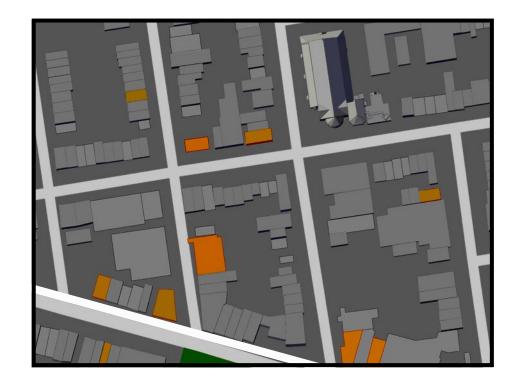
Understanding Places Using Ground-Level and Overhead Views

Nathan Jacobs

Department of Computer Science

Goal: Automatically describe the world in rich detail, using all available data.

Making maps using images

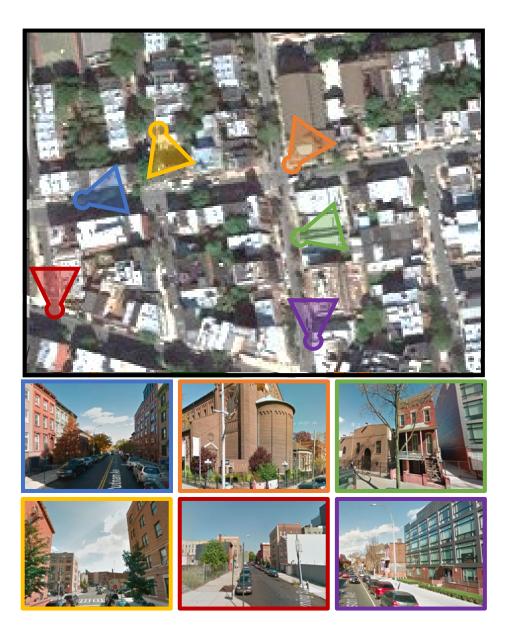


P(attribute | location, time)

Goal: Automatically describe the world in rich detail, using all available data.

Making maps using images

image = Camera(location, time)
P(attribute | image)



Two Parts

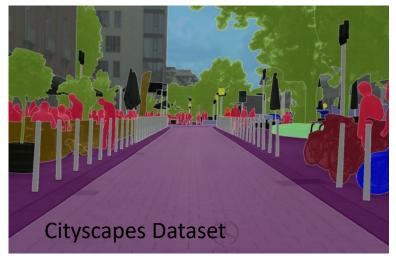
1. The ongoing revolution in automated perception.

2. My work on image-driven mapping.

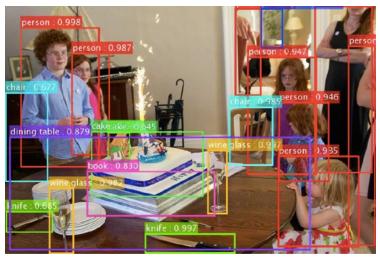
Computer Vision is finally useful!

Image/Scene Classification

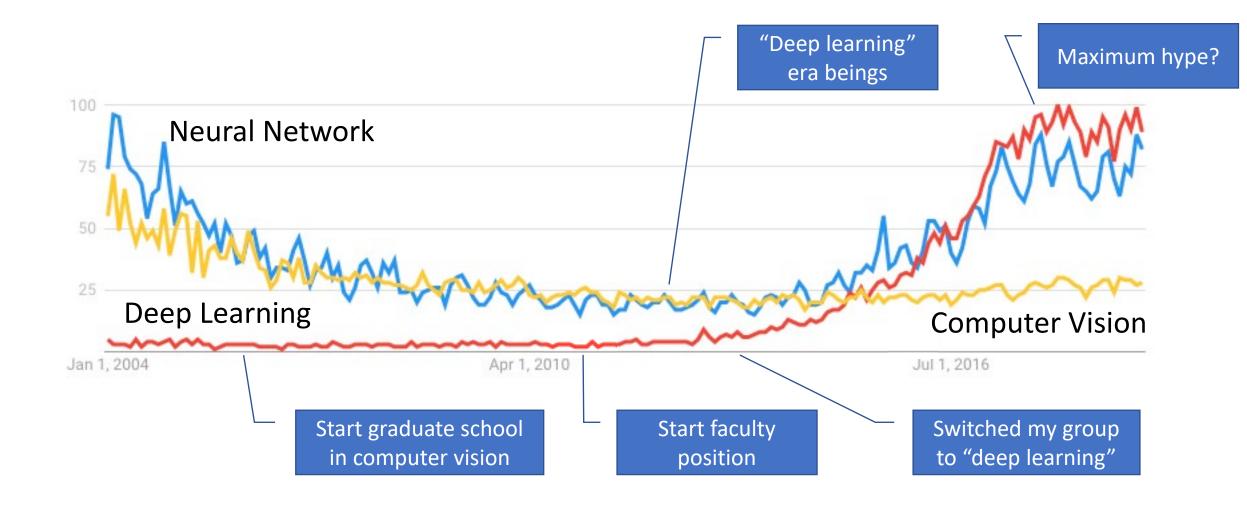
Image Segmentation



Object Detection



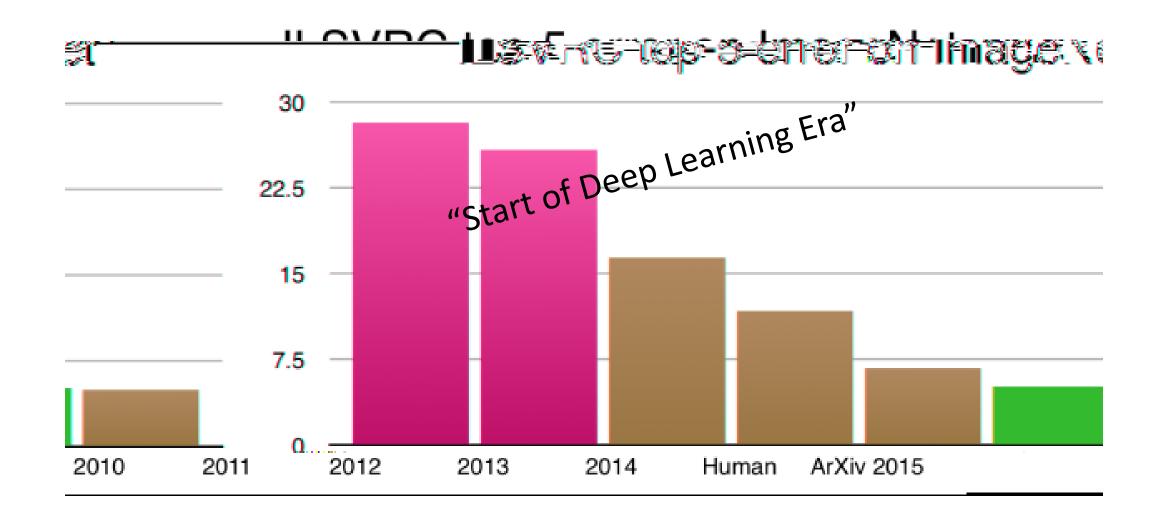
Deep (machine) learning is the reason.

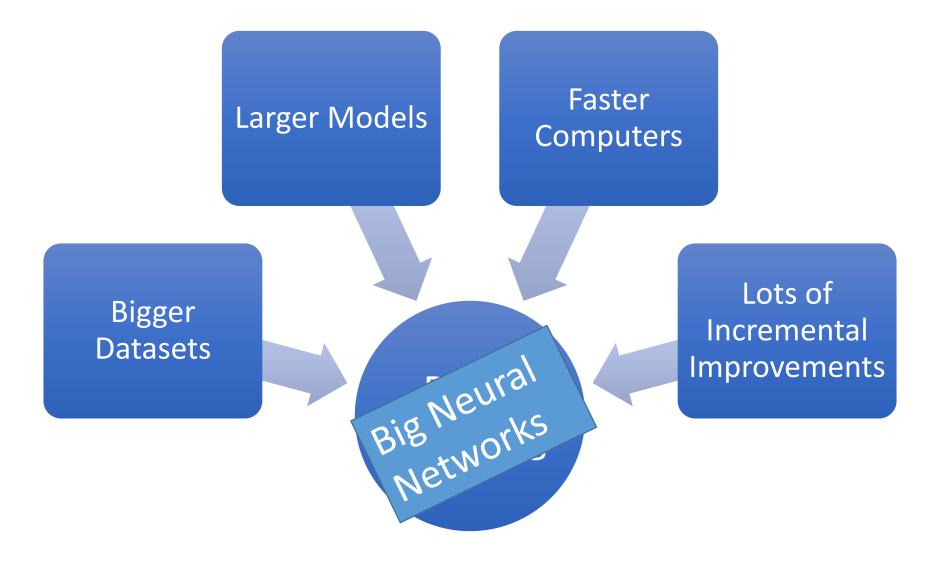


Source: Google Trends

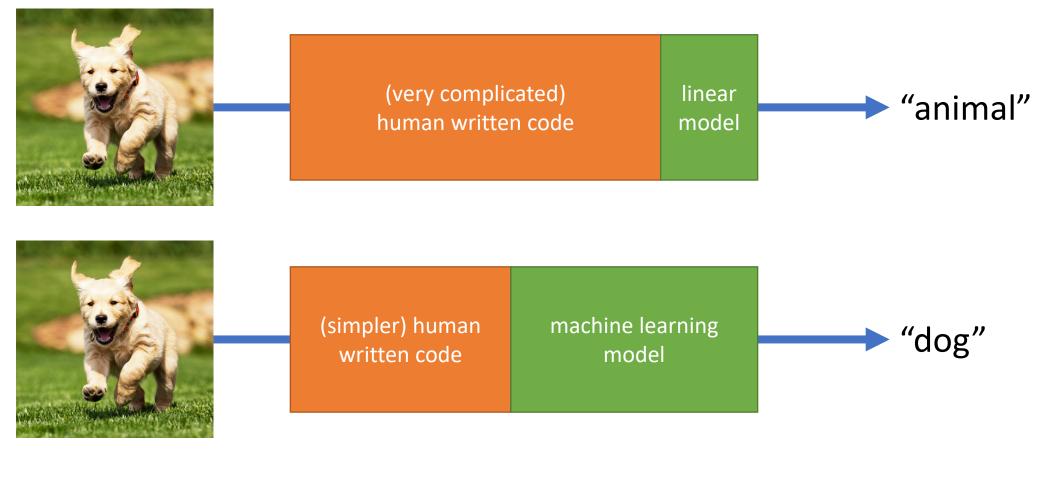
ImageNet Large Scale Visual Recognition Challenge

- Task: Classify an image into one of 1000 categories
 - guacamole
 - oxcart
 - cradle
 - australian terrier
 - trimaran
 - submarine
 - ...
- 1,200,000 training images
- 100,000 test images



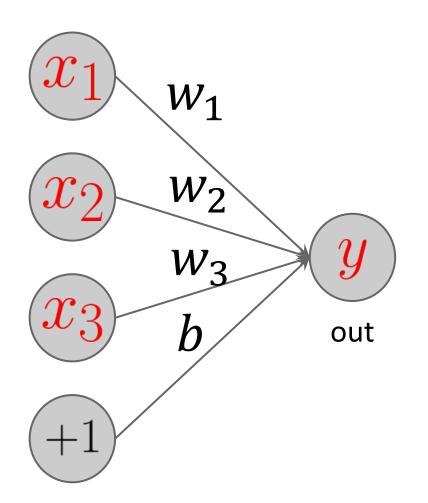


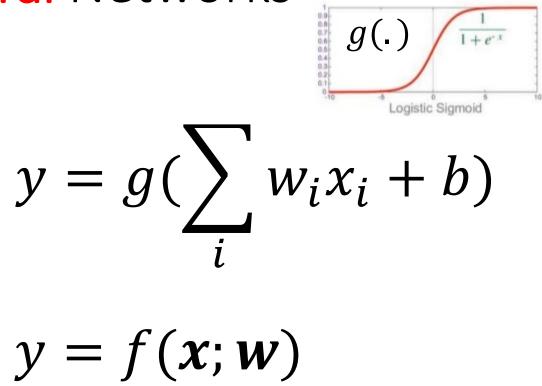
Shallow ML

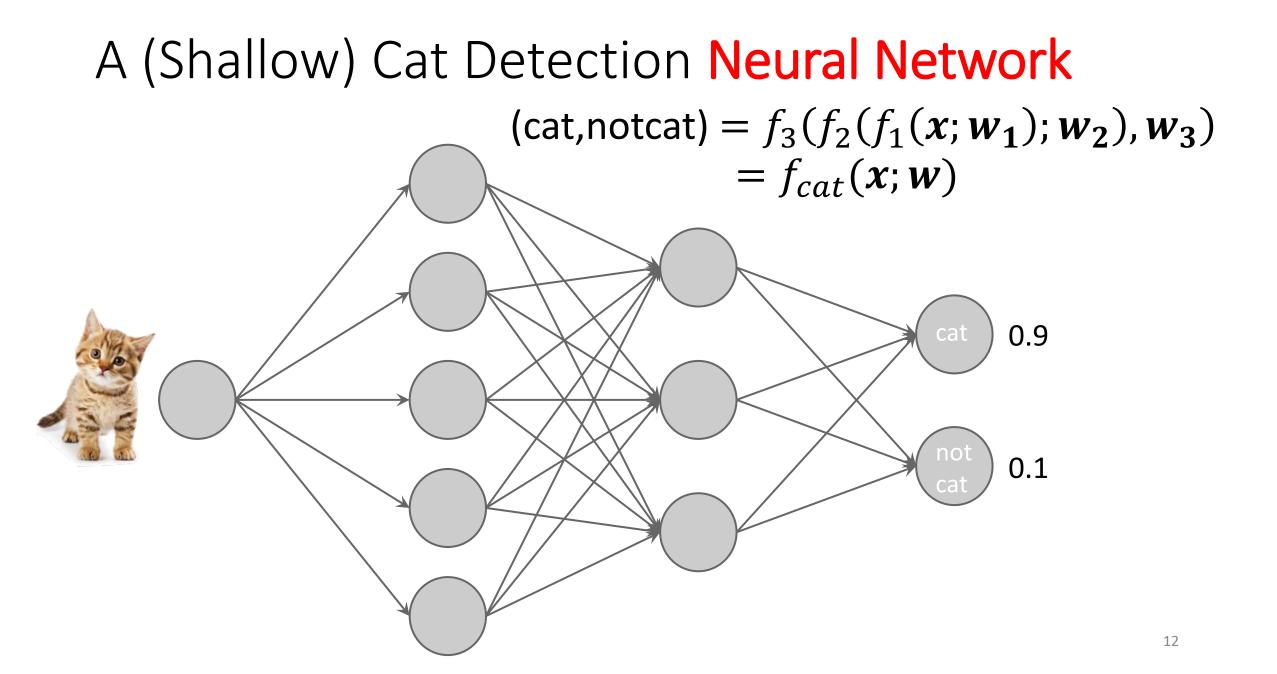


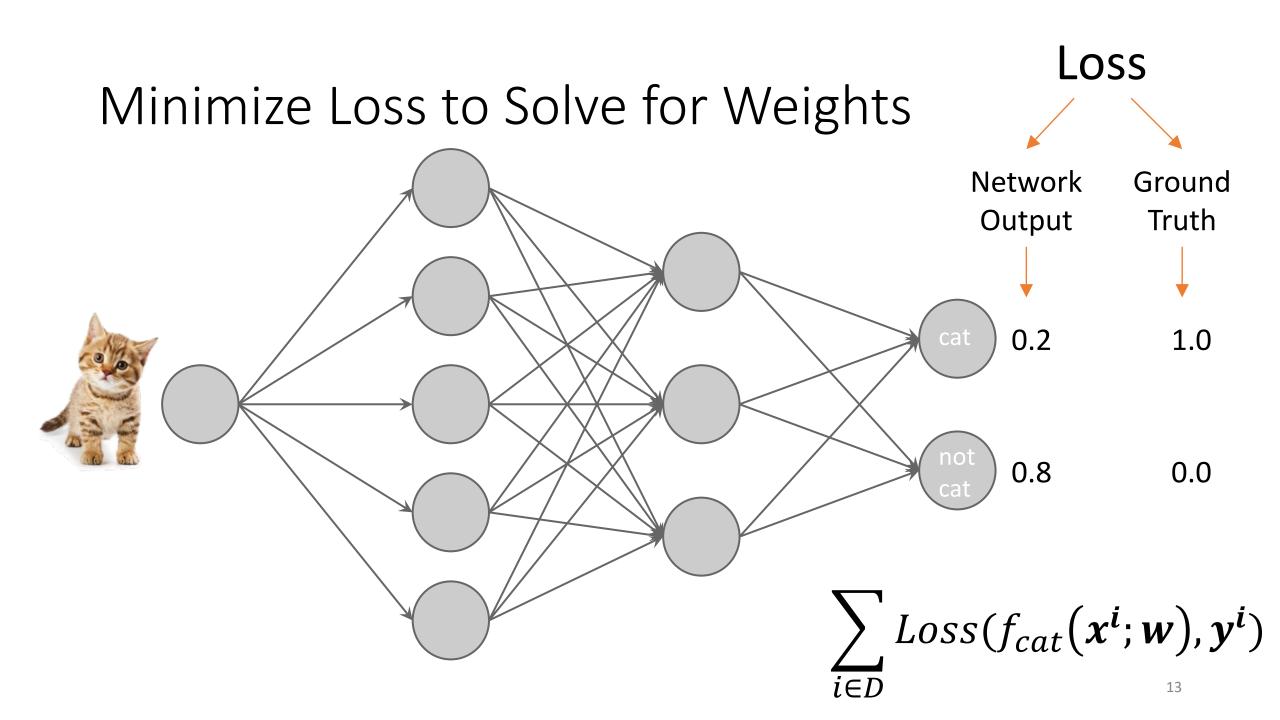
deep learning model (e.g., convolutional neural network) "golden retriever puppy"

Deep Convolutional Neural Networks

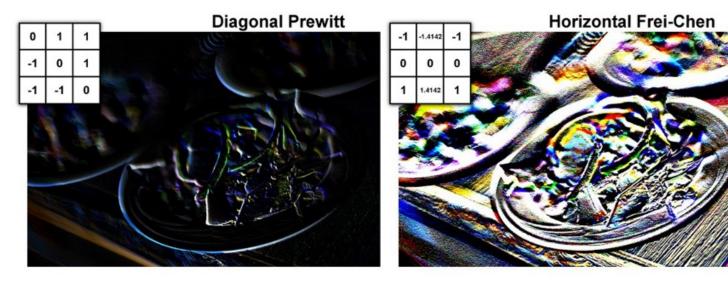


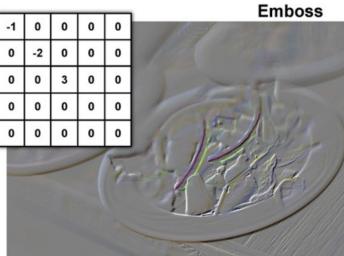




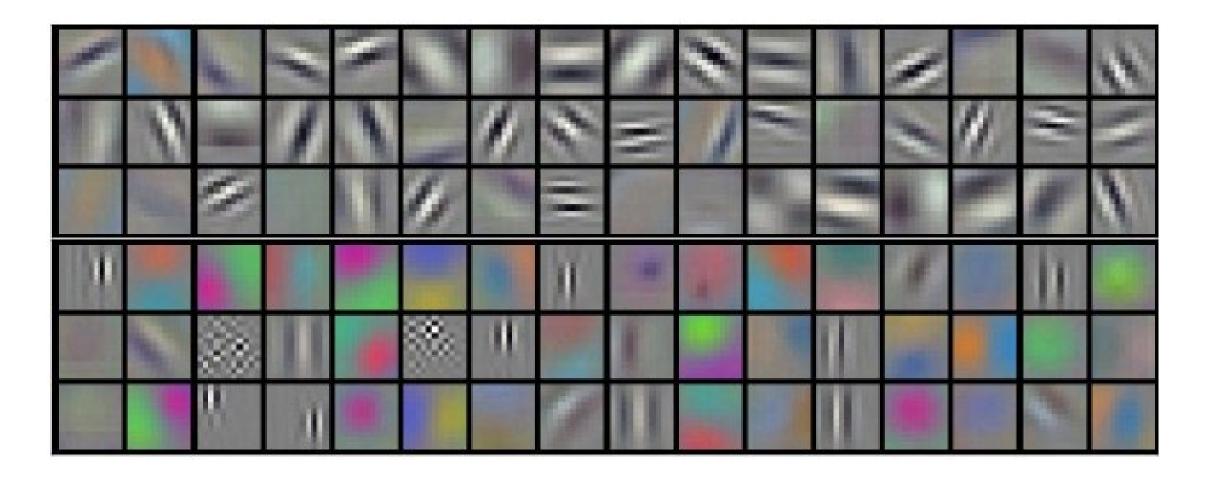


Deep Convolutional Neural Networks

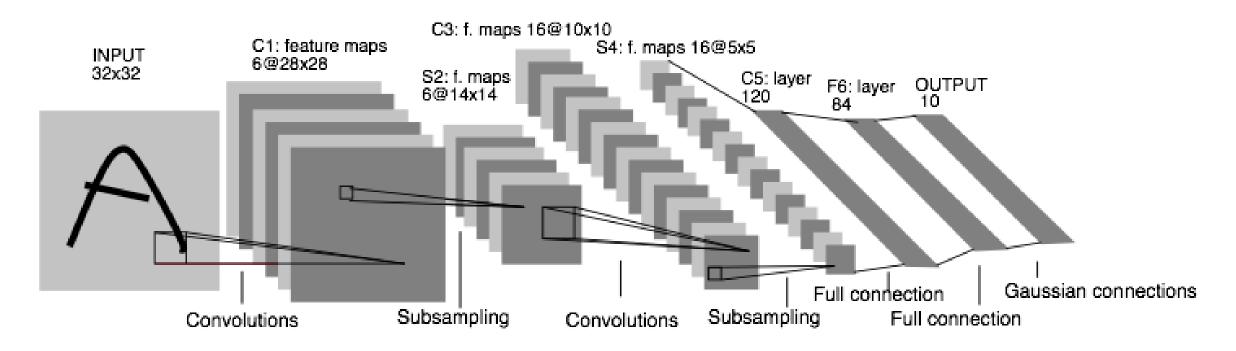




Examples of Learned Convolutions

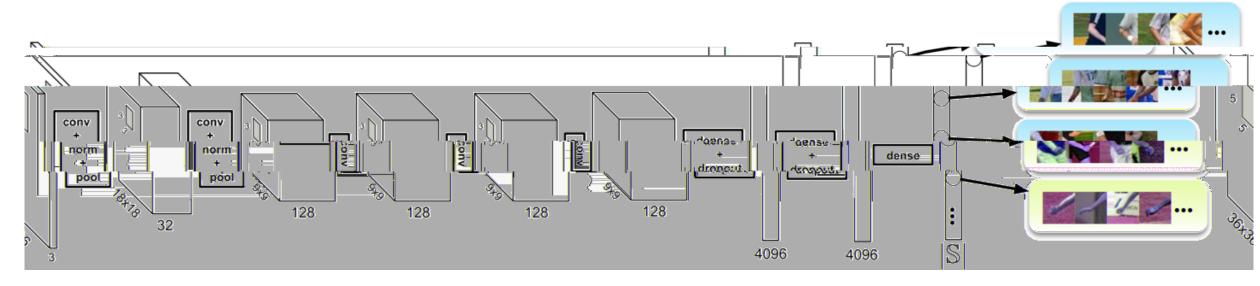


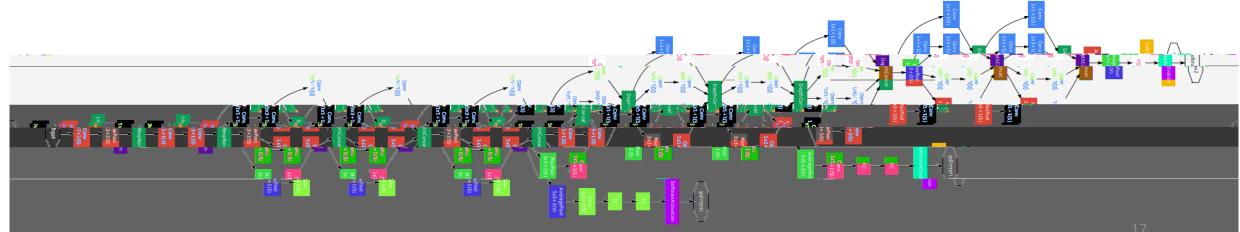
Shallow Convolutional Neural Network (1998)



Gradient-based learning applied to document recognition Y LeCun, L Bottou, Y Bengio, P Haffner, **1998**

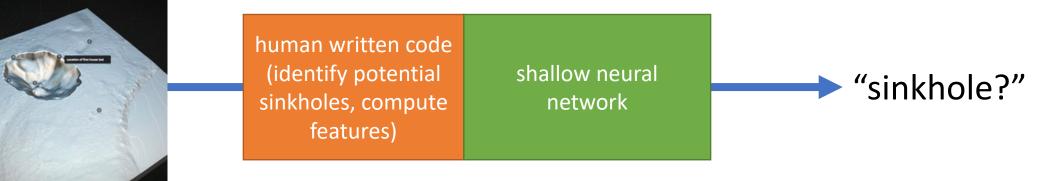
Deep Convolutional Neural Networks (2012-)

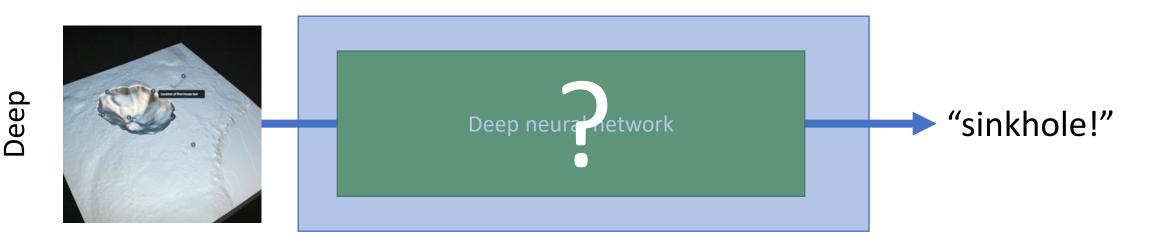




Applied to a Task from Geology

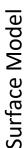
Junfeng Zhu, Nolte AM., Jacobs N., Ye M. 2019. Incorporating Machine Learning with LiDAR for Delineating Sinkholes. In: *Kentucky Water Resources Annual Symposium*.

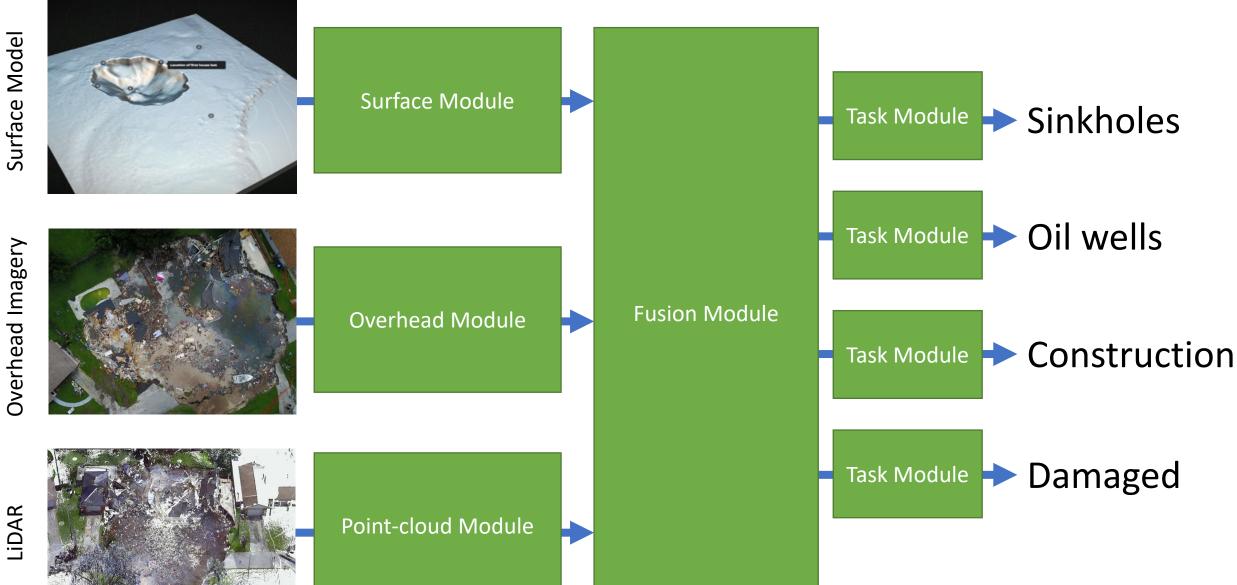




18

Going a few steps further...





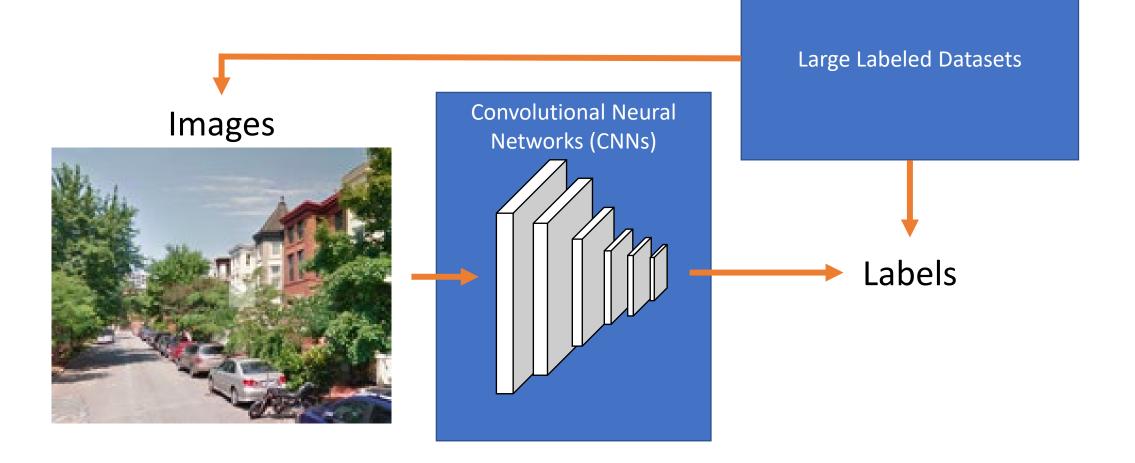
1. The ongoing revolution in automated perception.

2. My work on image-driven mapping.

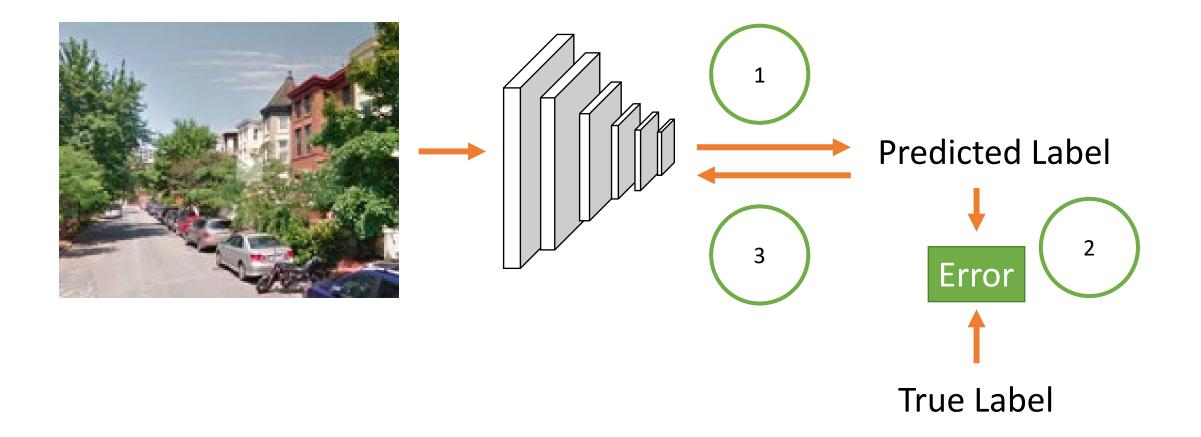
Research Theme # 1

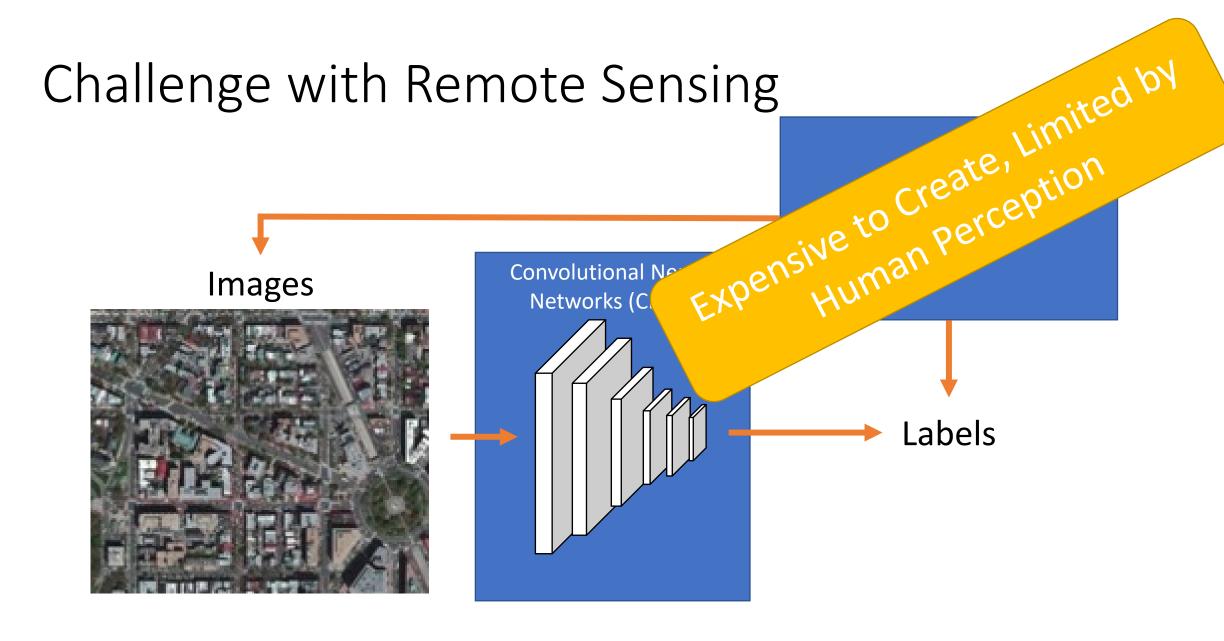
Ground-level images as a supervisory signal for overhead image interpretation.

Essential Building Blocks

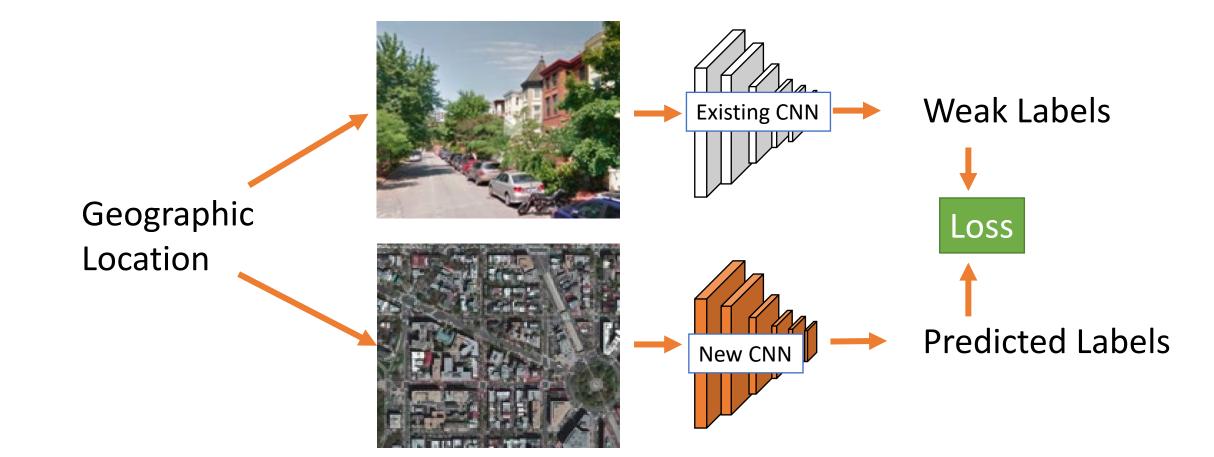


Training a CNN





Ground-Level Images as a Supervisory Signal



Three Examples

- Scene classification
- Semantic segmentation
- Object detection

CVUSA: A Large Training Database of Ground-Level and Aerial Image Pairs

ground-level image

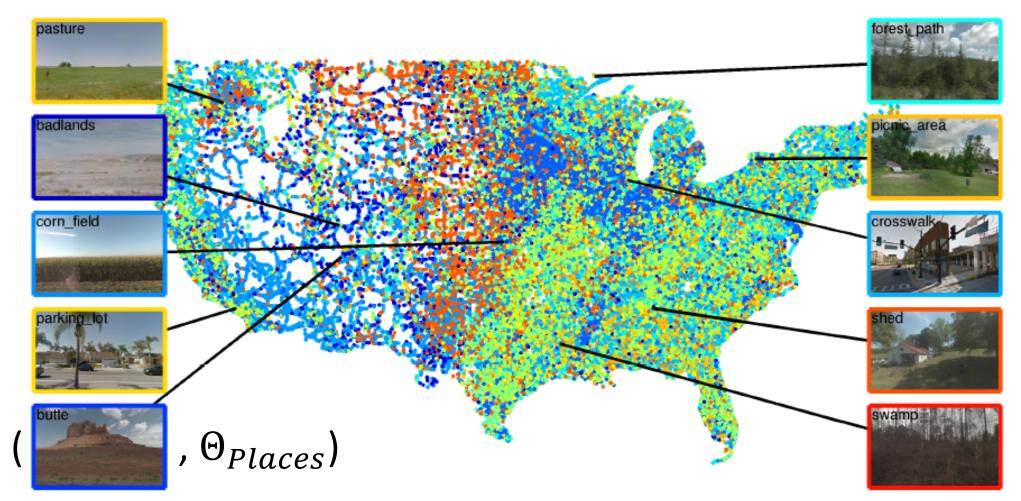
high-res overhead

med-res overhead

low-res overhead

ICCV 2015

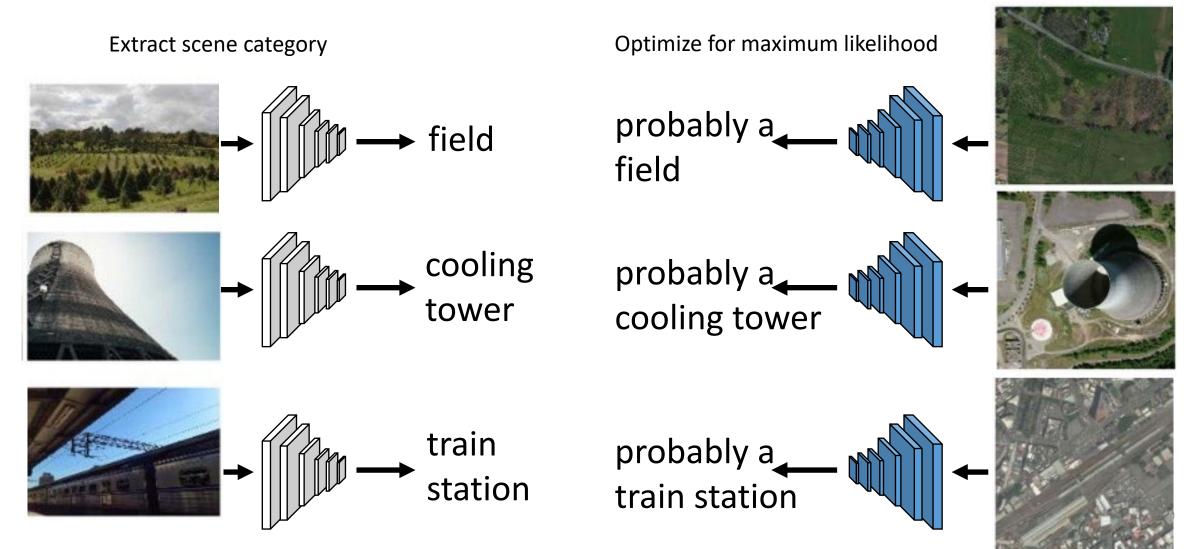
Scene Categories are Location Dependent



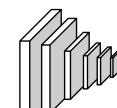
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In *Advances in Neural Information Processing Systems*, 2014.

 f_g

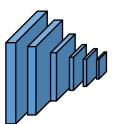
Learning to Predict Ground-Level Scene Categories from Overhead Imagery



Ad-Hoc Mapping Using a Single Query Image

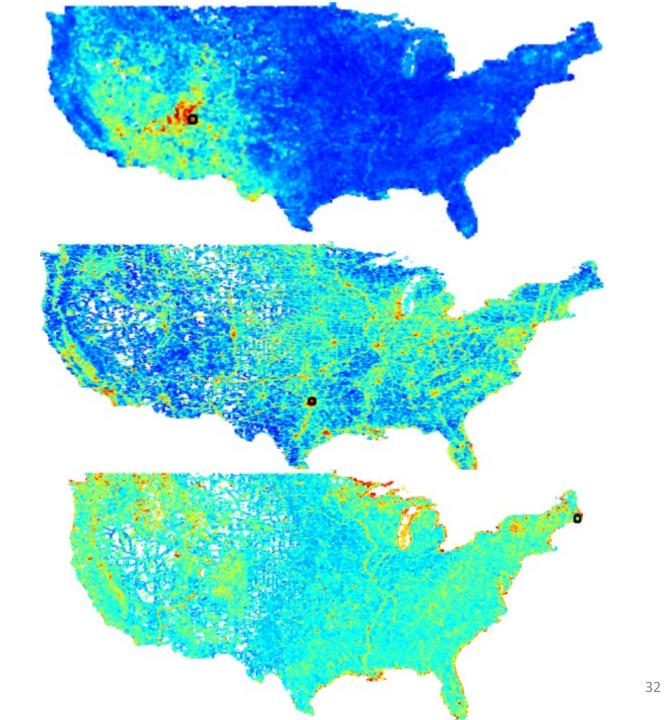


Description of query image



Description of location

Examples of Ad-hoc Maps



Three Examples

- Scene classification
- Semantic segmentation
- Object detection

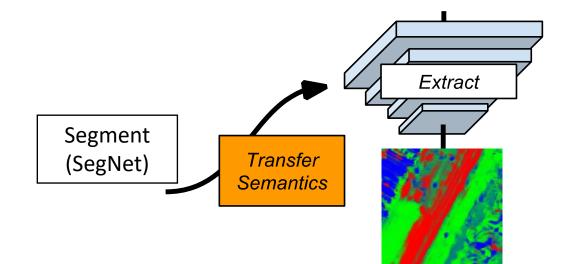
Similar Idea; Richer Supervision

Segment (SegNet)

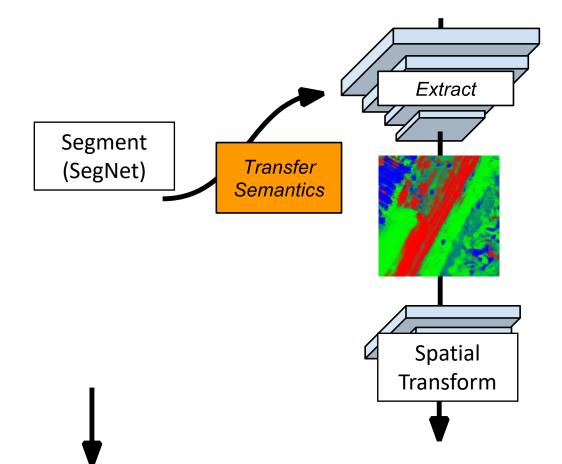
•

CVPR 2017

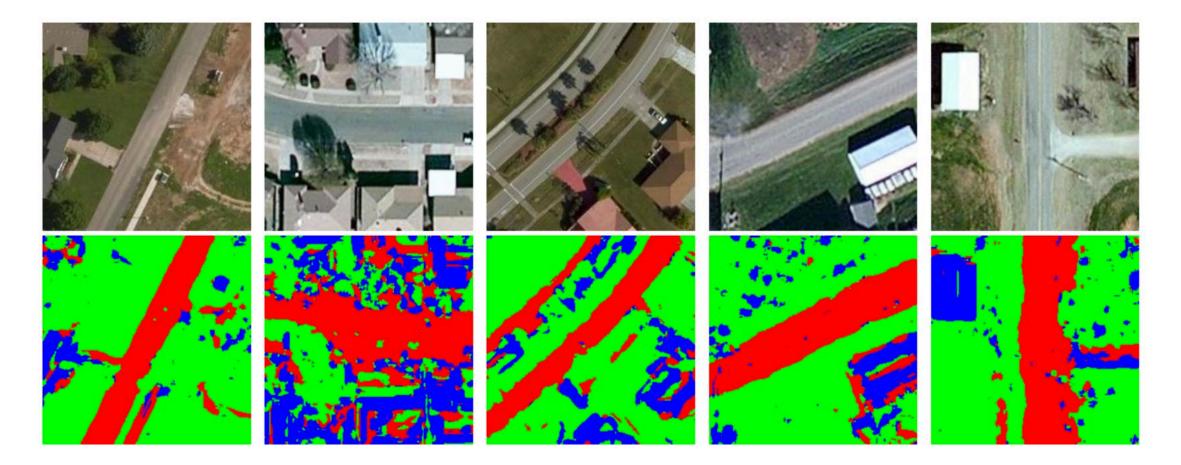
Similar Idea; Richer Supervision



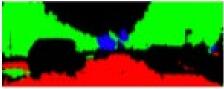
Similar Idea; Richer Supervision

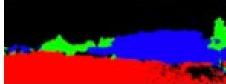


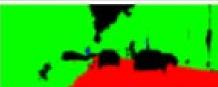
Segmentation without Labeled Satellite Imagery

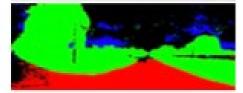


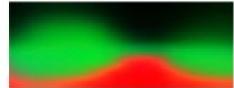
Application: Panorama Orientation Estimation









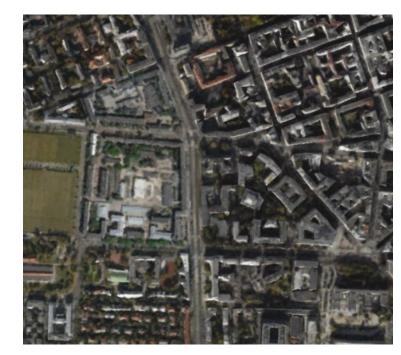


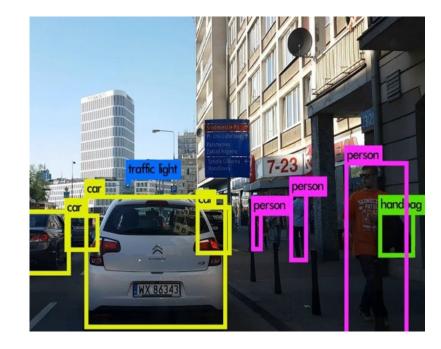
Application: Synthesizing Ground-Level Images

Three Examples

- Scene classification
- Semantic segmentation
- Object detection

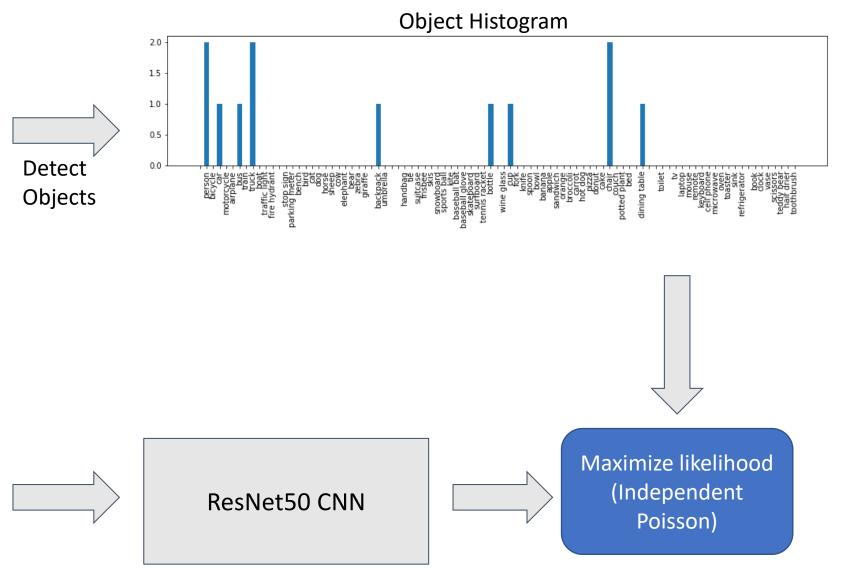
IGARSS 2018

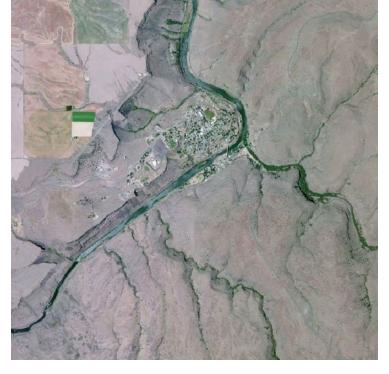




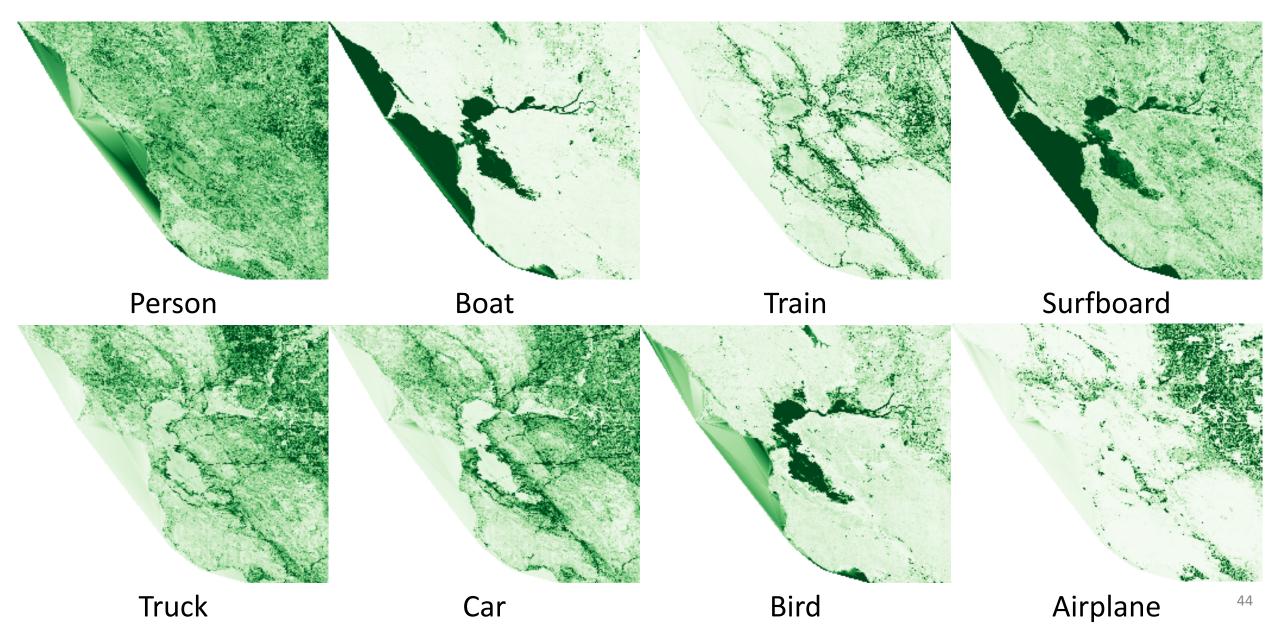
Dataset and Pre-Processing

- 551,851 Geotagged Flickr Images (from CVUSA Dataset)
- Use Faster R-CNN to detect 91 Object Classes (from MSCOCO)





Satellite-Based Expectation of "Objects Per Image"



Maximal Expectation Images

Truck

Car

Bird

Research Theme # 2

Include differentiable domain approximations in the network.

Objective: Estimate Spatial Distribution of Some Object Type

Satellite Image

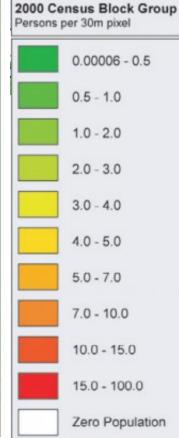
Population Density

ACM SIGSPATIAL 2018

Traditional Approaches

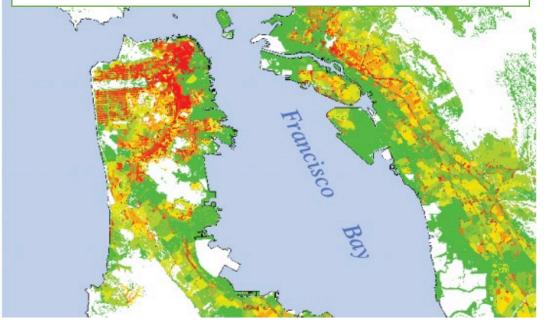
Manual Census + Choropleth

- Expensive data collection •
- Low temporal frequency ٠
- Low spatial resolution •
- Shows people living in unlikely places (e.g., SFO) •



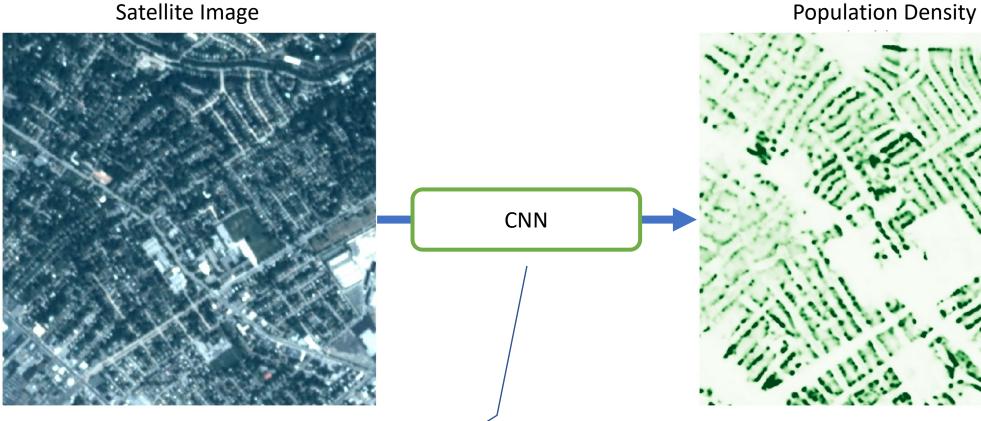
Manual Census + Dasymetric Mapping

- Improves spatial distribution (usually)
- Only redistributes densities
- Requires accurate foundation data
- Requires object-type specific assumptions



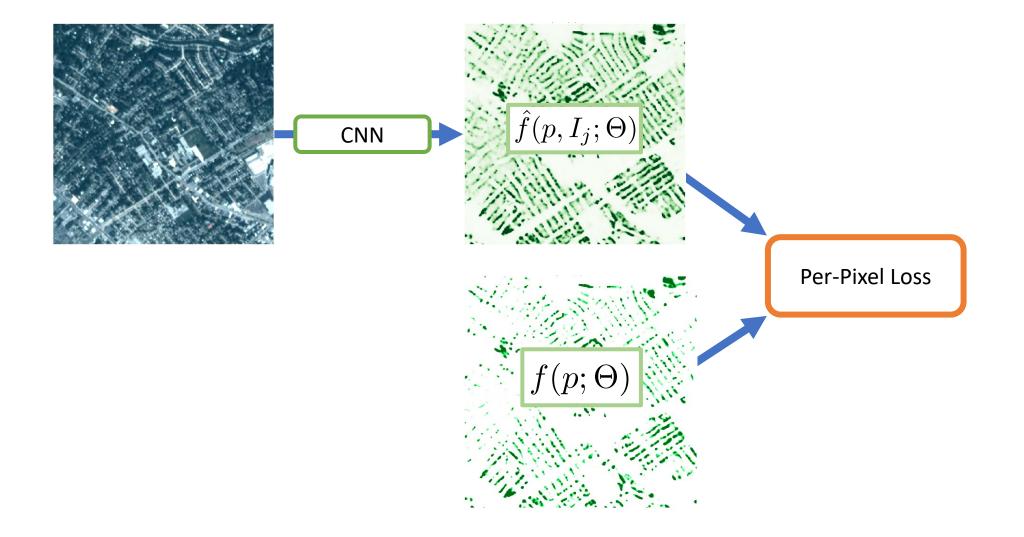
Our Approach: Predict Spatial Distributions Directly from Satellite Imagery

Satellite Image

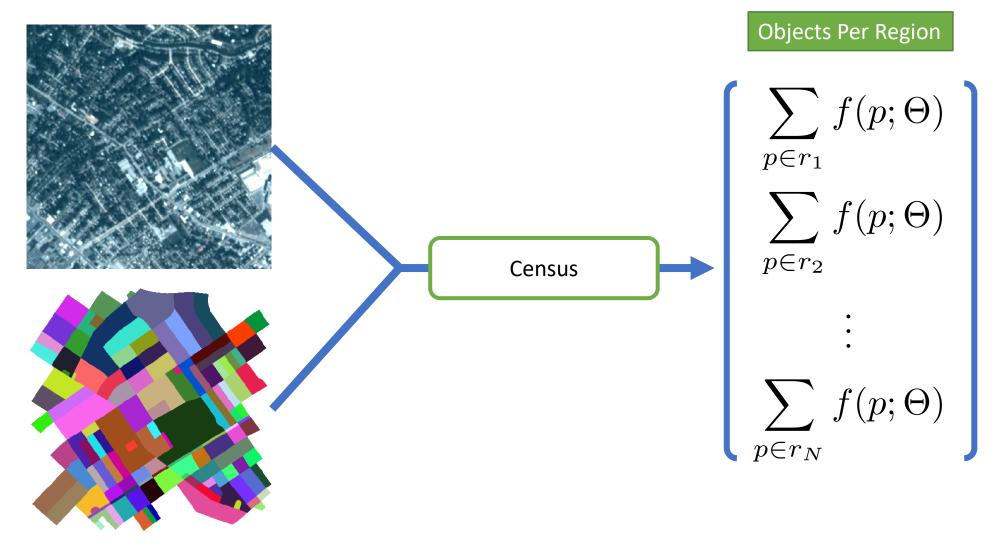


Any pixel-level labeling CNN can work.

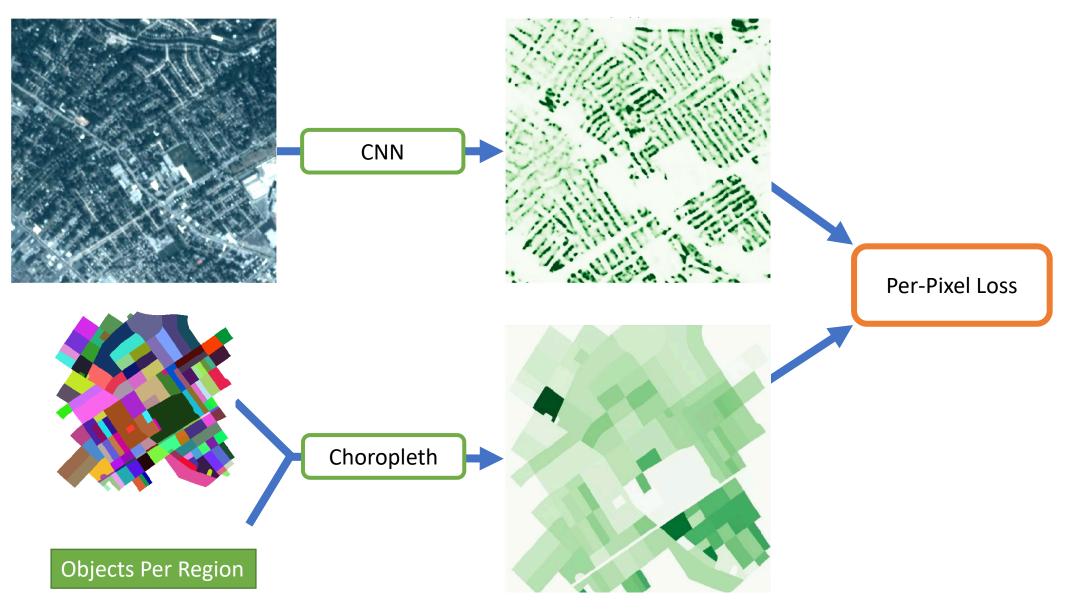
The Ideal Scenario: Pixel-Level Training Data



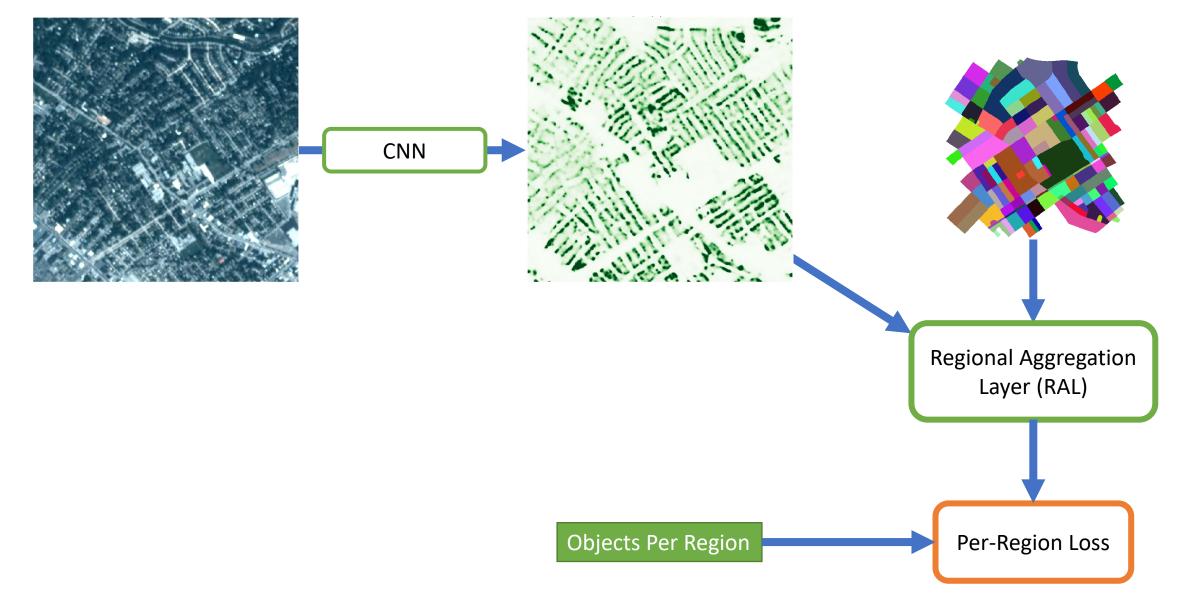
The Problem

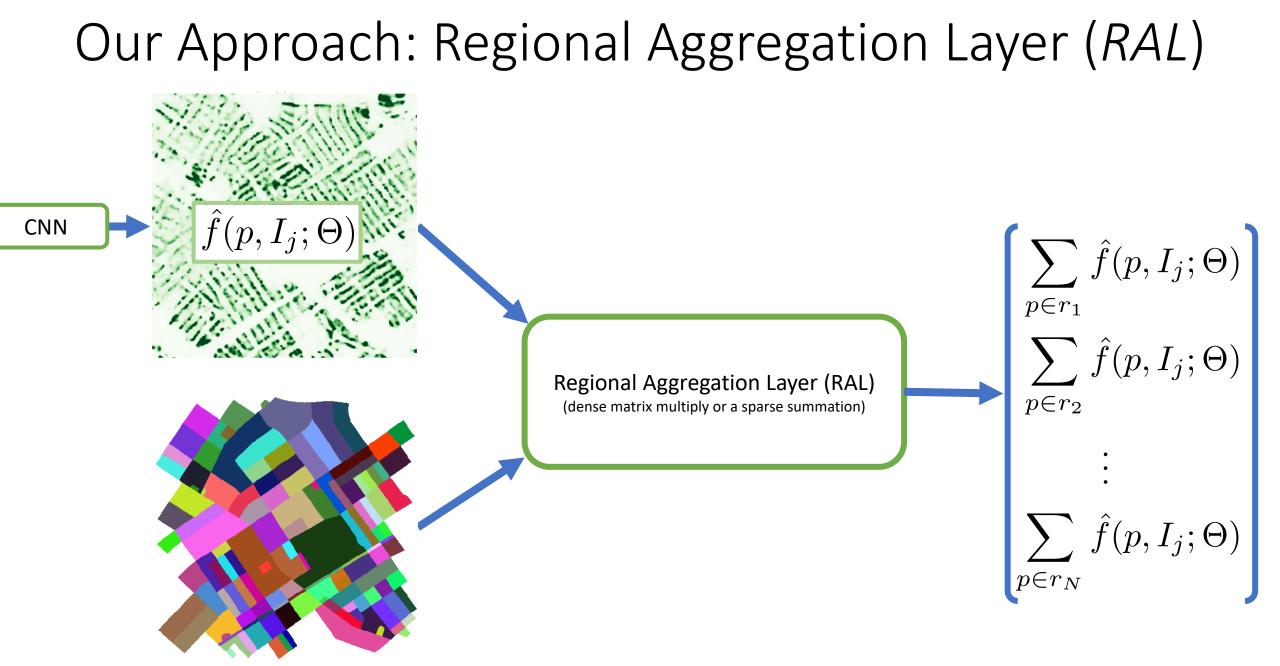


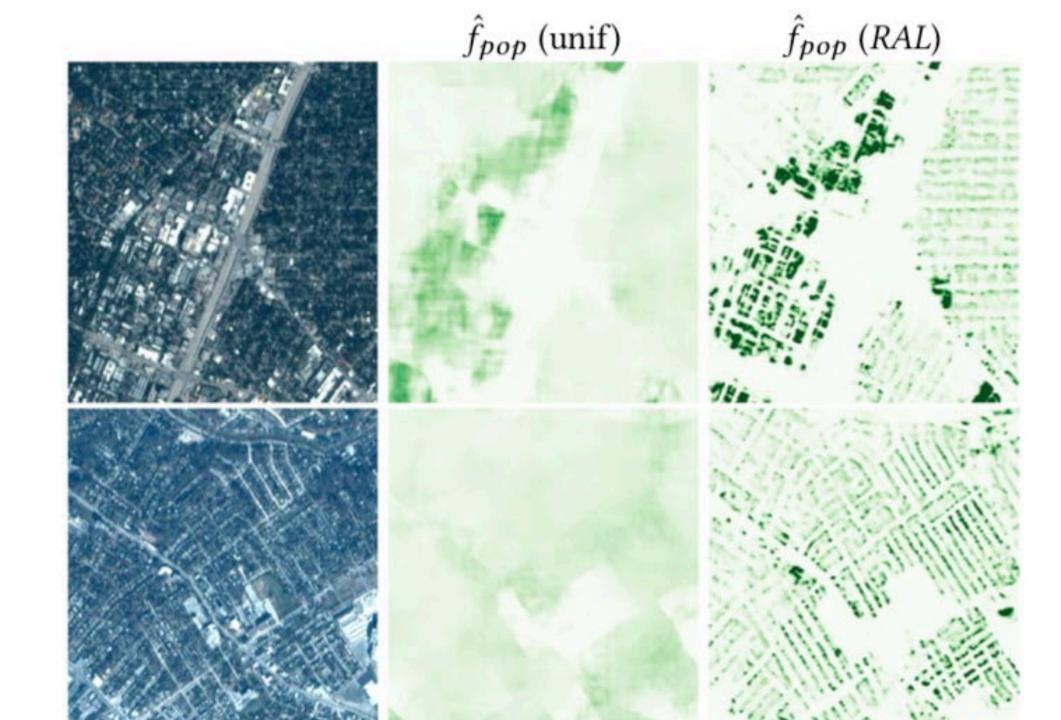
Naïve Approach: Assume Uniform Distribution (unif)

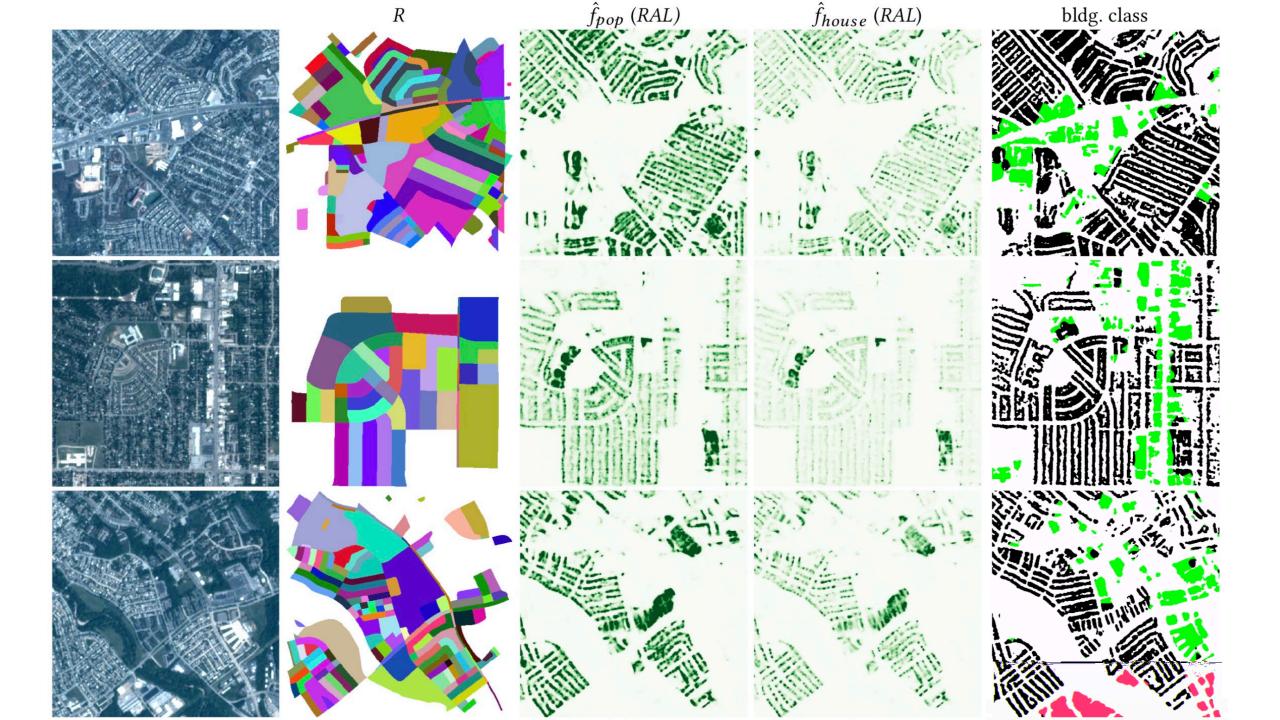


Our Approach: Regional Aggregation Layer (RAL)









Conclusions

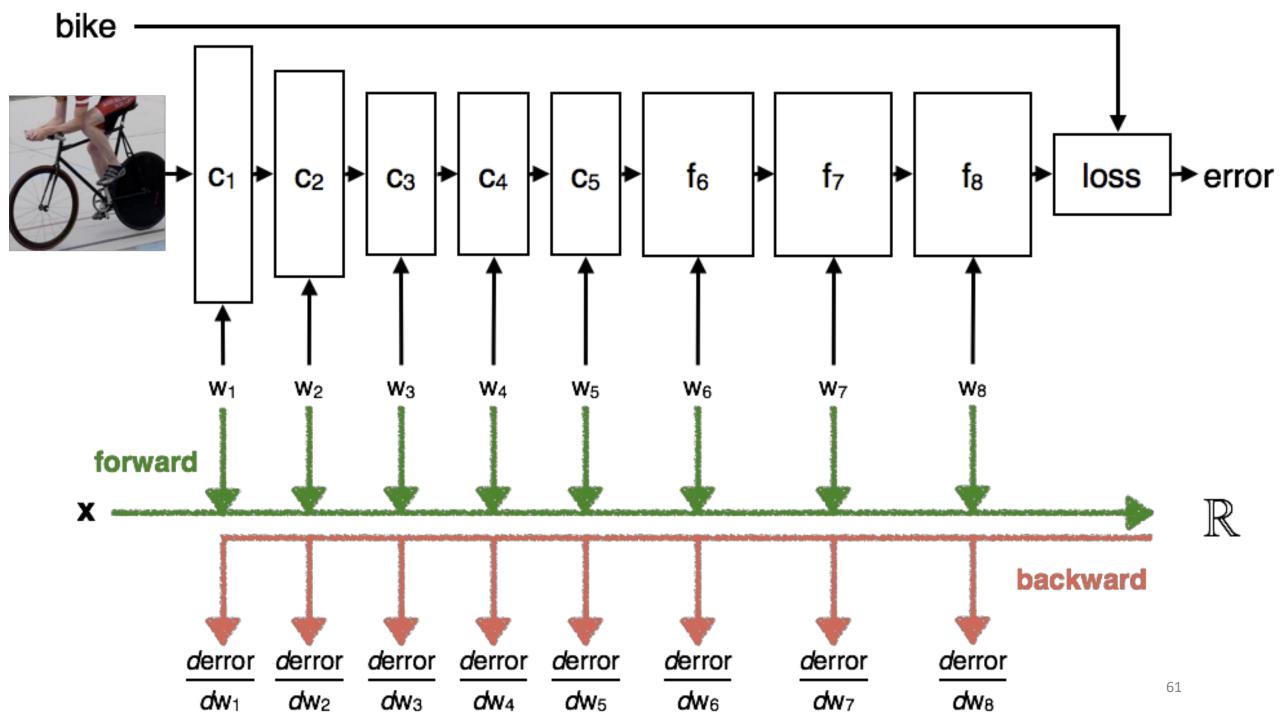
- In the midst of a revolution
- Driven by deep learning (and availability of digital data)
- Practical tools for many domains, but requires teamwork

Thank You

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1553116. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Additional Funding Acknowledgements: Google Faculty Research Award, IARPA (Finder), AWS Research Education Grant, NVIDIA Hardware Donation

Questions?

Backup Slides



Easy to Use Pre-Trained Neural Networks

Python Code:

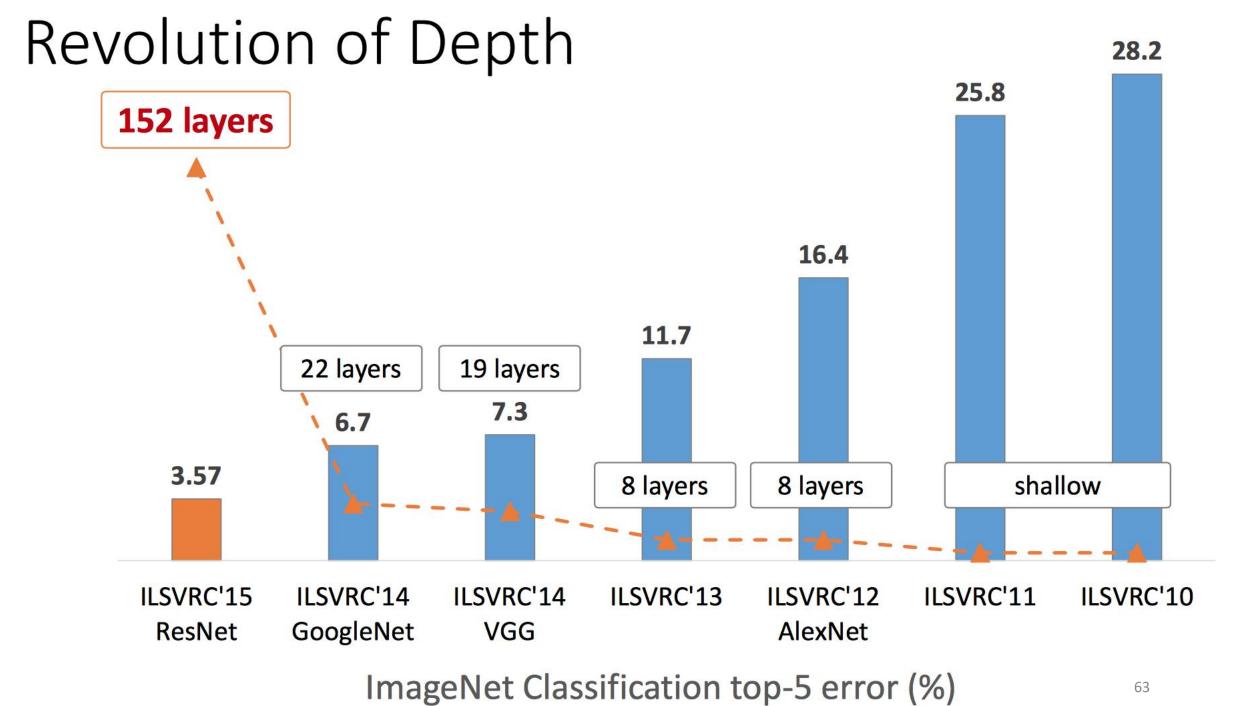
load the trained model
model = ResNet50(weights='imagenet')

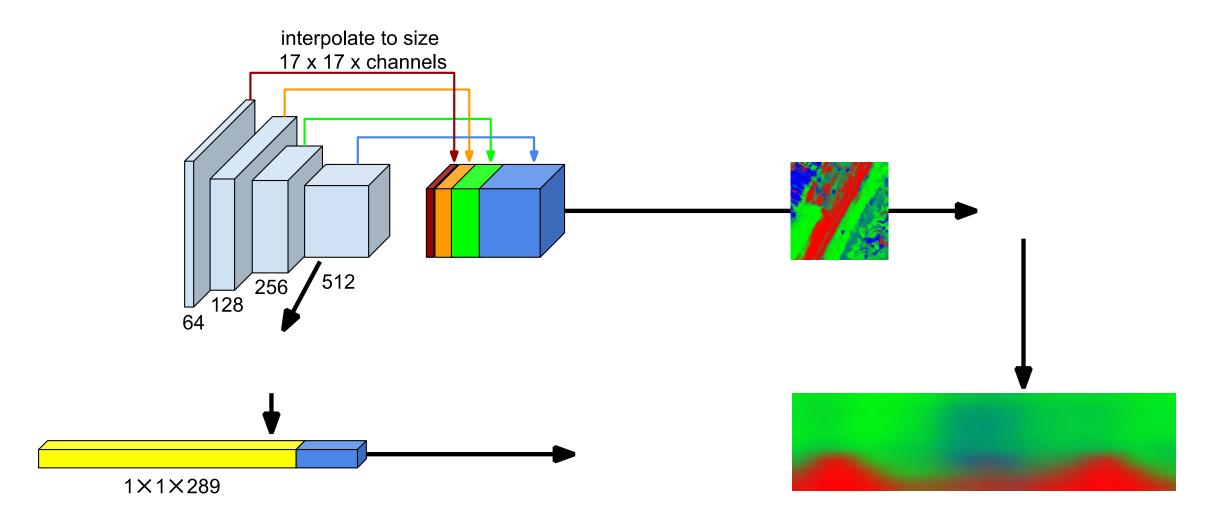
load the image
img = load_image("image.jpg")

```
# make the prediction
preds = model.predict(x)
```

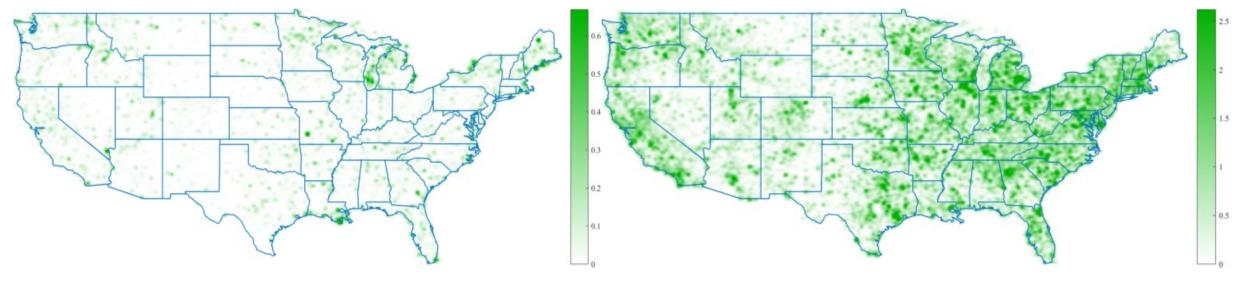
Predictions:

- 48%: sorrel
- 38%: worm fence
- 6%: ox
- ...





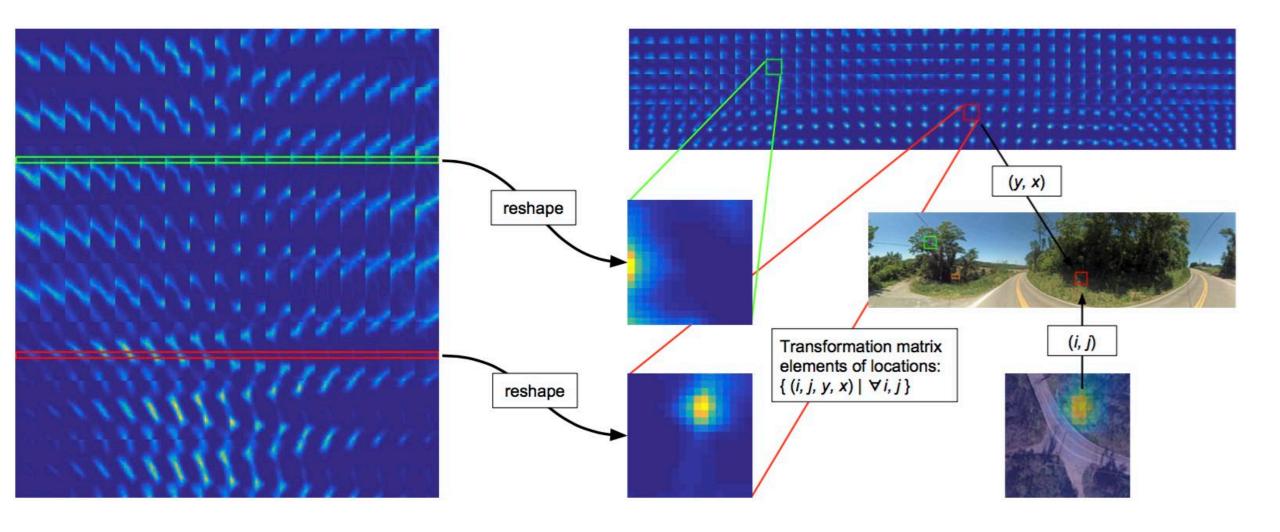
Class-Conditional Expectation of "Objects Per Image"





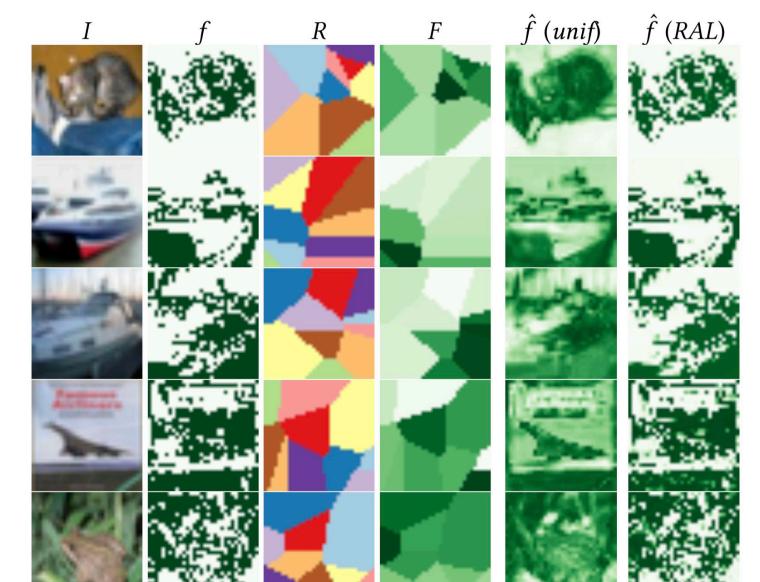
Train

Truck

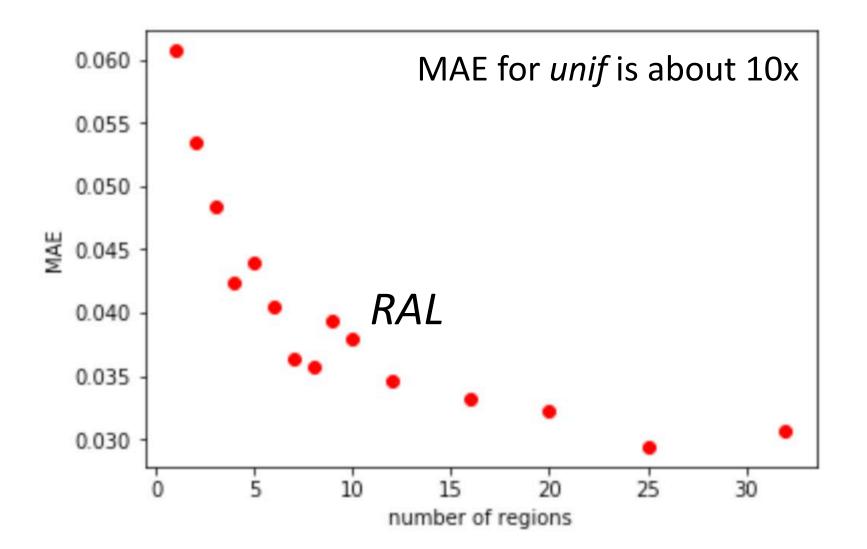


Evaluation (Synthetic Data)

- Setup:
 - Imagery: CIFAR (~85/15% split)
 - **Density:** random, binary, based on pixel values
 - Regions: 10 random Voronoi cells.
- Network:
 - Architecture:
 - Shallow CNN w/ 1x1 convolutions
 - "Softplus" activation on output
 - Training:
 - Loss: mean average error (MAE)
 - Standard optimization method



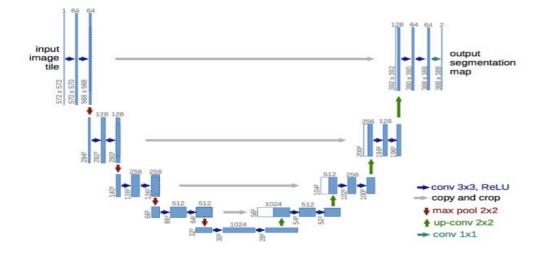
Quantitative Results



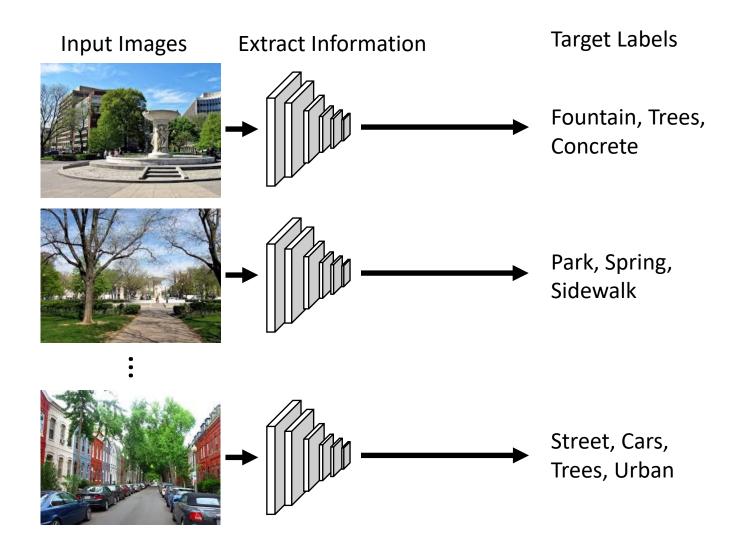
Evaluation (Census Data)

• Setup:

- Labels: 2010 US Census
 - Housing and Population Counts (block group)
 - Train: 11 cities (~14,000 km²)
 - Test: Dallas and Baltimore (~3,000 km²)
- Imagery:
 - 3m (GSD) RGB Imagery from PlanetScope
- Network:
 - Architecture:
 - Standard U-Net Architecture (Ronneberger; MICCAI 2015)
 - "Softplus" activation on output
 - Two heads: population and housing counts
 - Training:
 - Loss: mean average error (MAE)
 - Standard optimization method

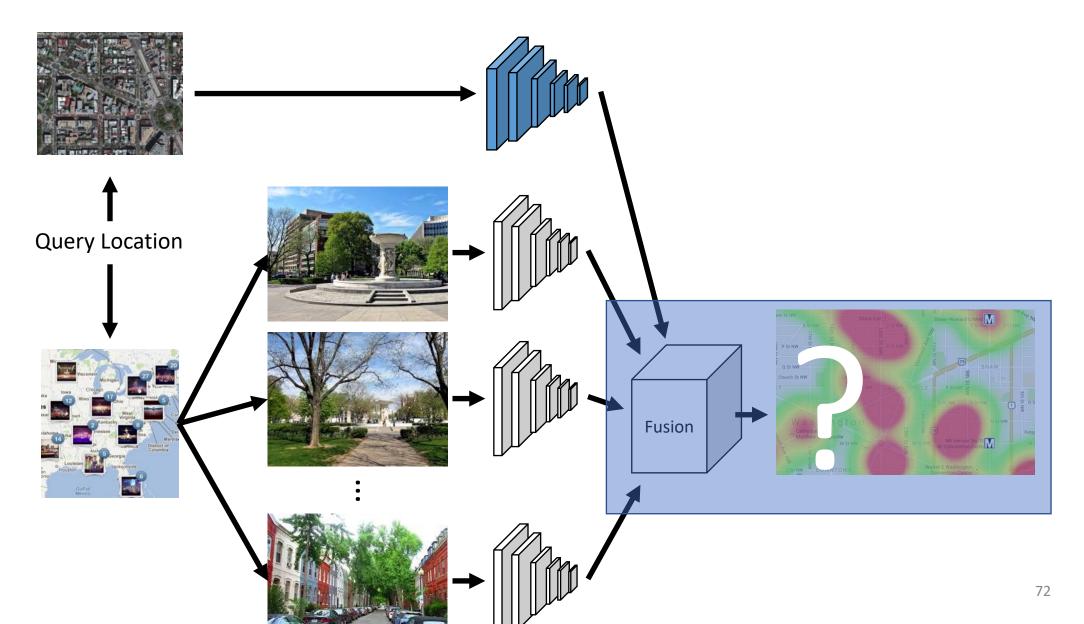


Standard Image-Driven Mapping

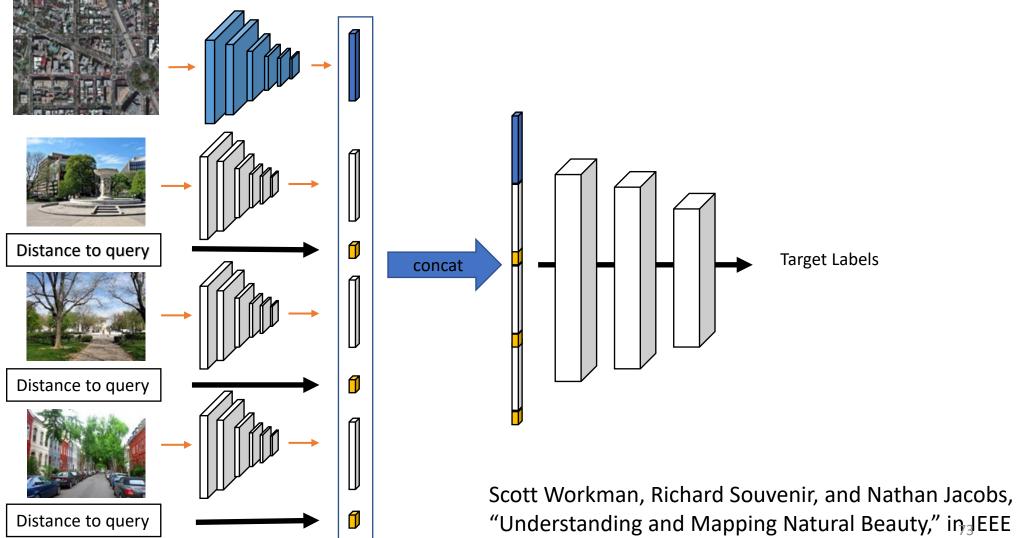


Standard Image-Driven Mapping

Crossview Image-Driven Mapping



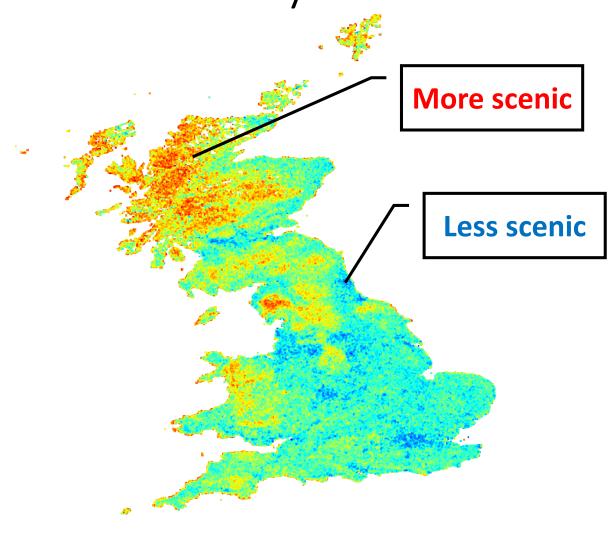
Architecture #1

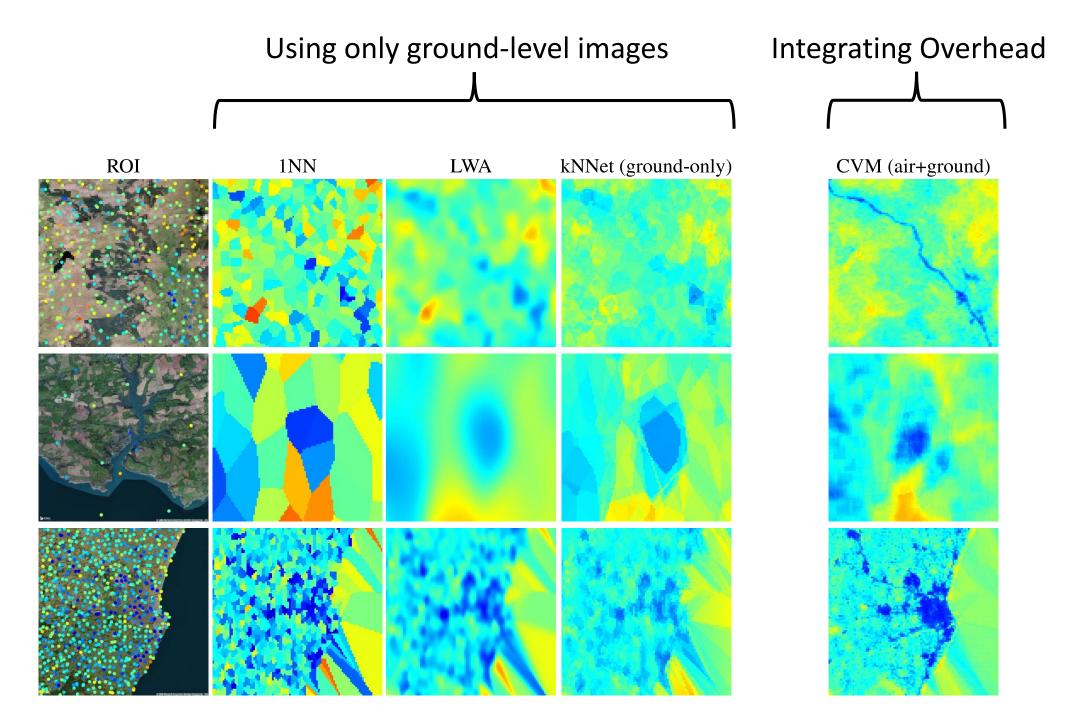


International Conference on Computer Vision (ICCV), 2017.

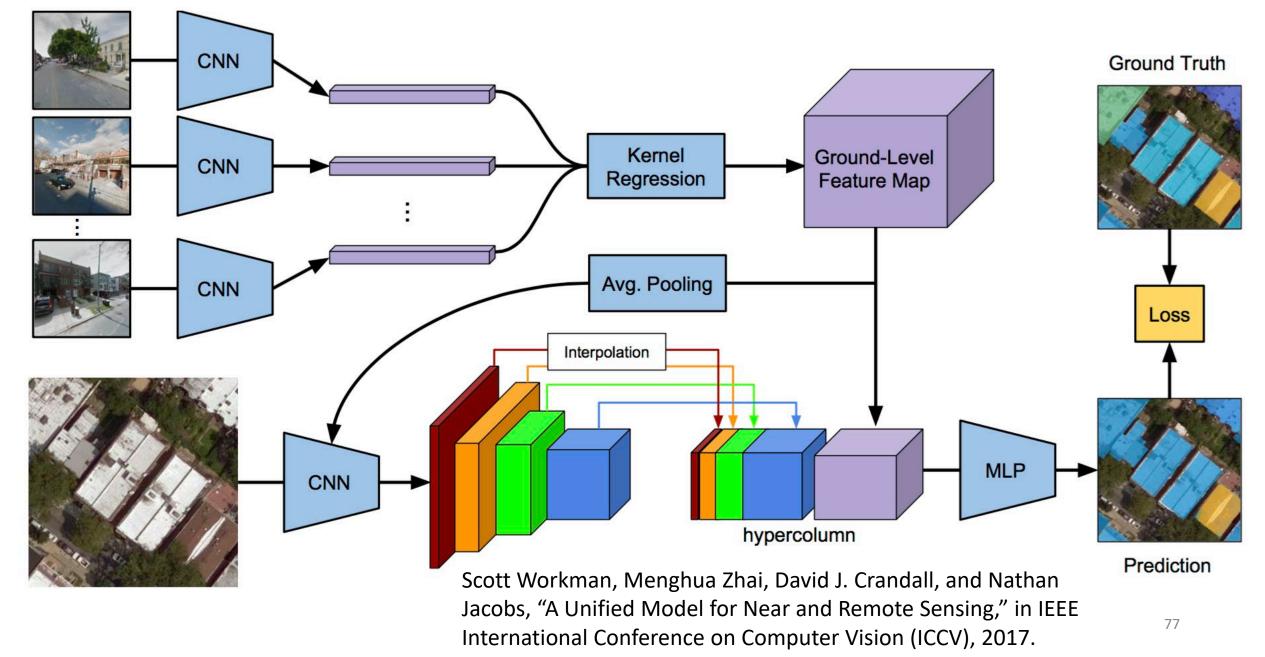
Case Study: Mapping Natural Beauty

ScenicOrNot Dataset: 212,019 manually annotated geotagged ground-level images





Architecture #2



Evaluation Dataset

Brooklyn:

- 73,921 non-overlapping overhead images (Bing Maps).
- 139,327 street-level panoramas (Google Street View).
- 4,361 overhead images held-out for testing.

Queens (held-out):

- 10,044 non-overlapping overhead images (Bing Maps).
- 38,603 street-level panoramas (Google Street View)

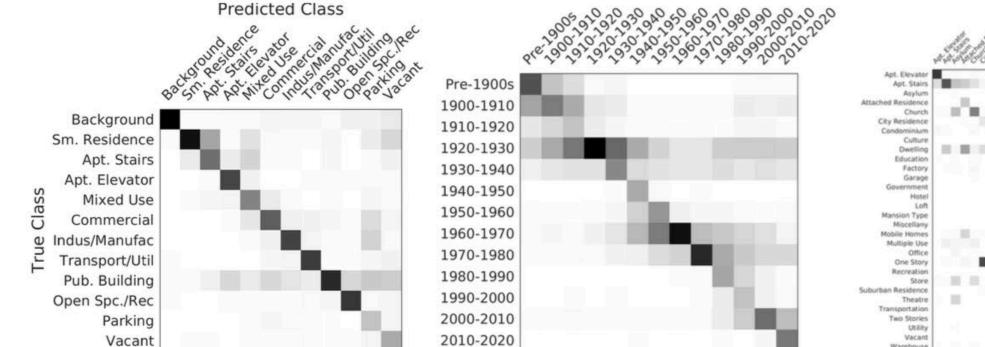
Pixel-Level Annotations (from NYC GIS)

Building Age

Land Use

Table 3: Queens evaluation results (top-1 accuracy).

	Age	Function	Landuse
random	06.80%	00.49%	08.41%
proximate	25.27%	22.50%	47.40%
grid	27.47%	26.62%	67.50%
remote	26.06%	29.85%	69.27%
unified (uniform)	29.68%	33.64%	68.08%
unified (adaptive)	29.76%	34.13%	70.55%



Results

