<T>,

}

// The macro generates a `MutexBuilder` and
impl<T> Mutex<T> {

fn builder<'this>(this: PinUninit<'this, Mutex<T>>) -> MutexBuilder<'this, T,
false, false);↪→

}

17 of 22

Macro to rescue

Box::pin_with(init_pin!(Mutex {
mutex: RawMutex::new(),
value: UnsafeCell(value)

}))

// The `init_pin!` macro expands to
init_from_closure(move |this| {

let builder = Mutex::builder(this);
let builder = match builder.mutex(RawMutex::new()) {

Ok(v) => v,
Err(err) => return Err(err),

};
...
Ok(builder.finish())

})

18 of 22

Macro to rescue

Box::pin_with(init_pin!(Mutex {
mutex: RawMutex::new(),
value: UnsafeCell(value)

}))

With attribute macro on expressions (unstable feature):
Box::pin_with(#[init_pin] Mutex {

mutex: RawMutex::new(),
value: UnsafeCell(value)

})

19 of 22

What pin-init crate include

▶ PinUninit, InitOk, InitErr as basic infrastructure
▶ Extension traits that add init with and pin with to smart pointers to

initialise/create a pinned struct on heap.
▶ init stack! to create a pinned struct on stack.
▶ pin init! to allow a struct to be initialisable with init pin!

▶ Some core types, like UnsafeCell and PhantomPinned, are made compatible with
init pin!.

20 of 22

Drawbacks

▶ No way to create self-referential structs safely yet.
▶ Needs ability to parse Rust structs and expressions.
▶ This method currently depends on syn.

21 of 22

Links

▶ https://docs.rs/pin-init

▶ https://github.com/nbdd0121/pin-init

22 of 22

https://docs.rs/pin-init
https://github.com/nbdd0121/pin-init

	Background
	Safe Initialisation
	Structural initialisation
	Conclusion

