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Goal: Automatically 
describe the world in 
rich detail, using all 
available data.

Making maps using 
images

P( attribute | location, time)



Goal: Automatically 
describe the world in 
rich detail, using all 
available data.

Making maps using 
images

image = Camera(location, time)
P( attribute | image )



Two Parts

1. The ongoing revolution in automated perception.

2. My work on image-driven mapping.
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Computer Vision is finally useful!
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Object DetectionImage/Scene Classification Image Segmentation

Cityscapes Dataset

Deep (machine) learning is the reason.
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Neural Network

Deep Learning

Source: Google Trends

Computer Vision

Start graduate school 
in computer vision

Start faculty 
position

Switched my group 
to “deep learning”

“Deep learning” 
era beings

Maximum hype?
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ImageNet Large Scale Visual Recognition Challenge

• Task: Classify an image into one of 1000 categories
• guacamole
• oxcart
• cradle
• australian terrier
• trimaran
• submarine
• …

• 1,200,000 training images
• 100,000 test images Krizhevsky
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https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/

https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/


Deep 
Learning

Bigger 
Datasets

Larger Models Faster 
Computers

Lots of 
Incremental 

Improvements
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(simpler) human 
written code

machine learning 
model “dog”

deep learning model
(e.g., convolutional neural network)

“golden retriever 
puppy”
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Deep Convolutional Neural Networks

11
in

out

𝑦𝑦 = 𝑔𝑔(�
𝑖𝑖

𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏)

𝑦𝑦 = 𝑓𝑓(𝒙𝒙;𝒘𝒘)

𝑔𝑔(. )

𝑤𝑤1
𝑤𝑤2
𝑤𝑤3
𝑏𝑏



A (Shallow) Cat Detection Neural Network
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Minimize Loss to Solve for Weights
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Instead of connecting to all nodes in the previous layer, connect locally.Deep Convolutional Neural Networks
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Examples of Learned Convolutions
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Shallow Convolutional Neural Network (1998)
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Gradient-based learning applied to document recognition
Y LeCun, L Bottou, Y Bengio, P Haffner, 1998



Deep Convolutional Neural Networks (2012-)
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Deep neural network “sinkhole!”

De
ep ?

Applied to a Task from Geology
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human written code
(identify potential 

sinkholes, compute 
features)

shallow neural 
network “sinkhole?”M

L

Junfeng Zhu, Nolte AM., Jacobs N., Ye M. 2019. Incorporating Machine 
Learning with LiDAR for Delineating Sinkholes. In: Kentucky Water Resources 
Annual Symposium.



SinkholesSurface Module

Overhead Module

Point-cloud Module

Construction

Oil wells

Damaged

Task Module

Task Module

Task Module

Task Module

Fusion Module

Going a few steps further…
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Two Parts

1. The ongoing revolution in automated perception.

2. My work on image-driven mapping.
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Research Theme # 1
Ground-level images as a supervisory signal 
for overhead image interpretation.
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Convolutional Neural 
Networks (CNNs)

Essential Building Blocks

22

Labels

Large Labeled Datasets

Images



Training a CNN
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True Label

Error

Predicted Label

1
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Convolutional Neural 
Networks (CNNs)

Challenge with Remote Sensing

24

Labels

Large Labeled Datasets

Images



Ground-Level Images as a Supervisory Signal
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Weak Labels

Geographic 
Location

Predicted Labels

Loss

Existing CNN

New CNN



Three Examples
• Scene classification
• Semantic segmentation
• Object detection
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CVUSA: A Large Training Database of Ground-
Level and Aerial Image Pairs

ground-level image high-res overhead med-res overhead low-res overhead

...
27ICCV 2015



Scene Categories are Location Dependent
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𝑓𝑓𝑔𝑔 (                , Θ𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑃𝑃𝑃𝑃)
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene 
recognition using places database. In Advances in Neural Information Processing Systems, 2014.



Learning to Predict Ground-Level Scene 
Categories from Overhead Imagery
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Extract scene category

field

cooling
tower

train
station

probably a 
field

probably a
cooling tower

probably a 
train station

Optimize for maximum likelihood



Ad-Hoc Mapping Using a Single Query Image

Description of 
query image

Description of 
location

30



Examples of Ad-hoc Maps
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Three Examples
• Scene classification
• Semantic segmentation
• Object detection
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Segment
(SegNet)

Similar Idea;
Richer Supervision

34CVPR 2017



Segment
(SegNet)

Similar Idea;
Richer Supervision
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Segment
(SegNet)

Spatial
Transform

Similar Idea;
Richer Supervision
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Segmentation without 
Labeled Satellite Imagery
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Application: Panorama Orientation Estimation
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Application: 
Synthesizing 
Ground-Level 
Images
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Three Examples
• Scene classification
• Semantic segmentation
• Object detection
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Dataset and Pre-Processing

• 551,851 Geotagged Flickr Images (from CVUSA Dataset)
• Use Faster R-CNN to detect 91 Object Classes (from MSCOCO)
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ResNet50 CNN
Maximize likelihood 

(Independent 
Poisson)

Detect
Objects

Object Histogram



Person

Truck

Boat

Car

Train

Bird

Surfboard

Airplane 44

Satellite-Based Expectation of “Objects Per Image”



Person

Truck

Boat

Car

Train

Bird

Surfboard

Airplane
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Maximal Expectation Images



Research Theme # 2
Include differentiable domain 
approximations in the network.
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Objective: Estimate Spatial Distribution of Some Object Type

Satellite Image Population Density

47ACM SIGSPATIAL 2018



Traditional Approaches

48

Manual Census + Dasymetric MappingManual Census + Choropleth

https://pubs.usgs.gov/fs/2008/3010/

• Expensive data collection
• Low temporal frequency
• Low spatial resolution
• Shows people living in unlikely places (e.g., SFO)

• Improves spatial distribution (usually)
• Only redistributes densities
• Requires accurate foundation data 
• Requires object-type specific assumptions



Our Approach: Predict Spatial Distributions Directly 
from Satellite Imagery

Satellite Image Population Density

CNN
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Any pixel-level labeling CNN can work.



Per-Pixel Loss

The Ideal Scenario: Pixel-Level Training Data
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CNN



The Problem
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Census

Objects Per Region



Per-Pixel Loss
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CNN

Objects Per Region

Choropleth

Naïve Approach: Assume Uniform Distribution (unif)



Regional Aggregation 
Layer (RAL)
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CNN

Objects Per Region Per-Region Loss

Our Approach: Regional Aggregation Layer (RAL)



Regional Aggregation Layer (RAL)
(dense matrix multiply or a sparse summation)
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Our Approach: Regional Aggregation Layer (RAL)

CNN
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Conclusions

• In the midst of a revolution

• Driven by deep learning (and availability of digital data)

• Practical tools for many domains, but requires teamwork
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Thank You

This material is based upon work supported by the National Science Foundation under Grant No. IIS-1553116. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Additional Funding Acknowledgements: Google Faculty Research Award, IARPA (Finder), AWS Research Education Grant, NVIDIA Hardware Donation 58
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Questions?
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Backup Slides

60
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Easy to Use Pre-Trained Neural Networks 

• 48%: sorrel

• 38%: worm fence

• 6%: ox

• …

# load the trained model
model = ResNet50(weights='imagenet’)

# load the image
img = load_image(“image.jpg”)

# make the prediction
preds = model.predict(x)

Python Code:

Predictions:
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By Wes Blevins (shotup) [CC BY-SA 2.5  
(https://creativecommons.org/licenses/by-sa/2.5)], via Wikimedia 
Commons
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Boat

Train

Person

Truck

Class-Conditional Expectation of “Objects Per Image”
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Evaluation (Synthetic Data)

• Setup:
• Imagery: CIFAR (~85/15% split)
• Density: random, binary, based 

on pixel values
• Regions: 10 random Voronoi cells.

• Network:
• Architecture:

• Shallow CNN w/ 1x1 convolutions
• “Softplus” activation on output

• Training:
• Loss: mean average error (MAE)
• Standard optimization method
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Quantitative Results
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RAL

MAE for unif is about 10x



Evaluation (Census Data)

• Setup:
• Labels: 2010 US Census

• Housing and Population Counts (block group)
• Train: 11 cities (~14,000 km2)
• Test: Dallas and Baltimore (~3,000 km2)

• Imagery:
• 3m (GSD) RGB Imagery from PlanetScope

• Network: 
• Architecture:

• Standard U-Net Architecture (Ronneberger; MICCAI 
2015)

• “Softplus” activation on output
• Two heads: population and housing counts

• Training:
• Loss: mean average error (MAE)
• Standard optimization method

69



Standard Image-Driven Mapping
Input Images Extract Information

…

Target Labels

Fountain, Trees, 
Concrete

Park, Spring, 
Sidewalk

Street, Cars, 
Trees, Urban
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Standard Image-Driven Mapping

Query Location

Nearby Images Extract Information

Fusion

…

71



Crossview Image-Driven Mapping

Query Location

Fusion

… ?
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Scott Workman, Richard Souvenir, and Nathan Jacobs, 
“Understanding and Mapping Natural Beauty,” in IEEE 
International Conference on Computer Vision (ICCV), 2017.

Architecture #1

Distance to query

Distance to query

Distance to query

concat Target Labels
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Case Study: Mapping Natural Beauty

ScenicOrNot Dataset: 212,019 
manually annotated geotagged 
ground-level images

More scenic

Less scenic
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Using only ground-level images Integrating Overhead
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Scott Workman, Menghua Zhai, David J. Crandall, and Nathan 
Jacobs, “A Unified Model for Near and Remote Sensing,” in IEEE 
International Conference on Computer Vision (ICCV), 2017.

Architecture #2
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Evaluation Dataset
Brooklyn:
• 73,921 non-overlapping overhead images (Bing Maps).
• 139,327 street-level panoramas (Google Street View).
• 4,361 overhead images held-out for testing.
Queens (held-out):
• 10,044 non-overlapping overhead images (Bing Maps).
• 38,603 street-level panoramas (Google Street View)

Pixel-Level Annotations
(from NYC GIS)
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Results
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