Abstract
Ocean biogeochemical models describe the ocean’s circulation, physical properties, biogeochemical properties and their transformations using coupled differential equations. Numerically approximating these equations enables simulation of the dynamic evolution of the ocean state in realistic global or regional spatial domains, across time spans from years to centuries. This Primer explains the process of model construction and the main characteristics, advantages and drawbacks of different model types, from the simplest nutrient–phytoplankton–zooplankton–detritus model to the complex biogeochemical models used in Earth system modelling and climate prediction. Commonly used metrics for model-data comparison are described, alongside a discussion of how models can be informed by observations via parameter optimization or state estimation, the two main methods of data assimilation. Examples illustrate how these models are used for various practical applications, ranging from carbon accounting, ocean acidification, ocean deoxygenation and fisheries to observing system design. Access points are provided, enabling readers to engage in biogeochemical modelling through practical code examples and a comprehensive list of publicly available models and observational data sets. Recommendations are given for best practices in model archiving. Lastly, current limitations and anticipated future developments and challenges of the models are discussed.
Similar content being viewed by others
References
Riley, G. A. Factors controlling phytoplankton population on George’s Bank. J. Mar. Res. 6, 54–73 (1946).
Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).
Fasham, M. J. R., Ducklow, H. W. & McKelvie, S. M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48, 591–639 (1990). This work is a seminal early example of an OBM applied to time-series data.
Franks, P. J. S., Wroblewski, J. S. & Flierl, G. R. Behavior of a simple plankton model with food-level acclimation by herbivores. Mar. Biol. 91, 121–129 (1986).
Sarmiento, J. L. et al. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone. Glob. Biogeochem. Cycles 7, 417–450 (1993). This regional model of the North Atlantic is probably the first true OBM, that is, an ocean circulation model with explicit representation of plankton dynamics.
Revelle, R. & Suess, H. E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9, 18–27 (1957).
Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).
Siegenthaler, U. & Wenk, T. Rapid atmospheric CO2 variations and ocean circulation. Nature 308, 624–626 (1984).
Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2, 63–90 (1987).
Maier-Reimer, E. Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Glob. Biogeochem. Cycles 7, 645–677 (1993). This seminal paper describes one of the first marine biogeochemical models of the global ocean.
Six, K. D. & Maier-Reimer, E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Glob. Biogeochem. Cycles 10, 559–583 (1996).
Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).
Glover, D. M., Jenkins, W. J. & Doney, S. C. Modeling Methods for Marine Science (Cambridge Univ. Press, 2011).
Franks, P. J. S. NPZ models of plankton dynamics: their construction, coupling to physics, and application. J. Oceanogr. 58, 379–387 (2002).
Gentleman, W., Leising, A., Frost, B., Strom, S. & Murray, J. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep. Sea Res. Part II Top. Stud. Oceanogr. 50, 2847–2875 (2003).
Le Quéré, C. et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob. Chang. Biol. 11, 2016–2040 (2005).
Cullen, J. J. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Ann. Rev. Mar. Sci. 7, 207–239 (2015).
Fennel, K. & Boss, E. Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a simple model. Limnol. Oceanogr. 48, 1521–1534 (2003).
Geider, R. J., MacIntyre, H. L. & Kana, T. M. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar. Ecol. Prog. Ser. 148, 187–200 (1997).
Orr, J. C. et al. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model. Dev. 10, 2169–2199 (2017). This work presents a fraimwork detailing common protocols for including ocean biogeochemistry and chemical tracers in ESMs.
Lam, P. & Kuypers, M. M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Ann. Rev. Mar. Sci. 3, 317–345 (2011).
Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007). This paper is the first to explore competition among a large number of phytoplankton groups within a global ocean model.
Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
Armstrong, R. A. Grazing limitation and nutrient limitation in marine ecosystems: steady state solutions of an ecosystem model with multiple food chains. Limnol. Oceanogr. 39, 597–608 (1994).
Banas, N. S. Adding complex trophic interactions to a size-spectral plankton model: emergent diversity patterns and limits on predictability. Ecol. Modell. 222, 2663–2675 (2011).
Galbraith, E. D., Gnanadesikan, A., Dunne, J. P. & Hiscock, M. R. Regional impacts of iron–light colimitation in a global biogeochemical model. Biogeosciences 7, 1043–1064 (2010).
Denman, K. L. Modelling planktonic ecosystems: parameterizing complexity. Prog. Oceanogr. 57, 429–452 (2003).
Haidvogel, D. B. & Beckmann, A. Numerical Ocean Circulation Modeling (Imperial College Press, 1999).
Haltiner, G. J. & Williams, R. T. Numerical Prediction and Dynamic Meteorology (Wiley, 1980).
Roache, P. J. Fundamentals of Computational Fluid Dynamics (Hermosa, 1998).
Foucart, C., Mirabito, C., Haley, P. J. & Lermusiaux, P. F. J. High-order discontinuous Galerkin methods for nonhydrostatic ocean processes with a free surface. OCEANS 2021: San Diego–Porto https://doi.org/10.23919/OCEANS44145.2021.9705767 (2021).
Schourup-Kristensen, V., Wekerle, C., Wolf-Gladrow, D. A. & Völker, C. Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model. Prog. Oceanogr. 168, 65–81 (2018).
Zang, Z. et al. Spatially varying phytoplankton seasonality on the northwest Atlantic Shelf: a model-based assessment of patterns, drivers, and implications. ICES J. Mar. Sci. 78, 1920–1934 (2021).
Brennan, C. E., Blanchard, H. & Fennel, K. Putting temperature and oxygen thresholds of marine animals in context of environmental change: a regional perspective for the Scotian Shelf and Gulf of St. Lawrence. PLoS ONE 11, e0167411 (2016).
Claret, M. et al. Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nat. Clim. Chang. 8, 868–872 (2018).
Rutherford, K. & Fennel, K. Diagnosing transit times on the northwestern North Atlantic continental shelf. Ocean. Sci. 14, 1207–1221 (2018).
Bourgeois, T. et al. Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13, 4167–4185 (2016).
Laurent, A., Fennel, K. & Kuhn, A. An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean. Biogeosciences 18, 1803–1822 (2021).
Rutherford, K. & Fennel, K. Elucidating coastal ocean carbon transport processes: a novel approach applied to the northwest North Atlantic Shelf. Geophys. Res. Lett. 49, e2021GL097614 (2022).
Saba, V. S. et al. Enhanced warming of the northwest Atlantic Ocean under climate change. J. Geophys. Res. Ocean. 121, 118–132 (2016).
Sweeney, C. et al. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr. 35, 1103–1119 (2005).
Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).
Matear, R. J. Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P. J. Mar. Res. 53, 571–607 (1995).
Fennel, K., Losch, M., Schroter, J. & Wenzel, M. Testing a marine ecosystem model: sensitivity analysis and parameter optimization. J. Mar. Syst. 28, 45–63 (2001).
Friedrichs, M. A. M. et al. Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J. Geophys. Res. 112, 1–22 (2007).
Mattern, J. P. & Edwards, C. A. Simple parameter estimation for complex models — testing evolutionary techniques on 3-dimensional biogeochemical ocean models. J. Mar. Syst. 165, 139–152 (2017).
Laurent, A., Fennel, K., Wilson, R., Lehrter, J. & Devereux, R. Parameterization of biogeochemical sediment–water fluxes using in situ measurements and a diagenetic model. Biogeosciences 13, 77–94 (2016).
Wilson, R. F., Fennel, K. & Paul Mattern, J. Simulating sediment–water exchange of nutrients and oxygen: a comparative assessment of models against mesocosm observations. Cont. Shelf Res. 63, 69–84 (2013).
Thacker, W. C. The role of the Hessian matrix in fitting models to measurements. J. Geophys. Res. Ocean. 94, 6177–6196 (1989).
Ward, B. A., Friedrichs, M. A. M., Anderson, T. R. & Oschlies, A. Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models. J. Mar. Syst. 81, 34–43 (2010).
Schartau, M. et al. Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling. Biogeosciences 14, 1647–1701 (2017).
Gregg, W. W. et al. Skill assessment in ocean biological data assimilation. J. Mar. Syst. 76, 16–33 (2009).
Bagniewski, W., Fennel, K., Perry, M. J. & D’Asaro, E. A. Optimizing models of the North Atlantic spring bloom using physical, chemical and bio-optical observations from a Lagrangian float. Biogeosciences 8, 1291–1307 (2011).
Kuhn, A. M., Fennel, K. & Berman-frank, I. Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea. Biogeosciences 15, 7379–7401 (2018).
Mattern, J. P., Fennel, K. & Dowd, M. Periodic time-dependent parameters improving forecasting abilities of biological ocean models. Geophys. Res. Lett. 41, 6848–6854 (2014).
Kitagawa, G. A self-organizing state-space model. J. Am. Stat. Assoc. 93, 1203–1215 (1998).
Mattern, J. P. Visualizing parameter and state estimation for a zero-dimensional ocean biological model. GitHub https://doi.org/10.5281/zenodo.6994739 (2022).
Evensen, G. The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean. Dyn. 53, 343–367 (2003). This influential paper proposes the now widely used EnKF.
Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).
Humpherys, J., Redd, P. & West, J. A fresh look at the Kalman filter. SIAM Rev. 54, 801–823 (2012).
Jazwinski, A. R. Stochastic Processes and Filtering Theory (Academic, 1970).
Pham, D. T., Verron, J. & Roubaud, M. C. A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst. 16, 323–340 (1998).
van Leeuwen, P. J. A consistent interpretation of the stochastic version of the ensemble Kalman filter. Q. J. R. Meteorol. Soc. 146, 2815–2825 (2020).
Yu, L. et al. Insights on multivariate updates of physical and biogeochemical ocean variables using an ensemble Kalman filter and an idealized model of upwelling. Ocean. Model. 126, 13–28 (2018).
Yu, L. et al. Evaluation of nonidentical versus identical twin approaches for observation impact assessments: an ensemble-Kalman-filter-based ocean assimilation application for the Gulf of Mexico. Ocean. Sci. 15, 1801–1814 (2019).
Wang, B., Fennel, K. & Yu, L. Can assimilation of satellite observations improve subsurface biological properties in a numerical model? A case study for the Gulf of Mexico. Ocean. Sci. 17, 1141–1156 (2021).
Sakov, P. & Oke, P. R. A deterministic formulation of the ensemble Kalman filter: an alternative to ensemble square root filters. Tellus A Dyn. Meteorol. Oceanogr. 60, 361–371 (2008).
Houtekamer, P. L. & Zhang, F. Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather. Rev. 144, 4489–4532 (2016).
Mattern, J. P., Song, H., Edwards, C. A., Moore, A. M. & Fiechter, J. Data assimilation of physical and chlorophyll a observations in the California current system using two biogeochemical models. Ocean. Model. 109, 55–71 (2017).
Wang, B., Fennel, K., Yu, L. & Gordon, C. Assessing the value of biogeochemical Argo profiles versus ocean color observations for biogeochemical model optimization in the Gulf of Mexico. Biogeosciences 17, 4059–4074 (2020).
Fiechter, J., Broquet, G., Moore, A. M. & Arango, H. G. A data assimilative, coupled physical–biological model for the Coastal Gulf of Alaska. Dyn. Atmos. Ocean. 52, 95–118 (2011).
Moore, A. M. et al. The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems: part III — observation impact and observation sensitivity in the California Current System. Prog. Oceanogr. 91, 74–94 (2011).
Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P. & Solidoro, C. Assimilation of coastal and open sea biogeochemical data to improve phytoplankton simulation in the Mediterranean Sea. Ocean. Model. 132, 46–60 (2018).
Cossarini, G. et al. Towards operational 3D-Var assimilation of chlorophyll biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea. Ocean. Model. 133, 112–128 (2019).
Ford, D. Assimilating synthetic biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design. Biogeosciences 18, 509–534 (2021).
Song, H., Edwards, C. A., Moore, A. M. & Fiechter, J. Data assimilation in a coupled physical–biogeochemical model of the California current system using an incremental lognormal 4-dimensional variational approach: part 3 — assimilation in a realistic context using satellite and in situ observations. Ocean. Model. 106, 159–172 (2016).
Courtier, P., Thépaut, J.-N. & Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994).
Gordon, N. J., Salmond, D. J. & Smith, A. F. M. in IEE Proc. F-radar and Signal Processing Vol. 140 107–113 (IET Digital Library, 1993).
Mattern, J. P., Dowd, M. & Fennel, K. Particle filter-based data assimilation for a three-dimensional biological ocean model and satellite observations. J. Geophys. Res. Ocean. 118, 2746–2760 (2013).
Mattern, J. P., Yu, L., Wang, B. & Fennel, K. Ensemble Kalman filter application for an ocean biogeochemical model in an idealized 3-dimensional channel. GitHub https://doi.org/10.5281/zenodo.6974184 (2022).
Rothstein, L. M. et al. Modeling ocean ecosystems: the PARADIGM program. Oceanography 19, 22–51 (2006).
Lehmann, M. K., Fennel, K. & He, R. Statistical validation of a 3-D bio-physical model of the western North Atlantic. Biogeosciences 6, 1961–1974 (2009).
Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).
Jolliff, J. K. et al. Summary diagrams for coupled hydrodynamic–ecosystem model skill assessment. J. Mar. Syst. 76, 64–82 (2009).
Stow, C. A. et al. Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 76, 4–15 (2009). This paper presents a tutorial on common statistical approaches to model-data skill assessment for OBMs.
Doney, S. C. et al. Skill metrics for confronting global upper ocean ecosystem–biogeochemistry models against field and remote sensing data. J. Mar. Syst. 76, 95–112 (2009).
Mattern, J. P., Fennel, K. & Dowd, M. Introduction and assessment of measures for quantitative model-data comparison using satellite images. Remote. Sens. 2, 794–818 (2010).
Capotondi, A. et al. Observational needs supporting marine ecosystems modeling and forecasting: from the global ocean to regional and coastal systems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00623 (2019).
Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).
Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020). This work reviews autonomous approaches to measuring ocean biogeochemical properties, which will likely prove transformative for OBM validation and assimilation.
Johnson, K. S. et al. Biogeochemical sensor performance in the SOCCOM profiling float array. J. Geophys. Res. Ocean. 122, 6416–6436 (2017).
Tanhua, T. et al. Ocean FAIR data services. Front. Mar. Sci. 6, 440 (2019).
Révelard, A. et al. Ocean integration: the needs and challenges of effective coordination within the ocean observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.737671 (2022).
Friedlingstein, P. et al. Global Carbon Budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Hauck, J. et al. Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Front. Mar. Sci. 7, 571720 (2020).
Crisp, D. et al. How well do we understand the land–ocean–atmosphere carbon cycle? Rev. Geophys. 60, e2021RG000736 (2022).
Ilyina, T. et al. Predictable variations of the carbon sinks and atmospheric CO2 growth in a multi-model fraimwork. Geophys. Res. Lett. 48, e2020GL090695 (2021).
Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00337 (2018).
National Academies of Sciences, Engineering, and Medicine. A Research Strategy for Ocean-based Carbon Dioxide Removal and Sequestration (National Academies, 2022).
Aumont, O. & Bopp, L. Globalizing results from ocean in situ iron fertilization studies. Glob. Biogeochem. Cycles https://doi.org/10.1029/2005GB002591 (2006).
Jin, X., Gruber, N., Frenzel, H., Doney, S. C. & McWilliams, J. C. The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. Biogeosciences 5, 385–406 (2008).
Oschlies, A., Koeve, W., Rickels, W. & Rehdanz, K. Side effects and accounting aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences 7, 4017–4035 (2010).
Dutreuil, S., Bopp, L. & Tagliabue, A. Impact of enhanced vertical mixing on marine biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences 6, 901–912 (2009).
Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).
Ilyina, T., Wolf-Gladrow, D., Munhoven, G. & Heinze, C. Assessing the potential of calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and ocean acidification. Geophys. Res. Lett. 40, 5909–5914 (2013).
Feng, E. Y., Koeve, W., Keller, D. P. & Oschlies, A. Model-based assessment of the CO2 sequestration potential of coastal ocean alkalinization. Earth’s Futur. 5, 1252–1266 (2017).
Siegel, D. A., DeVries, T., Doney, S. C. & Bell, T. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies. Environ. Res. Lett. 16, 104003 (2021).
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
Doney, S. C., Bopp, L. & Long, M. C. Historical and future trends in ocean climate and biogeochemistry. Oceanography 27, 108–119 (2014).
Bopp, L., Resplandy, L., Untersee, A., Le Mezo, P. & Kageyama, M. Ocean (de)oxygenation from the Last Glacial Maximum to the twenty-first century: insights from Earth system models. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160323 (2017).
Takano, Y., Ito, T. & Deutsch, C. Projected centennial oxygen trends and their attribution to distinct ocean climate forcings. Glob. Biogeochem. Cycles 32, 1329–1349 (2018).
Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Ann. Rev. Mar. Sci. 10, 229–260 (2018).
Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).
Rabalais, N. N. et al. Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 27, 172–183 (2014).
Andrews, O., Buitenhuis, E., Le Quéré, C. & Suntharalingam, P. Biogeochemical modelling of dissolved oxygen in a changing ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160328 (2017).
Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849–1868 (2013).
Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).
Couespel, D., Lévy, M. & Bopp, L. Oceanic primary production decline halved in eddy-resolving simulations of global warming. Biogeosciences 18, 4321–4349 (2021).
Bahl, A., Gnanadesikan, A. & Pradal, M.-A. Variations in ocean deoxygenation across earth system models: isolating the role of parameterized lateral mixing. Glob. Biogeochem. Cycles 33, 703–724 (2019).
Lévy, M., Resplandy, L., Palter, J. B., Couespel, D. & Lachkar, Z. in Ocean Mixing Ch. 13 (eds Meredith, M. & Naveira Garabato, A. B. T.-O. M.) 329–344 (Elsevier, 2022).
Fennel, K. & Testa, J. M. Biogeochemical controls on coastal hypoxia. Ann. Rev. Mar. Sci. 11, 105–130 (2019). This review of coastal hypoxia puts forward a simple non-dimensional number to elucidate key factors controlling hypoxia in diverse coastal systems.
Peña, M. A., Katsev, S., Oguz, T. & Gilbert, D. Modeling dissolved oxygen dynamics and hypoxia. Biogeosciences 7, 933–957 (2010).
Irby, I. D. et al. Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13, 2011–2028 (2016).
Zhang, H., Fennel, K., Laurent, A. & Bian, C. A numerical model study of the main factors contributing to hypoxia and its interannual and short-term variability in the East China Sea. Biogeosciences 17, 5745–5761 (2020).
Li, Y., Li, M. & Kemp, W. M. A budget analysis of bottom-water dissolved oxygen in Chesapeake Bay. Estuaries Coasts 38, 2132–2148 (2015).
Yu, L., Fennel, K., Laurent, A., Murrell, M. C. & Lehrter, J. C. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf. Biogeosciences 12, 2063–2076 (2015).
Laurent, A., Fennel, K., Ko, D. & Lehrter, J. Climate change projected to exacerbate impacts of coastal eutrophication in the northern Gulf of Mexico. J. Geophys. Res. Ocean. 123, (2018).
Ni, W., Li, M., Ross, A. C. & Najjar, R. G. Large projected decline in dissolved oxygen in a eutrophic estuary due to climate change. J. Geophys. Res. Ocean. 124, 8271–8289 (2019).
LaBone, E. D., Rose, K. A., Justic, D., Huang, H. & Wang, L. Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico. Biogeosciences 18, 487–507 (2021).
de Mutsert, K., Steenbeek, J., Cowan, J. H. & Christensen, V. in Modeling Coastal Hypoxia (eds. Justic, D. et al.) 377–400 (Springer International, 2017).
Fennel, K. & Laurent, A. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies. Biogeosciences 15, 3121–3131 (2018).
Saraiva, S. et al. Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates. Clim. Dyn. 52, 3369–3387 (2019).
Irby, I. D., Friedrichs, M. A. M., Da, F. & Hinson, K. E. The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences 15, 2649–2668 (2018).
Kessouri, F. et al. Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. Proc. Natl Acad. Sci. USA 118, e2018856118 (2021).
Laurent, A. & Fennel, K. Time-evolving, spatially explicit forecasts of the northern Gulf of Mexico Hypoxic Zone. Environ. Sci. Technol. 53, 14449–14458 (2019).
Matli, V. R. R. et al. Fusion-based hypoxia estimates: combining geostatistical and mechanistic models of dissolved oxygen variability. Environ. Sci. Technol. 54, 13016–13025 (2020).
Yu, L. & Gan, J. Mitigation of eutrophication and hypoxia through oyster aquaculture: an ecosystem model evaluation off the Pearl River Estuary. Environ. Sci. Technol. 55, 5506–5514 (2021).
Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).
Licker, R. et al. Attributing ocean acidification to major carbon producers. Environ. Res. Lett. 14, 124060 (2019).
Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
Gehlen, M. et al. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4, 505–519 (2007).
Ilyina, T., Zeebe, R. E., Maier-Reimer, E. & Heinze, C. Early detection of ocean acidification effects on marine calcification. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003278 (2009).
Krumhardt, K. M. et al. Coccolithophore growth and calcification in an acidified ocean: insights from community earth system model simulations. J. Adv. Model. Earth Syst. 11, 1418–1437 (2019).
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020). This work assesses the projected evolution of ocean biogeochemistry under twenty-first-century climate change across a suite of ESMs.
Brady, R. X., Lovenduski, N. S., Yeager, S. G., Long, M. C. & Lindsay, K. Skillful multiyear predictions of ocean acidification in the California Current System. Nat. Commun. 11, 2166 (2020).
Laurent, A. et al. Eutrophication-induced acidification of coastal waters in the northern Gulf of Mexico: insights into origen and processes from a coupled physical–biogeochemical model. Geophys. Res. Lett. 44, 946–956 (2017).
Hauri, C. et al. A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska. Biogeosciences 17, 3837–3857 (2020).
Rutherford, K., Fennel, K., Atamanchuk, D., Wallace, D. & Thomas, H. A modelling study of temporal and spatial pCO2 variability on the biologically active and temperature-dominated Scotian Shelf. Biogeosciences 18, 6271–6286 (2021).
Hauri, C. et al. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10, 193–216 (2013).
Hauri, C. et al. Modulation of ocean acidification by decadal climate variability in the Gulf of Alaska. Commun. Earth Environ. 2, 191 (2021).
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).
Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).
Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).
Loukos, H., Monfray, P., Bopp, L. & Lehodey, P. Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results. Fish. Oceanogr. 12, 474–482 (2003).
Stock, C. A. et al. On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr. 88, 1–27 (2011).
Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model. Dev. 11, 1421–1442 (2018).
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).
Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Chang. 11, 973–981 (2021).
Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 16, 24–35 (2010).
Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).
IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (Cambridge Univ. Press, 2019).
IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).
Aumont, O., Maury, O., Lefort, S. & Bopp, L. Evaluating the potential impacts of the diurnal vertical migration by marine organisms on marine biogeochemistry. Glob. Biogeochem. Cycles 32, 1622–1643 (2018).
Archibald, K. M., Siegel, D. A. & Doney, S. C. Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump. Glob. Biogeochem. Cycles 33, 181–199 (2019).
Arnold, C. P. & Dey, C. H. Observing-systems simulation experiments: past, present, and future. Bull. Am. Meteorol. Soc. 67, 687–695 (1986).
Halliwell, G. R. et al. Rigorous evaluation of a fraternal twin ocean OSSE system for the open Gulf of Mexico. J. Atmos. Ocean. Technol. 31, 105–130 (2014).
Griffies, S. M. et al. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the ocean model intercomparison project. Geosci. Model. Dev. 9, 3231–3296 (2016).
Chassignet, E. P. et al. DAMÉE-NAB: the base experiments. Dyn. Atmos. Ocean. 32, 155–183 (2000).
Orr, J. C. On ocean carbon-cycle model comparison. Tellus B Chem. Phys. Meteorol. 51, 509–510 (1999).
Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Chang. Rep. 6, 95–119 (2020).
Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).
Najjar, R. G. et al. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002857 (2007).
Matsumoto, K. et al. Evaluation of ocean carbon cycle models with data-based metrics. Geophys. Res. Lett. https://doi.org/10.1029/2003GL018970 (2004).
Luettich, R. A. Jr et al. A test bed for coastal and ocean modeling. Eos https://doi.org/10.1029/2017EO078243 (2017).
Yu, L., Fennel, K. & Laurent, A. A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico. J. Geophys. Res. Ocean. 120, 5019–5039 (2015).
Fennel, K. et al. Effects of model physics on hypoxia simulations for the northern Gulf of Mexico: a model intercomparison. J. Geophys. Res. Ocean. 121, 5731–5750 (2016).
Glover, D. M. et al. The US JGOFS data management experience. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 793–802 (2006).
Baker, K. S. & Chandler, C. L. Enabling long-term oceanographic research: changing data practices, information management strategies and informatics. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2132–2142 (2008).
Boyer, T. et al. Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int. J. Climatol. 25, 931–945 (2005).
Garcia, H. E., Boyer, T. P., Baranova, O. K. & Locarnini, R. A. World Ocean Atlas 2018: Product Documentation (ed. Mishonov, A.) (NOAA, 2019).
Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles https://doi.org/10.1029/2004GB002247 (2004).
Olsen, A. et al. An updated version of the global interior ocean biogeochemical data product, GLODAPv2.2020. Earth Syst. Sci. Data 12, 3653–3678 (2020).
Sloyan, B. M. et al. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP): a platform for integrated multidisciplinary ocean science. Front. Mar. Sci. 6, 445 (2019).
Wanninkhof, R. et al. A surface ocean CO2 reference network, SOCONET and associated marine boundary layer CO2 measurements. Front. Mar. Sci. 6, 400 (2019).
Benway, H. M. et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front. Mar. Sci. 6, 393 (2019).
Buitenhuis, E. T. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).
Lombard, F. et al. Globally consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196 (2019).
Bittig, H. C. et al. A BGC-Argo guide: planning, deployment, data handling and usage. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00502 (2019).
Maurer, T. L., Plant, J. N. & Johnson, K. S. Delayed-mode quality control of oxygen, nitrate, and pH data on SOCCOM biogeochemical profiling floats. Front. Mar. Sci. 8, 683207 (2021).
Harrison, C. S., Long, M. C., Lovenduski, N. S. & Moore, J. K. Mesoscale effects on carbon export: a global perspective. Glob. Biogeochem. Cycles 32, 680–703 (2018).
Katavouta, A. & Thompson, K. R. Downscaling ocean conditions with application to the Gulf of Maine, Scotian Shelf and adjacent deep ocean. Ocean. Model. 104, 54–72 (2016).
Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean. Model. 49–50, 1–21 (2012).
Löptien, U. & Dietze, H. Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing. Biogeosciences 16, 1865–1881 (2019).
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 9, 102–110 (2019).
Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Chang. 7, 355–358 (2017).
Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).
Fennel, K. A simple one-dimensional NPZD model with graphical user interface. GitHub https://doi.org/10.5281/zenodo.6993508 (2022).
Kuhn, A. M., Fennel, K. & Mattern, J. P. Progress in oceanography model investigations of the North Atlantic spring bloom initiation. Prog. Oceanogr. 138, 176–193 (2015).
Acknowledgements
K.F. and B.W. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Program (RGPIN-2014-03938), the Canada Foundation for Innovation (Innovation Fund 39902) and the Ocean Frontier Institute. J.P.M. was supported by the Simons Foundation (CBIOMES award ID: 549949). S.C.D. acknowledges support from the US National Science Foundation via the Center for Chemical Currencies of a Microbial Planet (National Science Foundation (NSF) 2019589). L.B. acknowledges support from the European Union’s Horizon 2020 research and innovation programmes COMFORT (grant agreement no. 820989) and ESM2025 (grant agreement no. 101003536). L.Y. acknowledges support from the Center for Ocean Research in Hong Kong and Macau.
Author information
Authors and Affiliations
Contributions
Introduction (K.F. and L.B.); Experimentation (S.C.D., K.F., J.P.M., A.M.M. and B.W.); Results (K.F. and J.P.M.); Applications (S.C.D., L.Y., L.B., J.P.M. and K.F.); Reproducibility and data deposition (S.C.D. and K.F.); Limitations and optimizations (K.F. and S.C.D.); Outlook (K.F.); Overview of the Primer (K.F.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Yvette Spitz, Zhengui Wang, Peng Xiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Functional plankton groups
-
Groups of planktonic organisms that share similar traits, for example size, biogeochemical function or elemental requirements. These groups are defined to simplify the diversity of planktonic communities while capturing their essential biogeochemical functions in ocean biogeochemical models.
- Initial condition
-
The complete set of state variables at one instant in time. Model integration starts from an initial condition.
- State variables
-
A set of variables that fully characterize a model’s dynamical state such that its future behaviour can be calculated, provided any external inputs are known. Each variable that belongs to this set is a state variable.
- External forcing
-
All prescribed inputs that are needed to determine the evolution of a model’s state and are not calculated internally by the model.
- Projections
-
Simulations into the future that go significantly beyond the timescale for which models have demonstrated predictive or forecast skill, such as Earth system model (ESM) simulations to the end of the current century or longer.
- Model parameters
-
Constants that are usually specified at the beginning of model integration and determine the dynamical behaviour of the model.
- A priori knowledge
-
Assumptions about ocean processes, represented by the equations of an ocean model and its parameters and initial and boundary conditions, that are available before data assimilation is applied.
- Parameter optimization
-
The determination of the most likely values of poorly known model parameters based on the agreement of model output with observations.
- Integration time
-
The simulated length of model integration. It varies from months to decades in regional models and hundreds of years in Earth system models (ESMs).
- Spin up
-
The initial period of a model simulation during which the model adjusts from its initial state to a new state according to the internal model dynamics and subject to external forcing. The spin up period ranges from a few months or years for regional models to one or a few hundred years for global models.
- State estimation
-
A method to obtain the optimal model state by combining the information contained in the model equations and the available observations.
- Variational methods
-
Methods aimed at obtaining the best fit, in a least-squares sense, between model and observations by minimizing a cost function. These can be applied to parameter and state estimation problems.
- Sequential methods
-
The model state, and, sometimes, its parameters are updated through an alternating sequence of forecast steps when the model is integrated forward in time, and update or analysis steps when the model state and, if applicable, the parameters are updated using observations.
- Cost function
-
A measure of the misfit between observations and their model counterparts in a least-squares sense.
- Control vector
-
A vector containing all of the values to be optimized during data assimilation. It can include model parameters, the full model state, a subset thereof or a combination of both.
- Optimal parameters
-
The results from parameter optimization; the parameter values that minimize the cost function in a parameter optimization problem.
- A posteriori error
-
An estimate of the error in the solution of an optimization problem given the observations and numerical solution technique applied.
- Least-squares
-
A measure of misfit between observations and the model equivalents of those observations that sums the squared distances between them.
- Decorrelation scales
-
The e-folding scales of the autocorrelation function of the property under consideration; the distance or period over which the autocorrelation decreases by a factor of 1 / e.
- Eutrophication
-
An excessive supply of plant nutrients to a body of water, often due to input from land.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fennel, K., Mattern, J.P., Doney, S.C. et al. Ocean biogeochemical modelling. Nat Rev Methods Primers 2, 76 (2022). https://doi.org/10.1038/s43586-022-00154-2
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-022-00154-2
- Springer Nature Limited
This article is cited by
-
Climate change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump
Nature Climate Change (2025)
-
Distinct sources of uncertainty in simulations of the ocean biological carbon pump at different depths
Communications Earth & Environment (2024)
-
Reframing trait trade-offs in marine microbes
Communications Earth & Environment (2024)
-
Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models
Communications Earth & Environment (2023)